
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

684

Abstract—The group mutual exclusion (GME) problem is an

interesting generalization of the mutual exclusion problem. In the
group mutual exclusion, multiple processes can enter a critical
section simultaneously if they belong to the same group. In the
extended group mutual exclusion, each process is a member of
multiple groups at the same time. As a result, after the process by
selecting a group enter critical section, other processes can select the
same group with its belonging group and can enter critical section at
the moment, so that it avoids their unnecessary blocking. This paper
presents a quorum-based distributed algorithm for the extended
group mutual exclusion problem. The message complexity of our

algorithm is)4(QO in the best case and)5(QO in the worst case,

where Q is a quorum size.

Keywords—Group Mutual Exclusion (GME), Extended GME,

Distributed systems.

I. INTRODUCTION

ISTRIBUTED system is a set of processes (computers)
connected by communication links. Mutual exclusion is a
fundamental problem in distributed systems. When some
resources (for example, a file, a communication channel, a

printer) are shared among processes, two processes are not
allowed to enter a critical section (CS) and use it at the same
time. Recently, group mutual exclusion [1] has been proposed.
There are multiple groups of processes. The processes in the
same group can enter CS at the same time. An interesting
application of the group mutual exclusion is presented in [2].
Consider large data sets stored in a secondary memory. A set
of processes accesses to the data sets through a server. The
server can be a CD jukebox. Using a regular mutual exclusive
protocol, the server needs to repeatedly load and unload the
data sets (e.g., the CDs) from the secondary memory to
process the requests.

An efficient GME protocol would allow multiple processes
to read the currently loaded data set (a CD) concurrently,
while forcing processes requesting a different data set (another
CD) to wait. For example, each process wants to read some

Somaiyeh Dehghan is with department of computer engineering, Islamic
Azad University, Ilkhchi Branch, Tabriz, Iran. (phone:+984123326060,
e-mail: so.dehghan@iauil.ac.ir)

Amir Masoud Rahmani is with department of computer engineering,
Islamic Azad University, Science and Research Branch, Tehran, Iran. (e-mail:
rahmani@sr.iau.ac.ir).

data on the CDs. If CD A is loaded, multiple processes which
want to read data on CD A can access it at the same time.
These processes are in the same group. By contrast, the
processes which want to read data on CD B cannot do so when
A is loaded. These processes form a different group. In [3], the
following extended definition has been introduced. Some
processes might be members of multiple groups at the same
time. In the CD jukebox example, the same data might be
copied on CD B and CD C. In this situation, the user can read
the data if either CD B or CD C is currently loaded. A different
example of GME is a server that can cache locally one page of
the web. Clients of this server interested in the currently
cached page can read it simultaneously; clients interested in a
different page must wait [4].

For group mutual exclusion, shared memory system
algorithms [4-7], token-based algorithms [8-11] and quorum-
based algorithms [3, 12-14] have been proposed. The extended
group mutual exclusion problems are discussed in [3] and [14]
– both of the solutions are quorum-based protocols. Though
[3] discusses this extended group mutual exclusion problem, it
just notes that when a process belongs to multiple groups, it
arbitrarily selects one group. The above algorithm is not
sufficient, since when the process p enters CS, another process
p', which can enter CS at the time might be blocked. Manabe et
al. [14] called above situation as an unnecessary blocking.

In [14] a quorum-based extended group mutual exclusion
algorithm is proposed that not have unnecessary blocking and

the message complexity of this algorithm is)6(QO in the best

case and)9(QO in the worst case where Q is a quorum size.

In the present study, we proposed a new algorithm for
extended group mutual exclusion that avoids unnecessary
blocking of processes. The message complexity of our

algorithm is)4(QO in the best case and)5(QO in the worst

case where Q is a quorum size. Also the message complexity

of our algorithm is less than [14].
The organization of this paper is as follows: In section two

the system model and definition are presented. In section three
the proposed algorithm introduced. In section four correctness
of the algorithm is explained. In the fifth part message
complexity of proposed algorithm is presented. In the sixth
part, performance of proposed algorithm is compared with

S. Dehghan and A.M. Rahmani

A New Extended Group Mutual Exclusion
Algorithm with Low Message Complexity in

Distributed Systems

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

685

former algorithms. And finally in the seventh part the
conclusion is given.

II. SYSTEM MODEL AND DEFINITION

B. The System Model

We assume an asynchronous distributed system which
consists of a set of n processes },...,,{= 21 npppV . Each

process has a unique identifier selected from a set of
integers },...,2,1{ n . The processes communicate with each

other by passing messages through first-in, first-out (FIFO),
asynchronous, and reliable (no message loss occurs) channels.
We assume that the system is error-free. In our algorithm, we
have two classes of processes, director processes and
applicant processes. A director process manages permissions
and handles requests from applicant processes. An applicant
process makes a request for resources and asks for permissions
from director processes. In actual systems, one process can
perform both roles simultaneously. Also, to avoid starvation
and deadlock, each director process has a priority queue that if
director process doesn't grant permission to applicant process
to enter CS, then a request is inserted to queue. Priority in this
queue is assigned by a timestamp, which is a pair logical clock
value on request and process identifier [15-16].

B. Coteries

We describe formal definition of coterie [17] below.
Definition (Coterie [17]):
Let },...,,{= 21 nuuuU be a set. A set C of subsets of U is a

coterie under U if and only if the following three conditions
are satisfied.

1. Non-emptiness: For each CQ∈ , Q is not empty and

UQ ⊆ .

2. Intersection property: For any CQQ ∈′, , QQ ′∩ is

not empty.
3. Minimality: For any CQQ ∈′, , Q is not a subset

of Q′ .

An element of C is called a quorum.
Coterie is widely used for distributed mutual exclusion.

Coterie is a set of quorums, and quorum is a subset of
processes V such that any two quorums have non-empty
intersection. A process wishing to enter its critical section
sends a request to each process in a quorum. A process enters
its critical section after it obtains permission from every
process in a quorum, and releases the permission when it exits
its critical section. Because the two quorums have not
nonempty intersection, mutual exclusion is guaranteed if each
process never grants permission to more than one process at a
time.

II. DESCRIPTION OF THE PROPOSED ALGORITHM

This section provides a brief description of our algorithm
shown in figures 1 and 2. Let },..,,{= 21 nQQQC be a set of

quorums, },..,,{= 21 mpppA be a set of applicant processes

and },..,,{= 21 kall GGGG be a set of groups. When process ip

wants to enter CS, it selects its group set iG from

},..,,{= 21 kall GGGG , and it selects a quorum CQ∈ and

sends its request to every Qq∈ .
When director processes receive this request, they grant

permission to ip provided that no permission was granted

before and CS is empty. When ip receives permission from

each Qq∈ , selects desired group from its own group set iG

and enter CS. Other applicant processes that are in the same
group with ip can enter CS concurrently. As a result,

extended GME is guaranteed and their unnecessary blocking is
avoided.

But this definition: "allowing another process to enter CS at
the same time”, leads to starvation [14]. Thus, to avoid
starvation, the fallowing method is used. When CS is empty,
the first process which enters CS through selecting the desired
group is as a master. Then, other applicant processes
belonging to the same group can enter CS as slave
simultaneously while master is in CS. As soon as master exit
from CS, director processes do not grant permission to other
processes. Then, after all slaves exit from CS, other processes
enter and therefore starvation is avoided. In this case director
processes select one request based on timestamp of suspended
requests in queue and send permission to enter CS as master.
After the master enters, director processes send permission to
other suspended requests in queue that are in the same group
with master to enter CS as slave.

A. Solutions of Proposed Algorithm for Improvement of
Former Algorithm

This section presents solutions of proposed algorithm to
decrease communication messages and the used memory by
queues of director processes. In [14] each Qq∈ receives a

request, first inserts it to queue. However only the suspended
request can enter to queue and decrease used memory by
queues. Also, when the pivot process wants to exit CS, it must
waits for other process to exit from CS which cause improper
wait of pivot process.

To eliminate improper wait of pivot process, the director
processes must distinguish the exit of master and slave
processes from CS. In fact guarantee of mutual exclusion is the
duty of director processes.

For this purpose, four variables are used. Master is a string
variable that saves master process name, Master_in is a
boolean variable that shows the presence or absence of master
in the CS, user is a set variable which shows the set of
processes which serve as slaves in the CS and scount is a
integer variable which shows the number of processes that
allowed them be as slaves but have not enter CS yet.

A-3. Program Applicant Process (pi: process);

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

686

 At arrival of "Enter_Master" from q: {
 if (Astatus = = wait_ grant) ∨
 (Astatus = = wait_perm)
 {
 perm = perm ∪ {q};
 if (perm = = Q) {
 select desired group g ∈Gi ;
 send "Master(g)" to all q∈Q ;
 Astatus = in;
 // in the CS
 Astatus = out;
 send "Release" to all q ∈Q ;
 perm = φ ;
 }
 }
}

A-4.

 At arrival of "No_Enter" from q: {
 Astatus = wait_perm

 }

var
 Astatus: status // { in, out, wait_grant, wait_perm }
 perm: set; // set of quorum that send permission to pi
 Q: quorum: set of processes; // C ={Q1, …, Qn} set of quorums
 Gall: set of groups;
 Gi : set; // group set of applicant process pi
 ts: Time; // timestamp of request
 Mg: string; // master group (or current group in CS)

A-1.
 When pi (group set is Gi) wants to enter CS: {
 send "Request_Master(Gi, ts)" to all q∈Q ;
 Astatus = wait_grant;
 perm = φ ;
 }

A-2.
 At arrival of "Enter_Slave(Mg)" from q: {
 if (Astatus = = wait_grant) ∨ (Astatus = = wait_perm)
 {
 send "Slave(Mg)" to all q∈Q ;
 Astatus = in;
 // in the CS
 Astatus = out;
 send "Release" to all q∈Q ;
 }
 }

Fig. 1. The pseudo code of the applicant process algorithm

Then Director processes can distinguish exit of master and

slave processes from CS and therefore remove one request
from queue with highest priority based on its timestamp and
grant permission to it in order enter CS as a master.

B. The Applicant Processes Algorithm

The summary of the pseudo code for applicant processes
shown in figure 1 is fallows:

A-1. When process ip whose group set is iG wants to

enter CS, it selects a quorum CQ∈ and sends a

request to every process in Q .

A-2. If any of the Qq∈ granted permission to enter as a

slave then it can enters CS as slave.
A-3. If all Qq∈ granted permission as master, it would

select the desired group g from whose group set iG

and enter CS as master.
A-4. If no permission is granted, it should wait.

Also when ip exiting CS, sends release message to every

Qq∈ .

C. The Director Processes Algorithm

The summary of the pseudo code for director processes
shown in figure 2 is fallows:

B-1. When q receives a request from ip :

I. If permission is granted to other process to enter
CS as a master before, then it inserts its request to
queue and doesn't grant permission to ip .

II. If no permission is sent to other process that enter
CS as a master before, and if CS is empty, then it
sends permission to ip which enters CS as a

master.
III. Otherwise if master is in the CS, if ip is in the

same group with master, it allows ip to enter as a

slave and increments scount. But if master isn’t in
the CS, it inserts its request to queue and doesn't
grant permission to ip .

B-2. When q receives message that ip has entered CS as

a slave, then it adds ip to user set and decrements

scount.
B-3. When q receives message that ip has entered CS as

a master, then ∀ all process pj in queue if jGMg ∈ ,

it sends permission to enter CS as a slave and remove
those from queue.

B-4. When q receives release message from ip , if there is

no other process in the CS and don’t send permission
to other process that enter CS as a slave before (that
is scount= 0), then it removes one request from queue
with highest priority based on its timestamp and grant
permission to it to enter CS as a master.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

687

Program Director Process (q: process);
var
 Dstatus: status; // { Idle, wait_master, wait_slave }
 Master : string; // contain Master process name
 Master_in = false: boolean; // Master is in the CS or not
 Mg: string; // master group (current group in CS)
 CS: string; // CS is empty or full
 Queue = null // priority queue of suspended requests;
 user = φ:set; // number of processes that are in the CS
 scount =0;// number of processes that allowed them be as slaves

B-1.
 At arrival of "Request_Master(Gi, ts)" from pi :
 {
 if (Dstatus = = wait_master)
 {
 insert (pi , Gi, ts) to Queue;
 Send "No_Enter" to pi ;
 }
 if (Dstatus = = Idle)

 if (CS = = 'empty') {
 send "Enter_Master" to pi ;
 Dstatus = wait_master;
 }
 if (Dstatus = = Idle) ∨ (Dstatus = = wait_slave) {

 if (Mg ∈ Gi) ∧ (Master_in = true) {
 send "Enter_Slave(Mg)" to pi ;
 scount ++;
 Dstatus = wait_slave;
 }
 else {
 insert (pi, Gi, ts) to Queue;
 send "No_Enter" to pi ;
 }
 }
 }

B-2.
 At arrival of "Slave(Mg)" from pi : {
 if (Dstatus = = wait_slave)
 {
 user = user ∪{ pi };
 scount -- ;
 if (scount = = 0) Dstatus = Idle;
 }
 }

B-3.
 At arrival of "Master(g)" from pi : {
 if (Dstatus = = wait_master) {
 Master = pi ;
 Master_in = true;
 Mg = g; CS = 'full';
 ∀ all processes pj in Queue {
 if (Mg ∈ Gj) {

 Send "Enter_slave(Mg)" & remove it
 from Queue;
 Dstatus = wait_slave;
 scount ++;
 }
 else
 Dstatus = Idle;
 }

 }
 }

B-4.
 At arrival of "Release" from pi :
 {
 if (Master = = pi) {
 Master_in = false;
 if (user = = φ) ∧ (scount = = 0)
 {
 CS = 'empty';
 if (Queue is not empty) {
 Remove item (pj, Gj, ts) from Queue
 with highest Priority
 & send "Enter_Master" to pj ;
 Dstatus = wait_master;
 }
 else Dstatus = Idle;
 }
 }
 else {
 user = user -{ pi };
 if (user = = φ) ∧ (Master_in = = false) ∧
 (scount = = 0)
 {
 CS = 'empty';
 if (Queue is not empty) {
 Remove item (pj, Gj, ts) from Queue
 with highest Priority
 & send "Enter_Master" to pj ;
 Dstatus = wait_master;
 }
 else Dstatus = Idle;
 }
 }
 }

Fig. 2. The pseudo code of the director process algorithm

IV. PROOF OF CORRECTNESS

A. Safety

The mutual exclusion requirement in GME problem says
that, no two processes requesting for a different group, must be
in their CS simultaneously. Suppose 1p and 2p are applicant

processes that request different groups. Let 1q and 1q be

quorums that 1p and 2p select, respectively. Because any

two quorums have non-empty intersection, we have
0≠′∩ QQ then if jp be a director process in the

intersection, since jp never sends permission for more than

one group at a time, therefore 1p and 2p can not be granted

by jp simultaneously.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

688

TABLE I PERFORMANCE COMPARISON

 Message Complexity Extended GME Unnecessary blocking

Algorithm Best case Worst case

Joung [3]
)1-(

2

mm

n

n: number of processes
 m: number of resources Yes Yes

Toyomura et al. [13])3(QO)(QnO
Q: size of Quorum

n: number of processes No Yes

Manabe et al. [14])6(QO)9(QO Q: size of Quorum Yes No

New Proposed Algorithm)4(QO)5(QO Q: size of Quorum Yes No

B. Freedom from Starvation

Assume that starvation occurs. Let 1p be the process in

group g starves. We assume that)(1pts is the smallest

among starved processes. It is clear that the request of 1p is

eventually granted if no process is its critical section and no
other process is making a request.

Therefore we consider a case that some processes in group
)(gg ≠′ repeat entering and exiting their CS.

According to proposed algorithm, director processes don’t
grant permission to other processes to enter CS as a slave after
exiting master process from CS. Then, all slave processes exit
from CS finally. Also the timestamp value for each request is
increasing.

As a result, when all processes exit from CS, the director
processes remove one request from queue with highest priority
base on its timestamp and grant permission to it to enter CS as
a master. Thus because)(1pts is the smallest among other

request, is eventually granted permission and enters its critical
section.

V. MESSAGE COMPLEXITY

Message complexity of the proposed algorithm is)4(QO

in the best case and)5(QO in the worst case, where Q is the

size of the smallest quorum in a coterie.
In the best case, only one request exists to enter CS. Then

four following types of messages are exchanged between an
applicant process and each director process in a quorum:

a. Applicant process ip send "Request Master(Gi, ts)" to

every Qq∈ .

b. ip received "Enter_Master" from every Qq∈ .

c. ip selects desired group g from whose group set iG

and sends "Master(g)" to every Qq∈ , and enter CS as

master.

d. When ip exiting CS, sends "Release" to every Qq∈ .

Thus, message complexity is)4(QO in the best case.

The worst case happens in two conditions. The first
condition is the time when applicant process is not the same
group as CS inside processes, the next condition is the time
when applicant process is in the same group as processes CS
inside but master process exits from CS. In these two
conditions, one additional message in comparison with best
case is communicated between applicant processes and
quorum members. Then five following types of messages are
exchanged between an applicant process and each director
process in a quorum:

a. Applicant process ip send "Request Master(Gi, ts)"to

every Qq∈ .

b. ip received "No_Enter" from some of the Qq∈ ,

then wait for permission.

c. After a time ip received one of this messages:

� "Enter_Master" from every Qq∈ , then selects

desired group g from whose group set iG and

sends "Master(g)" to every Qq∈ , and enter CS as

master.

� "Enter_Slave(Mg)" from some of the Qq∈ , then

selects Mg as desired group and sends
"Slave(Mg)" to every Qq∈ , and enter CS as slave.

d. When ip exiting CS, sends "Release" to every Qq∈ .

Thus, the message complexity of proposed algorithm is

)5(QO in the worst case.

VI. PERFORMANCE COMPARISION

In this section, the complexity and extended GME ability of
proposed algorithm compared with three former algorithms:
Joung [3], Toyomura et al. [13] and Manabe et al. [14]. Table I
shows this comparison. The result shows that proposed
algorithm has lower complexity in both best case and worst
case with respect to other algorithms and has extended GME
ability which after the process by selecting a group, enters
critical section, other processes can select same group with its
belonging group and can enter critical section at the moment,
so avoid their unnecessary blocking.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

689

VII. CONCLUSION

In the present paper, we proposed a new quorum based
algorithm for the extended group mutual exclusion problem in
distributed systems. The message complexity of our algorithm

is)4(QO in the best case and)5(QO in the worst case. Also

the message complexity of our algorithm is less than former
algorithms.

REFERENCES

[1] Y.-J. Joung, Asynchronous group mutual exclusion, Distributed
Computing, 13,4, pp. 189-206 , 2000.

[2] Y.-J. Joung. Asynchronous group mutual exclusion (extended abstract).
In Proceedings of the 17th Annual ACM Symposium on Principles of
Distributed Computing (PDOC), Puerto Vallarta, Mexico, ACM Press,
pages 51–60, June 28-July 2, 1998.

[3] Y.-J. Joung, Quorum-based algorithm for group mutual exclusion, IEEE
Trans. on Parallel and Distributed Systems, Vol.14, No.5, pages 463-
476, May 2003.

[4] V. Hadzlilacos, A note on group mutual exclusion, Proc. Of 20th
PODC, pp. 100-106, 2001.

[5] P. Jayanti, S. Petrovic, and K. Tan, Fair Group Mutual Exclusion, Proc.
22nd PODC, pp. 275-284, 2003.

[6] P. Keane, M. Moir, A simple local-spin group mutual exclusion
algorithm, IEEE Trans. Parallel and Distributed Systems, 12, 7, pages
673-685, 2001.

[7] K. Vidyasankar, A highly concurrent group mutual l-exclusion
algorithm, Proc. of 21th PODC, 2002.

[8] S. Cantareli, A.K. Datta, F. Petit, V. Villain, Token Based group mutual
exclusion for asynchronous rings, Proc. of 21st ICDCS, pages 691-694,
2001.

[9] S. Cantareli, A.K. Datta, F. Perit, V. Villain, Group Mutual Exclusion in
Token Rings, Proc.of 8thColloquium Structural Information and
Communication Complexity, June 2001.

[10] K.-P. Wu, Y.-J. Joung, Asynchronous Group Mutual Exclusion in Ring
Networks, IEEE Proc. Computers and Digital Techniques, Vol.147,
No.1, pp.1-8, 2000.

[11] Q.E.K. Mamun, H. Nakazato,, A New Token Based Protocol for Group
Mutual Exclusion in Distributed System, Proceedings of The Fifth
International Symposium on Parallel and Distributed Computing
(ISPDC'06), 2006.

[12] R. Atreya, N. Mittel, A Distributed Group Mutual Exclusion Algorithm
using Surrogate-Quorums, Technical Report, The University of Texas at
Dallas, 2003.

[13] M. Toyomura, S. Kamei, and H. Kakugawa, A Quorum based
Distributed Algorithm for Group Mutual Exclusion, Proc. 4th Int. Conf.
on Parallel and Distributed Computing, Applications and Technologies,
pp.74-74, Aug. 2003.

[14] Yoshifumi Manabe, JaeHyrk Park, A quorum-based extended group
mutual exclusion algorithm without unnecessary blocking, Proceedings
of the Tenth International Conference on Parallel and Distributed
Systems (ICPADS’04), pp. 341 - 348, July 2004.

[15] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, July 1978.

[16] M. Maekawa. A N algorithm for mutual exclusion in decentralized

systems. ACM transactions on Computer Systems, 3(2):145-159, March
1985.

[17] H. Garcia-Molina, D. Barbara, How to assign votes in a distributed
system, Journal of the ACM, 32, 4, pp. 841-860, 1985.

