International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

A New Extended Group Mutual Exclusion
Algorithm with Low Message Complexity in
Distributed Systems

S. Dehghan and A.M. Rahmani

data on the CDs. If CA is loaded, multiple processes which
Abstract—The group mutual exclusion (GME) problem is anwant to read data on CB can access it at the same time.
interesting generalization of the mutual exclusfmoblem. In the These processes are in the same group. By contlast,
group mutual exclusion, multiple processes can reatecritical processes which want to read data onE&nnot do so when
section simultaneously if they belong to the sameug. In the A'is loaded. These processes form a different grioufg], the
extended group mutual exclusion, each process member of . ' . . y
multiple groups at the same time. As a resultrafie process by following extended definition has been introducegbme
selecting a group enter critical section, othercpsses can select the Processes might be members of multiple groups etstme
same group with its belonging group and can entéca section at time. In the CD jukebox example, the same data tnimgh
the moment, so that it avoids their unnecessargkilg. This paper copied on CDB and CDC. In this situation, the user can read
presents a quorum-based distributed algorithm fer éxtended he gata if either CIB or CD Cis currently loaded. A different
group mutual exclusion problem. The message coritpleX our example of GME is a server that can cache locaily page of
algorithm is O(4Q]) in the best case ar@(5|Q)) in the worst case, the web. Clients of this server interested in therently
cached page can read it simultaneously; clienesésted in a
different page must wait [4].
. For group mutual exclusion, shared memory system
Dis}fﬁmgéi;gﬁsp Mutual Exclusion (GME). Extended GME. algorithms [4-7], token-based algorithms [8-11] angbrum-
based algorithms [3, 12-14] have been proposedeXtended
. INTRODUCTION group mutual exclusion problems are discussed]iaf@ [14]
ISTRIBUTED system is a set of processes (computerFs) bqth of the splut|ons are quorum-based protpc‘ﬂimugh
] discusses this extended group mutual exclupioblem, it

connected by communication links. Mutual exclusiom . . .
fundamental problem in distributed systems. Whemeso JUSt_ not_es that when a process belongs to m“'gm‘ps’ It
resources (for example, a file, a communicatiomakh a arbitrarily selects one group. The above algoritlemnot

! ! sufficient, since when the procgsenters CS, another process

printer) are shared among processes, two processegsot) . - |
allowed to enter a critical section (CS) and usat ithe same p', which can enter C_S at_the time might be bloc ape et
al. [14] called above situation as an unnecessary blocking.

ime. R I I lusion [1] h .
time. Recently, group mutual exclusion [1] has bpesposed In [14] a quorum-based extended group mutual eiarus

There are multiple groups of processes. The preseissthe lqorithm i d that not h b d
same group can enter CS at the same time. An #titege algorithm is proposed that not have unnecessaigkisig an

application of the group mutual exclusion is présdrin [2]. the message complexity of this algorithnD§Q)) in the best
Consider large data sets stored in a secondary rgelcet
of processes accesses to the data sets througlvea. SEhe]
server can be a CD jukebox. Using a regular mwelusive !N the present study, we proposed a new algoritlom f
protocol, the server needs to repeatedly load ardad the €xténded group mutual exclusion that avoids unrsecgs
data sets (e.g., the CDs) from the secondary mertmry blocking of processes. The message complexity of ou
process the requests. algorithm is O(4Q\)in the best case amﬁQ\) in the worst

where‘Q‘ is a quorum size.

case anoD(E#Q\) in the worst case whe#@\ is a quorum size.

An efficient GME protocol would allow multiple presses case wheréQ\ Is a quorum size. Also the message complexity

to read the currently loaded data set (a CD) caeatly, Of our algorithm is less than [14].

while forcing processes requesting a different dataanother ~ The organization of this paper is as follows: lot&m two

CD) to wait. For example, each process wants td seane the system model and definition are presentededtian three

the proposed algorithm introduced. In section foanrectness

Somaiyeh Dehghan is with department of computeineeging, Islamic of the algorithm is explained. In the fifth part ssage

Azad University, llkhchi Branch, Tabriz, Iran. (pt@+984123326060, complexity of proposed algorithm is presented. He sixth

e-mail: so.dehghan@iauil.ac.ir) t f f d al ithm i .
Amir Masoud Rahmani is with department of compuéegineering, part, performance of proposed algorithm is compangith

Islamic Azad University, Science and Research Braiiehran, Iran. (e-mail:

rahmani@sr.iau.ac.ir).

684

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

former algorithms. And finally in the seventh paitie This section provides arief description of our algorithm
conclusion is given. shown in figures 1 and.2et C={Q,,Q,,..,Q,} be a set of

uorumsA={p,, p,... P} be a set ofapplicant processes
Il. SYSTEMMODEL AND DEFINITION k A= {Pi Pz Pud PP P
andG,, ={G,,G,,..,G,} be aset of groupsWhen processp,

B.The System Model wants to enter CS, it selects its group 8t from

We assume an asynchronous distributed system whigh =G ,G,,..G,}, and it selects a quorumQIC and
consists of a set of n proces¥es{p,,p,,..,.P,}.- Each sends its request to evegy1Q .

process has a unique identifier selected from a ofet When director processegeceive this request, they grant

integers{1,2...n} . The processes communicate with eacBermission to p, provided that no permission was granted
other by passing messages through first-in, fitst{@I1FO),

asynchronous, and reliable (no message loss occhashels.
We assume that the system is error-free. In owrighgn, we ©€2chalQ, selects desired group from its own group Gt
have two classes of processeglirector processesand and enter CS. Othapplicant processethat are in the same
applicant processes\ director processmanages permissions group with p, can enter CS concurrently. As a result,
and handles requests frampplicant processesAn applicant extended GME is guaranteed and their unnecessackib is
processmakes a request for resources and asks for péomsss gyoided.

from director processesin actual systems, one process can Byt this definition: "allowing another process ftater CS at
perform both roles simultaneously. Also, to avofdr&ation the same time”, leads to starvation [14]. Thus, atmid
and deadlock, eadtirector procesdias a priority queue that if staryation, the fallowing method is used. When €®rpty,
director processioesn't grant permission &pplicant process the first process which enters CS through seledtiegdesired
to enter CS, then a request is inserted to queimitPin this group is as amaster Then, otherapplicant processes
queue is assigned by a timestamp, which is a pagical clock pelonging to the same group can enter CS stave

before and CS is empty. Whep, receives permission from

value on request and process identifier [15-16]. simultaneously whilemasteris in CS. As soon amasterexit
) from CS,director processeslo not grant permission to other
B. Coteries processes. Then, after alavesexit from CS, other processes
We describe formal definition of coterie [17] below enter and therefore starvation is avoided. In ¢asedirector
Definition (Coterie [17]): processeselect one request based on timestamp of suspended

Let U ={u,,u,,...,u,} be a set. A sef of subsets ol is a requests in queue and send permission to enters@ster
coterie underU if and only if the following three conditions After the masterentersdirector processesend permission to

are satisfied. other suspended requests in queue that are irathe group
1. Non-emptiness: For eac@1C, Qis not empty and With masterto enter CS aslave
QOU. A.Solutions of Proposed Algorithm for Improvement of
2. Intersection property: For an@,Q'0C, Qn Q' is Former Algorithm
not empty. This section presents solutions of proposed alguorito

3. Minimality: For anyQ,Q'0C,Q is not a subset decrease c_ommunication messages and the used_memory
tQ queues ofdirector processesin [14] eachqJQ receives a
ofQ'.

. request, first inserts it to queue. However only suspended
An element ofC is called aquorum

S o . request can enter to queue and decrease used mdyory
Coterie is widely used for distributed mutual exsodun.

N - qgueues. Also, when th@vot process wants to exit CS, it must
Coterie is a set of quorums, and quorum is a subset

waits for other process to exit from CS which caumsgroper
processesV such that any two quorums have non-empty . of pivot process

|nte;sect|on. A process;] wishing Fo enter its caiticection To eliminate improper wait opivot process, thealirector
sends a request to each processquarum. A process enters processesmust distinguish the exit ofnaster and slave

its critical section afte(; Itl obtami permissiororfr hevery processes from CS. In fact guarantee of mutualisiar is the
process i quorum, and releases the permission when it ex({S o director processes

its critical section. Because the two quorums hanat

nonempty intersection, mutual exclusion is guarehté each
process never grants permission to more than areesgs at a
time.

For this purpose, four variables are udddsteris a string
variable that savesnaster process nameMaster_in is a
boolean variable that shows the presence or absémoaster
in the CS,useris a set variable which shows the set of
processes which serve akvesin the CS andscountis a
integer variable which shows the number of proceghat

ll. DESCRIPTION OF THE PROPOSED ALGORITHM allowed them be as slaves but have not enter CS yet

Program Applicant Procesgp;: process); A-3.

685

International Journal of Information,

Control and Computer Sciences

ISSN: 2517-9942
Vol:4, No:4, 2010

var
Astatus status // { in, out, wait_grant, wait_perrh
perm set; /I set of quorum that send permissionito p
Q: quorum: set of processes;// C={Qy, ..., Q} set of quorums
G, set of groups;

G; : set; /I group set of applicant process p

ts: Time; /I timestamp of request

Mg: string; /I master grougor current group in C$
A-1.

Whenp; (group set i$5;) wants to enter CS: {
send "Request_MasBy(ts)" to all q0IQ ;
Astatus= wait_grant;
perm=q;

A-2.
At arrival of "Enter_Slavé{g)" from q: {
if (Astatus= = wait_grant)] (Astatus= = wait_perm)

send "Slaveg)" to all q0Q;
Astatus=in;
/lin the CS
Astatus= out;
send "Release" to gllQ ;

At arrival of "Enter_Master" frorq: {
if (Astatus= = wait_ grant)O]
Astatus= = wait_perm)
{
perm=perm0 {q};
if perm==Q) {
select desired grogplG; ;
send "Maste)(to allq0Q ;
Astatus= in;
/l'inthe CS
Astatus= out;
send "Release" to@llQ;
perm=@;

}
}

A-4.

At arrival of "No_Enter" frong: {
Astatus= wait_perm

Fig. 1. The pseudo code of thpplicant procesalgorithm

Then Director processesan distinguish exit ofmasterand
slave processes from CS and therefore remove one request
from queue with highest priority based on its tirne®p and
grant permission to it in order enter CS amaster

B.The Applicant Processes Algorithm
The summary of the pseudo code &pplicant processes
shown in figure 1 is fallows:

A-1. When processp, whose group set i$5; wants to
enter CS, it selects a quorunQC and sends a
request to every process @.

If any of the q0Q granted permission to enter as a

slave then it can enters CS<i@ve

. If all qO0Q granted permission as master, it would
select the desired groug from whose group seg,

and enter CS awaster
A-4. If no permission is granted, it should wait.
Also when p, exiting CS, sends release message to every

qOQ.

C.The Director Processes Algorithm
The summary of the pseudo code flirector processes
shown in figure 2 is fallows:
B-1. When g receives a request from. :
I. If permission is granted to other process to enter
CS as amasterbefore, then it inserts its request to
queue and doesn't grant permissiorpto

A-2.

Il. If no permission is sent to other process thatrente
CS as amasterbefore, and if CS is empty, then it
sends permission top, which enters CS as a
master

[ll. Otherwise ifmasteris in the CS, if p, is in the

same group witmaster it allows p, to enter as a
slaveandincrementsscount But if masterisn’t in
the CS, it inserts its request to queue and doesn't
grant permission ta, .
B-2. When g receives message thai has entered CS as
a slave then it addsp, to userset anddecrements

scount
B-3. When g receives message that has entered CS as

a mastey then all process, in queue ifMgOG;,

it sends permission to enter CS adaveand remove
those from queue.
B-4. When g receives release message fram if there is

no other process in the CS and don’t send permissio
to other process that enter CS asdavebefore (that

is scount 0), then it removes one request from queue
with highest priority based on its timestamp arangr
permission to it to enter CS asnaaster

686

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

Program Director Procesgq: process);

var
Dstatus status; //{ Idle, wait_master, wait_slavje
Master: string; /I contain Master process name
Master_in= false: boolean; // Master is in the CS or not

Mg: string; /I master groug{ current group in C$
CS string; /I CS is empty or full

Queue= null // priority queue of suspended requests;
user= @set; // number of processéisat are in the CS

scount=0;/ number of processdisatallowed them be as slave

B-1.
At arrival of "Request_Master(@s)" fromp; :

if (Dstatus= = wait_master)
{
insertp(, G, ts) to Queue
Send "No_Enter" pp;

}
if Ostatus= = Idle)

if CS=="empty") {
send "Enter_Master"pto;
Dstatus= wait_master;

if Ostatus= = Idle) O (Dstatus= = wait_slave) {

if Mg 0 G;) O (Master_in= true) {
send "Enter_Slavg]" top;;
scount++;
Dstatus wait_slave;
}
else {
insem;(G;, ts) to Queue
send "No_Enter"ga
}

B-2.
At arrival of "Slavel1g)" fromp; : {
if Ostatus= = wait_slave)
{
user=userl{ p};
scount ;
if 6count= = 0) Dstatus= Idle;

B-3.
At arrival of "Masterg)" from p;: {
if (Dstatus= =wait_master) {
Master=p; ;
Master_irr true;
Mg=g; CS="ull’
O all processeg; in Queug(
if(Mg O G) {
Send "Enter_slav{g)" & remove it
fromQueue
Dstatus= wait_slave;
SCOURtH;
}

else
Dstatus Idle;

}

}
}

B-4.
At arrival of "Release" from;:

if Master==p;) {
Master_in= false;
if (user==¢) O(scount= = 0)

CS="empty’;
if Queueis not empty) {
Remove item,(G;, ts) from Queue
with highest Prigrit
& send "Enter_Masterp; ;
Dstatus wait_master;

elsdstatus= Idle;

}

else {
user=user-{ p };
if (ser==q) O(Master_in= = false)d
gcount= = 0)
{

CS= 'empty’;
ifQueuels not empty) {
Remove iterp;, G;, ts) from Queue
with highest Ritp
& send "Enter_Mastop; ;
Dstatus wait_master;

els®status= Idle;

}
}

Fig. 2. The pseudo code of ttigector processlgorithm

IV. PROOF OF CORRECTNESS two quorums have non-empty

QnQ'#0 then if p;

A.Safety
The mutual exclusion requirement in GME problemSS‘,j\ylntersectlon, sincep; never sends permission for more than

that, no two processes requesting for a differemig, must be one group at a time, therefong, and p, can not be granted
in their CS simultaneously. Suppogg and p, are applicant py p; simultaneously.

processes that request different groups. betand g; be

intersection, we have
be a director processin the

quorums thatp; and p, select, respectively. Because any

687

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

TABLE | PERFORMANCE COMPARISON

Message Complexity Extended GME Unnecessary blocking
Algorithm Best case Worst case
2n n: number of processes
Joung [3] m(m-1) m: number of resources Yes Yes
Toyomura et al. [13] o@3q) ONQ) o Mumber of processes No ves
Manabe et al. [14] O(6|Q|) O(9|Q|) Q: size of Quorum Yes No
New Proposed Algorithm O(41Q|) O(5|Q|) Q: size of Quorum Yes No

The worst case happens in two conditions. The first
condition is the time wheapplicant processs not the same
group as CS inside processes, the next conditidheigime
group g starves. We assume tha$(p;) is the smallest whenapplicant praess is in the same group as processes CS

among starved processes. It is clear that the seqfep; is inside but master process exits from CS. In these two

. . - . conditions, one additional message in comparisah Wwest
eventually granted if no processiis critical section and no) . .
. . case is communicated betweapplicant processesand
other procesis makinga request.

; . qguorum members. Then five following types messages are
Therefore we consider a case that some procesgoup exchanged between licant processand eachdirector
g'(# g) repeat entering and exiting their CS. 9 &P P

] e . processin a quorum:
Accordlng tp proposed algorithrdjrector processeslon’t a. Applicantprocess p, send"Request Mastef, ts)"to
grant permission to other processes to enter Gkaveafter

B.Freedom from Starvation
Assume that starvation occurs. Ley be the process in

exiting masterprocess from CS. Then, allaveprocesses exit everyqbQ.
from CS finally. Also the timestamp value for eaelyuest is b. p, received "No_Enter" from some of theOQ,
Increasing. then wait for permission.

As a result, when all processes exit from CS, dinector

L ... C. After atime p, received one of this messages:
processesemove one request from queue with highest pyiorit '

base on its timestamp and grant permission toénter CS as — "Enter_Master" from everyqUQ, then selects
a master Thus becauses(p;) is the smallest among other desired groupg from whose group seG, and
request, is eventually granted permission and fitcritical sends'Master@)" to every qCJQ, and enter CS as
section. master
V. MESSAGE COMPLEXITY — "Enter_Slave{lg)" from some of theq0Q, then
Message complexity of the proposed algorithnOiglQ)) selects Mg as desired group and sends

"SlaveVig)" to everygQ, and enter CS adave
in the best case ar@(5|Q|) in the worst case, whef€) is the
size of the smallest quorum in a coterie.

In the best case, only one request exists to €@®erThen Thus, the message complexity of proposed algorithm is
four following typesof messages are exchanged between am(5|Q|) in the worst case.
applicant process and eattinector processn a quorum:

d. When p, exiting CS, sends "Release" to everyl Q.

a. App|lcant processp;, send“ReqUest MaSteGi, ts)" to VI. PERFORMANCE COMPARISION
everyqlQ. In this section, the complexity and extended GMHitstof
b. p, receivedEnter_Master"from everyqQ. proposed algorithm compared with three former algors:

Joung [3], Toyomura et al. [13] and Manabe et a#][Table |
shows this comparison. The result shows that prxghos
and sendsMasterg))" to everyqQ, and enter CS as algorithm has lower complexity in both best case amrst
master case with respect to other algorithms and has dgttitGME
ability which after the process by selecting a groanters
critical section, other processes can select samepgwith its
Thus,message complexity i©(4|Q|) in the best case. belonging group and can enter critical sectiorhatrhoment,
so avoid their unnecessary blocking.

c. p; selects desired groug from whose group se,

d. When p, exiting CS, sends "Release" to everyl Q.

688

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

VIl. CONCLUSION

In the present paper, we proposed a new quorumdbase
algorithm for the extended group mutual exclusioobfem in
distributed systems. The message complexity ofatgorithm

is O(4|Q|) in the best case ar(d(ﬂQb in the worst case. Also

the message complexity of our algorithm is less tfriamer
algorithms.

REFERENCES

[1] Y.-3. Joung, Asynchronous group mutual exclusionistrbuted
Computing, 13,4, pp. 189-206 , 2000.

[2] Y.-J. Joung. Asynchronous group mutual exclusiote(eded abstract).
In Proceedings of the 17th Annual ACM SymposiumRsinciples of
Distributed Computing (PDOC), Puerto Vallarta, Mexi ACM Press,
pages 51-60, June 28-July 2, 1998.

[3] Y.-J. Joung, Quorum-based algorithm for group miutealusion, IEEE
Trans. on Parallel and Distributed Systems, VolNd,5, pages 463-
476, May 2003.

[4] V. Hadzlilacos, A note on group mutual exclusiompd® Of 20th
PODC, pp. 100-106, 2001.

[5] P. Jayanti, S. Petrovic, and K. Tan, Fair Group(MUExclusion, Proc.
22nd PODC, pp. 275-284, 2003.

[6] P. Keane, M. Moir, A simple local-spin group mutuakclusion
algorithm, |IEEE Trans. Parallel and Distributed t8gss, 12, 7, pages
673-685, 2001.

[7] K. Vidyasankar, A highly concurrent group mutualexelusion
algorithm, Proc. of 21th PODC, 2002.

[8] S. Cantareli, AK. Datta, F. Petit, V. Villain, Tek Based group mutual
exclusion for asynchronous rings, Proc. of 21st@SDpages 691-694,
2001.

[9] S. Cantareli, A.K. Datta, F. Perit, V. Villain, Grp Mutual Exclusion in
Token Rings, Proc.of "olloquium Structural Information and
Communication Complexity, June 2001.

[10] K.-P. Wu, Y.-J. Joung, Asynchronous Group MutuatlEsion in Ring
Networks, IEEE Proc. Computers and Digital TechaguVol.147,
No.1, pp.1-8, 2000.

[11] Q.E.K. Mamun, H. Nakazato,, A New Token Based Rmaitéor Group
Mutual Exclusion in Distributed System, ProceediragfsThe Fifth
International Symposium on Parallel and Distribut€bmputing
(ISPDC'06), 2006.

[12] R. Atreya, N. Mittel, A Distributed Group Mutual Elwsion Algorithm
using Surrogate-Quorums, Technical Report, The &fBity of Texas at
Dallas, 2003.

[13] M. Toyomura, S. Kamei, and H. Kakugawa, A Quorumsesa
Distributed Algorithm for Group Mutual Exclusionrd?. 4th Int. Conf.
on Parallel and Distributed Computing, Applicatiarsl Technologies,
pp.74-74, Aug. 2003.

[14] Yoshifumi Manabe, JaeHyrk Park, A quorum-based relte group
mutual exclusion algorithm without unnecessary kilog, Proceedings
of the Tenth International Conference on Paralletl eDistributed
Systems (ICPADS’'04), pp. 341 - 348, July 2004.

[15] L. Lamport. Time, clocks, and the ordering of egeit a distributed
system. Communications of the ACM, 21(7):558-5&8y 1978.

[16] M. Maekawa. A+/ N algorithm for mutual exclusion in decentralized
systems. ACM transactions on Computer Syst&(®);145-159, March
1985.

[17] H. Garcia-Molina, D. Barbara, How to assign votasai distributed
system, Journal of the ACM, 32, 4, pp. 841-860,5198

689

