
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1645

Abstract—Mathematical, graphical and intuitive models are often

constructed in the development process of computational systems.
The Unified Modeling Language (UML) is one of the most popular
modeling languages used by practicing software engineers. This
paper critically examines UML models and suggests an augmented
use case view with the addition of new constructs for modeling
software. It also shows how a use case diagram can be enhanced. The
improved modeling constructs are presented with examples for
clarifying important design and implementation issues.

Keywords—Software architecture, software design, Unified
Modeling Language (UML), user interface.

I. INTRODUCTION
ODELS of computational systems are built for
representing important aspects of a system in order to

get a better understanding about design, experimentation and
development. Modeling complex software systems presents
formidable challenges [1]-[6] for all development phases
including requirements engineering. High failure rates in
software development projects are often attributed to
difficulties with requirements engineering [7]. Emphasis on
use case analysis and development has recently been steadily
increasing because use cases clarify issues for complex
software systems [7]. The Unified Modeling Language (UML)
includes modeling of use case aspects in various views
including the use case view [8]. This paper examines
important development issues and the UML use case view
followed by presentation of an augmented use case view. It
suggests that certain interface elements should be properly
included in use case diagrams. Representation of various
software aspects are accomplished in visual diagrams of
different views following the recommendations in the UML
reference manual [8].

Modeling software aspects are based on best practices since
practicing software engineers have developed useful strategies
from their experience [1-12]. Software modeling is one of the
most challenging tasks; it is partly scientific, partly intuitive,
intricately multifaceted, highly creative, and deceptively
flexible. Over the decades, several approaches to software
development have been proposed. These approaches are often
presented with effective metaphors. Donald Knuth initially
suggested that software writing is an art [13]. David Gries [14]
argued it to be a science. Watts Humphrey [15] viewed it as a
process. In recent years, practitioners have come to realize that

Pradip Peter Dey, Bhaskar Raj Sinha, Mohammad Amin and Hassan

Badkoobehiare with National University, 3678 Aero Court, San Diego, CA
92123, USA. They are now with the School of Engineering, Technology and
Media (phone: 858-309-3412; fax: 858-309-3420; e-mail: pdey@nu.edu;
bsinha@nu.edu; mamin@nu.edu; hbadkoob@nu.edu).

software is engineered [1]-[2], [4]-[20]. Engineering
techniques have steadily improved the product quality in
software development [1]-[2]. The role of user interface
engineering has recently increased in most interactive software
systems. User interface modeling and development presented
additional challenges that are being addressed in an iterative
process.

II. ITERATIVE PROCESS
It is often suggested that software design is creatively built

from requirements analysis in an iterative process [1]-[2], [4],
[13]-[20]. In this process, after some initial requirements
analysis, a software design representation is developed and
then the requirements analysis is augmented on the basis of a
combination of software design reviews, new or changed
requirements or some other factors which in turn lead to a
revised software design. That is, the iterative process of
development or the spiral process model [21] is found to be
one of the most productive software processes. Certain aspects
of software are such that after an initial assessment, iterative
refinements help. One of the greatest benefits of the iterative
process is the improvements made in the development of user
interfacesing each successive iteration [22]. The current study
is based on the following iterative scheme where software
design and modeling is followed by design review or
evaluation.

Fig. 1 Iterative Design and Modeling

The iterative process of design and modeling suggested in

Fig. 1 allows developers to start with a highly abstract
conceptual design and add details gradually in each successive
iteration following the solid arrows. The dotted arrows show

Pradip Peter Dey, Bhaskar Raj Sinha, Mohammad Amin, and Hassan Badkoobehi

Augmenting Use Case View for Modeling

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1646

other viable alternatives. User interface development requires
adjustments and refinements that are best done in iterations[2],
[22]. Often defects are found during the review or evaluation
process and those defects need to be corrected. The design
may start with just a few elements and other elements are
incrementally added.

III. UML VIEWS
Nine views are presented in UML 2.0 for describing

different aspects of software [8]. These are: use case view,
static view, design view, state machine view, activity view,
interaction view, deployment view, model management view,
and profile. A view is a subset of UML modeling constructs
representing certain aspects of the software [8]. Each view is
illustrated in [8] with one or more diagrams that present the
main features of the view visually.

The use case view is one of the most important views in the
UML that presents use case features in a diagram called use
case diagram. The use case view is well-motivated due to the
role use cases play in defining requirements analysis and
management [7]. Use cases clarify many important software
issues early in the development process so that some progress
in designing the software can begin [1, 7] with an engineering
process.

The central problem with the use case view is that it is too
narrowly defined in the UML. “The use case view models the
functionality of a subject (such as a system) as perceived by
outside agents, called actors, that interact with the subject
from a particular view point” [8: page 34]. The perception of
the outside agents such as end users is primarily mediated
through an interface such as a GUI. The use case view does
not explicitly deal with user interfaces or interfaces between
the actors and the use cases. The only diagram that
characterizes the use case view is the use case diagram. This
diagram presents the major use cases in a box with the actors
outside the box to indicate that the actors are external users of
the current software. One of the problems with the use case
diagram is that it leaves out interfaces with the actors although
each actor is shown to be using one or more use cases. In
order to illustrate the problem we present a sample case below.

Assume that a small software project started with the
following initial requirements description: Develop a software
system for computing the volume of two types of storage units:
box-storage and cylinder-storage. Users should be able to
enter inputs interactively using a Graphical User Interface
(GUI). After studying the requirements, software engineers
would discover that the system has to be web-based and
should be available 24/7. Users should be able to access the
software without any login ID. The system should be easy to
maintain by an administrator. The software engineers then
would prepare a software requirement specification (SRS)
document. A modern requirements analysis is generally use
case driven [7]. A use case diagram is drawn with UML
notations given in [8]. The use case diagram for the storage
volume problem is given in Fig. 2 in the standard UML
notations [8].

Fig. 2 Use Case diagram in UML 2.0

The problem with the UML use case diagrams such as the

one given in Fig. 2 is that it ignores the interfaces between the
actors and the use cases although it shows the actors as stick
figures outside the current system boundary. For example, it
shows the end user as an actor with two links to two use cases;
but does not show any interfaces between them. Rumbaugh,
Jacobson, Booch [8: page 34] present a use case diagram for a
subject called box office with four actors without any
interfaces. In order to model functionality of the system as
perceived by the actors, interfaces appropriate for the given
actors need to be incorporated somewhere. We suggest that
the use case diagram includes the appropriate interfaces.
Thus, we suggest the use case diagram given in Figure 3 for
the sample case mentioned above. Please note that the
interfaces are shown with dotted rounded rectangles. We call
such interfaces general interfaces in order to distinguish them
from specialized interfaces in UML 2.0 such as provided
interfaces and required interfaces [8]. If an interface is to be
developed as a part of the current software system, then the
interface is shown within the system boundary; otherwise, it is
shown outside the system boundary. In order to referto the
interfaces, they are numbered. If an interface is a graphical
user interface (GUI) then we mark it with “GUI”. In addition,
when one general interface includes another, it may be marked
appropriately. If there is a third general interface that includes
the first, then “3 1 כ” can be shown in the third interface.
Having general interfaces in the use case diagram intuitively
and logically support the idea that user’s perception about the
functionality is modeled in the use case view. When the actor
is a human user, the general interface may be a GUI. It is the
role of GUIs that is not adequately emphasized in the UML
modeling techniques leading to a degree of confusion for the
development of modern interactive systems.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1647

Fig. 3 Use case diagram with general interfaces

In addition to use case diagrams, the augmented use case

view should have general interface diagrams. We are flexible
about the notations of the general interface diagrams. Two
main alternative notations for the general interface diagram
are (1) screen shots from a prototype, and (2) abstract
graphical representation of major interface elements. We
show the former notation in the general interface diagram
given in Fig. 4 for the general interface 1 of Fig. 3.

Fig. 4 General interface diagram

IV. JUSTIFICATIONS
In this section, we provide logical justifications for the

augmented use case view presented in the preceding sections.
The role of the UML in modeling can be enhanced by
appropriately accounting for the perceived functionality of a
system by providing the augmented use case view. This is true
because the augmented use case view includes general
interfaces in its use case diagram between the actors and the
use cases. The functionality is perceived by the actors as it

goes through the general interfaces. In addition, it includes
general interface diagrams in order to add the elements of the
general interface in some details. The balance between
abstraction and details can be appropriately achieved in the
general interface diagram as the interface elements can be
added incrementally.“Software engineers and programmers
are often competent users of the technology . . . All too often,
however, they do not use this technology in an appropriate
way and create user interfaces that are inelegant, inappropriate
and hard to use” [2]. The augmented use case view puts extra
emphasis on modeling user interfaces. This allows paying
attention to many aspects of user interfaces such as
implications of user interface consistency: input mechanisms
remain the same throughout the application.

One may argue that the UML design view treats interfaces
appropriately; therefore, augmenting use case view is not
required. This argument is not well-formed, because the
design view just places the required and provided interfaces
with the components. Extra emphasis is needed for interfaces
of certain types, specially the GUIs. Modeling GUIs for
interactive systems has become increasingly important in the
past two decades [1], [2].

In addition, software engineering education with the UML
requires guidance for learners which can be provided with the
augmented use case view. Reasoning with the augmented use
case view is better than that of traditional use case view,
because the functionality of the system as perceived by the
actors are more reasonable with the general interfaces.
Exercises with the general interface constructs may also
promote learning about user interfaces which is appropriate
for educational environments.

V. CONCLUSION
Software engineers need a lot of help in their struggle

against software complexity. Abstract models of software help
in this struggle. With increased emphasis on user interfaces, it
is reasonable that various aspects of modeling are periodically
reviewed and revised. In this paper, the UML use case view is
reviewed and suggestions are made for augmenting the use
case view. The changes suggested here are not radical; they
are in some sense additions to the traditional UML use case
view. However, these additions may enhance software
modeling significantly.

ACKNOWLEDGMENT
The authors gratefully acknowledge the help and/or

encouragements received from John Cicero, Arun Datta,
Gordon Romney, Ronald Gonzales, Alireza Farahani, and
many others during the preparation of this paper and/or the
research reported in it.

REFERENCES
[1] R. S. Pressman, Software Engineering: A Practitioner’s Approach. (7th

ed.), McGraw-Hill, 2010.
[2] I. Sommerville, Software Engineering, 9th Edition, Addison Wesley,

2010.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1648

[3] Y. Wang, Software Engineering Foundations: A Software Science
Perspective, Auerbach Publications, 2008.

[4] M. Shaw, and D. Garlan, “Formulations and Formalisms in Software
Architectures”, Computer Science Today: Recent Trends and
Developments, Springer-Verlag LNCS, 1000, 307-323, 1995.

[5] E. Braude, and M. Bernstein, Software Engineering: Modern
Approaches, (2nd Edition), John Wiley & Sons, 2011.

[6] J. Hong, “Why is Great Design so Hard?”, Communications of the ACM,
July 2010.

[7] D. Leffingwell and D. Widrig, Managing Software Requirements: A
Use Case Approach, Addison Wesley, 2003.

[8] R. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. (2nd Edition), Addison Wesley, 2005.

[9] E. Baniassad, P. Clements, J. Araujo, A. Moreira, A. Rashid, and B.
Tekinerdogan, “Discovering Early Aspects,” IEEE Software, 2006.

[10] I. Krechetov, B. Tekinerdogan, and A. Garcia,“Towards an integrated
aspect-oriented modeling approach for software architecture design,” 8th
Aspect-Oriented Modeling Workshop,Aspect-Oriented Software
Development (AOSD) 2006.

[11] A. Navasa , M. A. Pérez , J. M. Murillo, J. Hernández, “Aspect Oriented
Software Architecture: A Structural Perspective,” Proceedings of the
Aspect-Oriented Software Development (AOSD), 2002.

[12] J. L. Azevedo, B. Cunha,andL. Almeida, “Hierarchical Distributed
Architectures for Autonomous Mobile Robots: A case
study”,Proceedings of the IEEE Conference on Emerging Technologies
and Factory Automation, 2007.

[13] D. E. Knuth, Seminumerical Algorithms: The Art of Computer
Programming 2. Addison-Wesley, Reading, Mass., 1969

[14] D. Gries, The Science of Programming. Springer, 1981.
[15] W. Humphrey, Managing the Software Process, Reading, MA. Addison-

Wesley.
[16] S. Pfleeger, and J. Atlee, Software Engineering, Prentice-Hall, 2010.
[17] B. Agarwal, S. Tayal and M. Gupta, Software Engineering and Testing,

Jones and Bartlet, 2010.
[18] F. Tsui, and O. Karam, Essentials of Software Engineering, 2nd Ed.,

Jones and Bartlet, 2011.
[19] L. Bass,P. Clements,and R. Kazman, Software Architecture in Practice,

2nd Edition Addison-Wesley, 2003.
[20] J. Miller, and J. Mujerki, Editors, MDA Guide, Version 1, OMG

Technical Report. Document OMG/200-05-01,
http://www.omg.com/mda, 2003.

[21] B. Boehm, “A Spiral Model of Software Development and
enhancement,” ACM SIGSOFT Software Engineering Notes, ACM,
11(4):14-24, 1986.

[22] J. Nielsen, “Iterative User Interface Design,” IEEE Computer vol.26
no.11 pp 32-41, 1993

Pradip Peter Dey is a Professor at National University, 3678 Aero Court Dr.,
San Diego, CA, 92123, USA. He isthe Lead Faculty for the MS in Computer
Science program, School of Engineering, Technology and Media. His research
interests arecomputational models, software design, mathematical reasoning,
visualizations, User Interfaces and Computer Science education. (phone: 858-
309-3421; e-mail: pdey@nu.edu).

Bhaskar Raj Sinha is a Professor at National University, 3678 Aero Court
Dr., San Diego, CA, 92123, USA. He is the Lead Faculty for the BS in
Information Technology Management program, School of Engineering,
Technology and Media. Dr. Sinha has more than 25 years of research and
teaching experience in industry and academia. His interests are in
Mathematical Reasoning, Digital Systems, Computer Architecture,
Technology Management, and Engineering Education. (phone: 858-309-3431;
e-mail: bsinha@nu.edu).

Mohammad Amin is with National University, 3678 Aero Court Dr., San
Diego, CA, 92123, USA. He is a Professor and Lead Faculty for the Master’s
degree program for the MS in Wireless Communications program, School of
Engineering, Technology and Media. His major research interests are
computational modeling, wireless communications, databases, sensors and
engineering education. (phone: 858-309-3422; e-mail: mamin@nu.edu).

Hassan Badkoobehiis with National University as a Professor in the School
of Engineering, Technology and Media at 3678 Aero Court Dr., San Diego,
CA, 92123, USA. His major research interests are engineering education,
environmental engineering, and statistical reasoning. (phone: 858-309-3437;
e-mail: hbadkoob@nu.edu).

