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Abstract—The group mutual exclusion (GME) problem is an 

interesting generalization of the mutual exclusion problem. In the 
group mutual exclusion, multiple processes can enter a critical 
section simultaneously if they belong to the same group. In the 
extended group mutual exclusion, each process is a member of 
multiple groups at the same time. As a result, after the process by 
selecting a group enter critical section, other processes can select the 
same group with its belonging group and can enter critical section at 
the moment, so that it avoids their unnecessary blocking. This paper 
presents a quorum-based distributed algorithm for the extended 
group mutual exclusion problem. The message complexity of our 

algorithm is )4( QO  in the best case and )5( QO  in the worst case, 

where Q  is a quorum size.  

 
Keywords—Group Mutual Exclusion (GME), Extended GME, 

Distributed systems. 

I. INTRODUCTION 

ISTRIBUTED system is a set of processes (computers) 
connected by communication links. Mutual exclusion is a 
fundamental problem in distributed systems. When some 
resources (for example, a file, a communication channel, a 

printer) are shared among processes, two processes are not 
allowed to enter a critical section (CS) and use it at the same 
time. Recently, group mutual exclusion [1] has been proposed. 
There are multiple groups of processes. The processes in the 
same group can enter CS at the same time. An interesting 
application of the group mutual exclusion is presented in [2]. 
Consider large data sets stored in a secondary memory. A set 
of processes accesses to the data sets through a server. The 
server can be a CD jukebox. Using a regular mutual exclusive 
protocol, the server needs to repeatedly load and unload the 
data sets (e.g., the CDs) from the secondary memory to 
process the requests.  
  

An efficient GME protocol would allow multiple processes 
to read the currently loaded data set (a CD) concurrently, 
while forcing processes requesting a different data set (another 
CD) to wait. For example, each process wants to read some 
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data on the CDs. If CD A is loaded, multiple processes which 
want to read data on CD A can access it at the same time. 
These processes are in the same group. By contrast, the 
processes which want to read data on CD B cannot do so when 
A is loaded. These processes form a different group. In [3], the 
following extended definition has been introduced. Some 
processes might be members of multiple groups at the same 
time. In the CD jukebox example, the same data might be 
copied on CD B and CD C. In this situation, the user can read 
the data if either CD B or CD C is currently loaded. A different 
example of GME is a server that can cache locally one page of 
the web. Clients of this server interested in the currently 
cached page can read it simultaneously; clients interested in a 
different page must wait [4].  

For group mutual exclusion, shared memory system 
algorithms [4-7], token-based algorithms [8-11] and quorum-
based algorithms [3, 12-14] have been proposed. The extended 
group mutual exclusion problems are discussed in [3] and [14] 
– both of the solutions are quorum-based protocols. Though 
[3] discusses this extended group mutual exclusion problem, it 
just notes that when a process belongs to multiple groups, it 
arbitrarily selects one group. The above algorithm is not 
sufficient, since when the process p enters CS, another process 
p', which can enter CS at the time might be blocked. Manabe et 
al. [14] called above situation as an unnecessary blocking.  

In [14] a quorum-based extended group mutual exclusion 
algorithm is proposed that not have unnecessary blocking and 

the message complexity of this algorithm is )6( QO in the best 

case and )9( QO  in the worst case where Q  is a quorum size. 

In the present study, we proposed a new algorithm for 
extended group mutual exclusion that avoids unnecessary 
blocking of processes. The message complexity of our 

algorithm is )4( QO in the best case and )5( QO in the worst 

case where Q  is a quorum size. Also the message complexity 

of our algorithm is less than [14].  
The organization of this paper is as follows: In section two 

the system model and definition are presented. In section three 
the proposed algorithm introduced. In section four correctness 
of the algorithm is explained. In the fifth part message 
complexity of proposed algorithm is presented. In the sixth 
part, performance of proposed algorithm is compared with 
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former algorithms. And finally in the seventh part the 
conclusion is given. 

II. SYSTEM MODEL AND DEFINITION 

B. The System Model 

We assume an asynchronous distributed system which 
consists of a set of n processes },...,,{= 21 npppV . Each 

process has a unique identifier selected from a set of 
integers },...,2,1{ n . The processes communicate with each 

other by passing messages through first-in, first-out (FIFO), 
asynchronous, and reliable (no message loss occurs) channels. 
We assume that the system is error-free. In our algorithm, we 
have two classes of processes, director processes and 
applicant processes. A director process manages permissions 
and handles requests from applicant processes. An applicant 
process makes a request for resources and asks for permissions 
from director processes. In actual systems, one process can 
perform both roles simultaneously. Also, to avoid starvation 
and deadlock, each director process has a priority queue that if 
director process doesn't grant permission to applicant process 
to enter CS, then a request is inserted to queue. Priority in this 
queue is assigned by a timestamp, which is a pair logical clock 
value on request and process identifier [15-16]. 

B. Coteries 

We describe formal definition of coterie [17] below. 
Definition (Coterie [17]): 
Let },...,,{= 21 nuuuU be a set. A set C of subsets of U is a 

coterie under U if and only if the following three conditions 
are satisfied. 

1. Non-emptiness: For each CQ∈ , Q is not empty and 

UQ ⊆ . 

2. Intersection property: For any CQQ ∈′, , QQ ′∩  is 

not  empty. 
3. Minimality: For any CQQ ∈′, , Q  is not a subset 

of Q′ . 

An element of C is called a quorum.  
Coterie is widely used for distributed mutual exclusion. 

Coterie is a set of quorums, and quorum is a subset of 
processes V such that any two quorums have non-empty 
intersection. A process wishing to enter its critical section 
sends a request to each process in a quorum. A process enters 
its critical section after it obtains permission from every 
process in a quorum, and releases the permission when it exits 
its critical section. Because the two quorums have not 
nonempty intersection, mutual exclusion is guaranteed if each 
process never grants permission to more than one process at a 
time. 

 

II.  DESCRIPTION OF THE PROPOSED ALGORITHM 

This section provides a brief description of our algorithm 
shown in figures 1 and 2. Let },..,,{= 21 nQQQC  be a set of 

quorums, },..,,{= 21 mpppA  be a set of applicant processes 

and },..,,{= 21 kall GGGG  be a set of groups. When process ip  

wants to enter CS, it selects its group set iG  from 

},..,,{= 21 kall GGGG , and it selects a quorum  CQ∈  and 

sends its request to every Qq∈ . 
When director processes receive this request, they grant 

permission to ip  provided that no permission was granted 

before and CS is empty. When ip  receives permission from 

each Qq∈ , selects desired group from its own group set iG  

and enter CS. Other applicant processes that are in the same 
group with ip  can enter CS concurrently. As a result, 

extended GME is guaranteed and their unnecessary blocking is 
avoided. 

But this definition: "allowing another process to enter CS at 
the same time”, leads to starvation [14]. Thus, to avoid 
starvation, the fallowing method is used. When CS is empty, 
the first process which enters CS through selecting the desired 
group is as a master. Then, other applicant processes 
belonging to the same group can enter CS as slave 
simultaneously while master is in CS. As soon as master exit 
from CS, director processes do not grant permission to other 
processes. Then, after all slaves exit from CS, other processes 
enter and therefore starvation is avoided. In this case director 
processes select one request based on timestamp of suspended 
requests in queue and send permission to enter CS as master. 
After the master enters, director processes send permission to 
other suspended requests in queue that are in the same group 
with master to enter CS as slave. 

A. Solutions of Proposed Algorithm for Improvement of 
Former Algorithm  

This section presents solutions of proposed algorithm to 
decrease communication messages and the used memory by 
queues of director processes. In [14] each Qq∈  receives a 

request, first inserts it to queue. However only the suspended 
request can enter to queue and decrease used memory by 
queues. Also, when the pivot process wants to exit CS, it must 
waits for other process to exit from CS which cause improper 
wait of pivot process.  

To eliminate improper wait of pivot process, the director 
processes must distinguish the exit of master and slave 
processes from CS. In fact guarantee of mutual exclusion is the 
duty of director processes.   

For this purpose, four variables are used. Master is a string 
variable that saves master process name, Master_in is a 
boolean variable that shows the presence or absence of master 
in the CS, user is a set variable which shows the set of 
processes which serve as slaves in the CS and scount is a 
integer variable which shows the number of processes that 
allowed them be as slaves but have not enter CS yet. 

A-3. Program Applicant Process (pi: process); 
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  At arrival of  "Enter_Master" from q:  { 
      if   (Astatus = = wait_ grant)  ∨  
           (Astatus = = wait_perm)    
      { 
             perm = perm ∪ {q}; 
             if (perm = = Q) {   
                   select desired group g ∈Gi ;   
                   send "Master(g)" to all q∈Q ; 
                   Astatus = in; 
                         // in the CS  
                   Astatus = out; 
                   send "Release"  to all q ∈Q ;    
                   perm = φ ;   
             } 
      }  
}  
 
A-4. 

   At arrival of  "No_Enter" from q:  { 
          Astatus = wait_perm 

    } 

var  
  Astatus: status   // { in, out, wait_grant, wait_perm }    
  perm: set;                 // set of quorum that send  permission to pi   
  Q: quorum: set of processes;     // C ={Q1, …, Qn}  set of quorums 
  Gall: set of groups;      
  Gi : set;                   // group set of applicant process pi   
  ts: Time;                 // timestamp of request  
  Mg: string;             // master group (or current  group in CS ) 
 
A-1. 
  When pi (group set is Gi) wants to enter CS:  { 
         send "Request_Master(Gi, ts)" to all q∈Q ; 
         Astatus = wait_grant; 
         perm = φ ; 
  } 

 

A-2. 
   At arrival of "Enter_Slave(Mg)" from q: { 
         if  (Astatus = = wait_grant) ∨ (Astatus = = wait_perm)    
         { 
                 send "Slave(Mg)" to all q∈Q ; 
                 Astatus = in; 
                      // in the CS  
                 Astatus = out; 
                 send "Release" to all q∈Q ; 
        }       
 } 

Fig. 1. The pseudo code of the applicant process algorithm 

 
Then Director processes can distinguish exit of master and 

slave processes from CS and therefore remove one request 
from queue with highest priority based on its timestamp and 
grant permission to it in order enter CS as a master. 

B. The Applicant Processes Algorithm 

The summary of the pseudo code for applicant processes 
shown in figure 1 is fallows: 

A-1. When process ip  whose group set is iG  wants to 

enter CS, it selects a quorum  CQ∈  and sends a 

request to every process in Q .  

A-2. If any of the Qq∈  granted permission to enter as a 

slave then it can enters CS as slave. 
A-3. If all Qq∈  granted permission as master, it would 

select the desired group g  from whose group set iG  

and enter CS as master. 
A-4. If no permission is granted, it should wait.  

Also when ip exiting CS, sends release message to every 

Qq∈ . 

C. The Director Processes Algorithm 

The summary of the pseudo code for director processes 
shown in figure 2 is fallows: 

B-1. When q  receives a request from ip : 

I. If permission is granted to other process to enter 
CS as a master before, then it inserts its request to 
queue and doesn't grant permission to ip .  

II.  If no permission is sent to other process that enter 
CS as a master before, and if CS is empty, then it 
sends permission to ip  which enters CS as a 

master.  
III.  Otherwise if master is in the CS, if ip  is in the 

same group with master, it allows ip  to enter as a 

slave and increments scount. But if master isn’t in 
the CS, it inserts its request to queue and doesn't 
grant permission to ip . 

B-2. When q  receives message that ip  has entered CS as 

a slave, then it adds ip  to user set and decrements 

scount. 
B-3. When q  receives message that ip  has entered CS as 

a master, then ∀ all process pj in queue if jGMg ∈ , 

it sends permission to enter CS as a slave and remove 
those from queue.  

B-4. When q  receives release message from ip , if there is 

no other process in the CS and don’t send permission 
to other process that enter CS as a slave before (that 
is scount= 0), then it removes one request from queue 
with highest priority based on its timestamp and grant 
permission to it to enter CS as a  master.  
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Program Director Process (q: process); 
var        
  Dstatus: status;      // {  Idle, wait_master, wait_slave }  
  Master : string;                        // contain Master process name  
  Master_in = false: boolean;    // Master is in the CS or not   
  Mg: string;         // master group ( current group in CS )   
  CS: string;         // CS is empty or full   
  Queue = null    // priority queue of suspended requests; 
  user = φ:set;     // number of processes that are in the CS  
  scount =0;// number of processes that allowed them be as slaves 
 
B-1. 
    At arrival of "Request_Master(Gi, ts)" from pi :  
    { 
         if ( Dstatus = = wait_master)  
            { 
                     insert  (pi , Gi, ts) to Queue;  
                     Send "No_Enter" to pi ;   
            }  
          if (Dstatus = = Idle)  

                if  (CS = = 'empty' ) { 
                        send "Enter_Master"  to pi  ;   
                        Dstatus = wait_master;   
                  } 
          if (Dstatus = = Idle) ∨ (Dstatus = = wait_slave) { 

                     if  (Mg ∈ Gi) ∧ (Master_in = true) {  
                           send "Enter_Slave(Mg)"  to pi ; 
                           scount ++; 
                           Dstatus = wait_slave; 
                       } 
                     else { 
                           insert (pi, Gi, ts) to Queue;     
                           send "No_Enter" to pi ;   
                       } 
             }   
  }  

 

B-2. 
   At arrival of  "Slave(Mg)" from pi : { 
         if (Dstatus = = wait_slave)  
         {  
               user = user ∪{  pi };    
               scount -- ;     
               if (scount = = 0)   Dstatus = Idle; 
          } 
    } 

B-3. 
  At arrival of  "Master(g)" from pi : { 
      if  (Dstatus = = wait_master ) { 
           Master = pi ;   
           Master_in = true;  
           Mg = g;     CS = 'full'; 
            ∀ all  processes  pj in Queue { 
                 if  (Mg ∈ Gj) { 

                       Send "Enter_slave(Mg)"  & remove it 
                                                               from Queue; 
                        Dstatus = wait_slave; 
                        scount ++;    
                   } 
                 else   
                  Dstatus = Idle; 
            } 

      } 
  } 
 
B-4. 
   At arrival of  "Release" from pi :  
   { 
       if  (Master = = pi ) { 
           Master_in = false;     
           if ( user = = φ) ∧ (scount = = 0) 
             { 
                  CS = 'empty';     
                   if (Queue is not empty) { 
                         Remove item (pj, Gj, ts) from Queue 
                               with highest Priority  
                               & send "Enter_Master" to pj ;  
                         Dstatus = wait_master; 
                     } 
                   else  Dstatus = Idle; 
             } 
       } 
      else {  
               user = user -{  pi }; 
               if   (user = = φ) ∧ (Master_in = = false) ∧ 
                     (scount = = 0)  
                { 
                     CS =  'empty';    
                      if (Queue is not empty) { 
                            Remove item  (pj, Gj, ts) from Queue 
                                  with highest Priority   
                                 & send  "Enter_Master" to pj ;  
                            Dstatus = wait_master; 
                      } 
                     else  Dstatus = Idle; 
               } 
        }  
   } 

Fig. 2. The pseudo code of the director process algorithm 

 

IV. PROOF OF CORRECTNESS 

A. Safety 

The mutual exclusion requirement in GME problem says 
that, no two processes requesting for a different group, must be 
in their CS simultaneously. Suppose 1p  and 2p  are applicant 

processes that request different groups. Let 1q  and 1q  be 

quorums that 1p  and 2p  select, respectively. Because any 

two quorums have non-empty intersection, we have 
0≠′∩ QQ  then if  jp  be a director process in the 

intersection, since jp  never sends permission for more than 

one group at a time, therefore 1p  and 2p  can not be granted 

by jp  simultaneously.  
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TABLE I PERFORMANCE COMPARISON 

 Message Complexity  Extended GME Unnecessary blocking 

Algorithm Best case Worst case    

Joung [3] 
)1-(

2

mm

n
 

n: number of processes 
  m: number of resources Yes Yes 

Toyomura et al. [13] )3( QO  )( QnO  
Q: size of Quorum 

n: number of processes No Yes 

Manabe et al. [14] )6( QO  )9( QO  Q: size of Quorum Yes No 

New Proposed Algorithm )4( QO  )5( QO  Q: size of Quorum Yes No 

 

B. Freedom from Starvation 

Assume that starvation occurs. Let 1p  be the process in 

group g  starves. We assume that )( 1pts  is the smallest 

among starved processes. It is clear that the request of 1p  is 

eventually granted if no process is its critical section and no 
other process is making a request.  

Therefore we consider a case that some processes in group 
)( gg ≠′  repeat entering and exiting their CS. 

According to proposed algorithm, director processes don’t 
grant permission to other processes to enter CS as a slave after 
exiting master process from CS. Then, all slave processes exit 
from CS finally. Also the timestamp value for each request is 
increasing.  

As a result, when all processes exit from CS, the director 
processes remove one request from queue with highest priority 
base on its timestamp and grant permission to it to enter CS as 
a master. Thus because )( 1pts  is the smallest among other 

request, is eventually granted permission and enters its critical 
section. 

V. MESSAGE COMPLEXITY 

Message complexity of the proposed algorithm is )4( QO  

in the best case and )5( QO  in the worst case, where Q  is the 

size of the smallest quorum in a coterie.  
In the best case, only one request exists to enter CS. Then 

four following types of messages are exchanged between an 
applicant process and each director process in a quorum:  

a. Applicant process ip  send "Request Master(Gi, ts)"  to 

every Qq∈ . 

b. ip  received "Enter_Master"  from every Qq∈ . 

c. ip  selects desired group g  from whose group set iG  

and sends "Master(g)"  to every Qq∈ , and enter CS as 

master. 

d. When ip  exiting CS, sends "Release" to every Qq∈ . 

Thus, message complexity is )4( QO  in the best case. 

The worst case happens in two conditions. The first 
condition is the time when applicant process is not the same 
group as CS inside processes, the next condition is the time 
when applicant process is in the same group as processes CS 
inside but master process exits from CS. In these two 
conditions, one additional message in comparison with best 
case is communicated between applicant processes and 
quorum members. Then five following types of messages are 
exchanged between an applicant process and each director 
process in a quorum:  

a. Applicant process ip  send "Request Master(Gi, ts)"to 

every Qq∈ .  

b. ip  received "No_Enter" from some of the Qq∈ , 

then wait for permission. 

c. After a time ip  received one of this messages: 

� "Enter_Master" from every Qq∈ , then selects 

desired group g  from whose group set iG  and 

sends "Master(g)" to every Qq∈ , and enter CS as 

master. 

�  "Enter_Slave(Mg)" from some of the Qq∈ , then 

selects Mg as desired group and sends            
"Slave(Mg)"  to every Qq∈ , and enter CS as slave. 

d. When ip  exiting CS, sends "Release" to every Qq∈ . 

Thus, the message complexity of proposed algorithm is 

)5( QO  in the worst case.   

VI.  PERFORMANCE COMPARISION 

In this section, the complexity and extended GME ability of 
proposed algorithm compared with three former algorithms: 
Joung [3], Toyomura et al. [13] and Manabe et al. [14]. Table I 
shows this comparison. The result shows that proposed 
algorithm has lower complexity in both best case and worst 
case with respect to other algorithms and has extended GME 
ability which after the process by selecting a group, enters 
critical section, other processes can select same group with its 
belonging group and can enter critical section at the moment, 
so avoid their unnecessary blocking. 
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VII.  CONCLUSION 

In the present paper, we proposed a new quorum based 
algorithm for the extended group mutual exclusion problem in 
distributed systems. The message complexity of our algorithm 

is )4( QO  in the best case and )5( QO  in the worst case. Also 

the message complexity of our algorithm is less than former 
algorithms.  
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