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Abstract—In-core memory requirement is a bottleneck in solving 

large three dimensional Navier-Stokes finite element problem 
formulations using sparse direct solvers. Out-of-core solution 
strategy is a viable alternative to reduce the in-core memory 
requirements while solving large scale problems. This study 
evaluates the performance of various out-of-core sequential solvers 
based on multifrontal or supernodal techniques in the context of 
finite element formulations for three dimensional problems on a 
Windows platform. Here three different solvers, HSL_MA78, 
MUMPS and PARDISO are compared. The performance of these 
solvers is evaluated on a 64-bit machine with 16GB RAM for finite 
element formulation of flow through a rectangular channel. It is 
observed that using out-of-core PARDISO solver, relatively large 
problems can be solved. The implementation of Newton and 
modified Newton's iteration is also discussed. 
 

Keywords—Out-of-core, PARDISO, MUMPS, Newton.  

I. INTRODUCTION 
HE use of sparse direct solvers in the context of finite 
element discretization of Navier-Stokes equations for 

three dimensional problems is limited by its huge memory 
requirement. Nevertheless, direct solvers are preferred due to 
their robustness. The development of sparse direct solvers 
based on algorithms like multifrontal [1], supernodal [2] etc.  
have significantly reduced the memory requirements 
compared to the traditional frontal solvers [3]. The superior 
performance of multifrontal solvers has been demonstrated for 
different CFD applications [4]-[7] and also in power system 
simulations [8]-[10]. It has been identified [4]-[7] that the 
memory requirement is a bottleneck in solving large three-
dimensional CFD problems. There are different viable 
alternatives for overcoming the huge memory requirements. 
One alternative is to run on a 64 bit machine having large 
RAM. The second alternative is to use out-of-core solver, 
where the factors are written to the disk, thereby minimizing 
the in-core requirements. The third alternative is to use 
parallel solvers in a distributed computing environment where 
the memory is distributed amongst the different processors. 
Recent efforts by the authors show that by using a 64 bit and 
16GB RAM machine, relatively larger problems can be 
handled in-core.   
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However, as the problem size increases, the in-core 
memory requirement quickly exceeds 16GB. To increase the 
size of RAM is cost wise very expensive. On the other hand 
out-of-core solvers can handle very large problems with 
smaller in-core memory requirements. The disadvantage of 
using out-of-core solvers is that the computational time 
increases due to the I/O operations on the disk. In the recent 
past there has been lot of research to reduce the time for I/O 
and make the out-of-core solvers efficient. The capability and 
performance of out-of-core solvers in the context finite 
element Navier-Stokes code is assessed in this paper. Three 
state-of-the art out-of-core solvers - MUMPS, HSL_MA78 
and PARDISO are evaluated. To the best of author’s 
knowledge no such comparison of the performance of out-of-
core has been reported in the literature.  

MUMPS [11]-[13] is a parallel direct solver with out-of-
core functionality and is available in the public domain. 
PARDISO [2], [14]-[17] also has an out-of-core solver and it 
is available as a part of the INTEL Math Kernel Library [18]. 
HSL_MA78 [19], an out-of-core solver, is available as part of 
HSL 2007, which is available free for any UK researchers. An 
evaluation version of HSL_MA78 is used in this paper.  

In finite element Navier-Stokes formulations, the set of 
linear equations generated usually generate a matrix that zero 
diagonal entries. Penalty formulation yields non-zero diagonal 
entries but it is observed that the diagonal entries are few 
orders of magnitudes smaller than the other non diagonal 
entries. The iterative solution methods fail or pose severe 
convergence problems for such ill conditioned matrices. 
Although the iterative solvers are memory efficient, the 
resolution of convergence issues is not straightforward and 
results in lack of robustness. The performance of a suite of 
iterative solvers is compared with the out-of-core direct 
solvers to demonstrate the superiority of direct solvers. 

II. MATHEMATICAL FORMULATION 
A benchmark rectangular channel flow problem is chosen 

for evaluating the out-of-core solvers. The governing 
equations for laminar flow inside a rectangular channel are 
presented below in the non-dimensional form. In three-
dimensional calculations, instead of the primitive   
formulation, penalty approach is used to reduce the memory 
requirements. The equations are all presented in the non-
dimensional form. 
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where ˆ ˆ ˆ, ,u v w  are the   components of velocity,.  The bulk 
flow Reynolds number, Re, and λ is the penalty parameter.  
Velocities are non-dimensionalized with respect to inlet 
velocity and the coordinates are non-dimensionalized with 
respect to channel length. 

The boundary conditions are prescribed as follows: 
(1)  Along the channel inlet: 

    ˆ ˆ ˆ1; 0; 0.u v w= = =         (5) 

(2)  Along the channel exit : 
    ˆ ˆ ˆ

0; 0; 0.
ˆ ˆ ˆ
u v w
x x x

∂ ∂ ∂
= = =

∂ ∂ ∂
      (6) 

(3) Along the walls: 
    ˆ ˆ ˆ0;   0;   0.u v w= = =           (7) 

 
The flow Reynolds number is taken as 50 to simulate 

laminar flow inside the channel. 

III. NUMERICAL FORMULATION 
Galerkin finite element method (GFEM) is used for the 

discretization of the above penalty based Navier Stokes 
equations. Three dimensional brick elements are used; the 
velocity components  are interpolated bilinearly. The 
nonlinear system of equations obtained from GFEM is solved 
by Newton’s method.  Let   be the available vector of field 
unknowns for the ith iteration.  Then the update for the   
iteration is obtained as 

( ) ( ) ( )1i i iX X Xα δ+ = + ,              (8) 
where α is an under-relaxation factor, and ( )iXδ  is the 

correction vector obtained by solving the linearized system 
( ) ( ){ } { }( )[ ] ii i

XJ X Rδ = − .                      (9) 

Here, ( )[ ] iJ is the Jacobian matrix at the (i+1)st iteration, 
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( )

( )[ ]
i

i X
i

RJ
X

∂
=

∂
.                                       (10) 

{ }( )i
XR  is the residual vector. Newton’s iteration is continued 

till the infinity norm of the correction vector ( )iXδ  converges 
to a prescribed tolerance of 10-10.  A modified Newton’s 
method is also used in this study. For modified Newton eq. (9) 
is modified as shown in eq. 11 

( ) ( ){ } { }( )0[ ] ii
XJ X Rδ = − .       (11) 

In modified Newton’s method the Jacobian is evaluated 
only during the first iteration. Consequently the Jacobian is 
factorized only once. For all subsequent iterations, the same 
Jacobian (and hence its LU factors) is used repeatedly. This 
algorithm is referred as modified Newton. Since factorization 
is the most expensive part of the computations, by using 
modified Newton’s algorithm, the expensive factorization step 
can be skipped after the first iteration.  

We can see that the discretizations of the governing partial 
differential equations from (7)-(10) by the GFEM scheme 
results in a set of nonlinear equations. However the core of the 
resulting nonlinear equations is the solution of a sparse linear 
systems (eq. 9), which is the most computationally intensive 
part of the solver both in terms of CPU time and memory 
requirement. Here three different out-of-core solvers, 
MUMPS, HSL_MA78 and PARDISO are implemented and 
compared.  

To gain maximum computational efficiency the codes are 
optimized at three levels.  

(a) The first is at the hardware level by using an optimized 
Intel MKL BLAS library. This is highly optimized for Intel 
processors.  

(b) The second level is the choice of an efficient state-of-
the-art out-of-core solver. Three different out-of-core solvers 
are evaluated for their performance. The efficiency of an out-
of-core solver not only depends on the factorization 
algorithms of the solvers but also on the handling of different 
I/O operations. For an out-of-core solver, the I/O operations 
can be a bottleneck depending on how the I/O operations are 
performed.HSL_MA78 handles efficiently using virtual 
memory management package HSL_OF01 which facilitates 
reading and writing from direct-access files. Real and integer 
data have their own buffers associated with it. Each buffer can 
be associated with more than one direct-access file.  

(c) The third level is the choice of an efficient algorithm for 
solving the system of non-linear equations. The choice of the 
non-linear algorithm can affect the rate of convergence and 
hence the computational time. The system of non-linear 
equations is either solved using Newton or Picard iteration. 
Newton iteration is quite popular and efficient due to its 
quadratic convergence behavior. If the initial guess is chosen 
properly, then Newton iteration can give convergence in a few 
iterations. However the limitation is that the formation of 
Jacobian matrices involving derivatives is not always 
straightforward to compute. In addition the choice of the 
initial guess will affect the convergence behavior. Picard 
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iteration however is more robust in terms of its flexibility for 
choosing an initial guess. However, the rate of convergence 
will be linear and hence would result in more computational 
time. 

 The choice of modified Newton or modified Picard can 
further significantly reduce the computational time. In the 
modified Newton method, the left hand side matrix is 
factorized only once and the factors are reused. Since 
factorization is the bottleneck, by avoiding the factorization in 
the subsequent steps can reduce the computational time. The 
rate of convergence will no longer be quadratic but linear. 
Nevertheless, there will be significant savings in 
computational time. This paper discussed only Newton and 
modified Newton implementation. 

IV. RESULTS AND DISCUSSION 
In this paper, flow inside a three dimensional rectangular 

channel is considered. Three dimensional finite element brick 
elements are used for generating the grid. Weak Galerkin 
finite element formulation is used to discretize the Navier-
Stokes equations to form a large set of non-linear equations. 
Newton's iteration is used to generate a set of linear algebraic 
equations. The matrices generated from such discretization are 
usually very sparse and hence a good sparse solver is used to 
reduce the computational efforts. It is to be noted that for three 
dimensional grids, the matrices generated are less sparse 
compared to the matrices generated from two-dimensional 
grid.  

Typically an interior node in a three-dimensional grid is 
connected to 27 nodes including it. Since there are 3 dof's at 
each node, a typical row consists of 81 non-zero entries. In a 
two-dimensional grid, a typical row consists of 27 non-zero 
entries. This would increase the frontal size considerably. 
Hence solving three-dimensional problems using direct 
solvers is quite challenging both in terms of computational 
time and memory requirements. Large problems cannot be 
solved on a 32-bit machine using in-core techniques [4], [7]. 
This paper studies the performance of out-of-core direct 
solvers on a 64 bit machine with 16GB RAM. All the 
computations are run a windows machine with Intel Xeon 
processor. 

Before comparing the various solvers for their relative 
performances, each individual solver is tuned for its optimal 
performance, specifically the choice of the ordering package. 
Each solver has inbuilt ordering packages, whose choice can 
affect the performance of the solver. In addition there are 
other parameters like pivot tolerance etc which will affect the 
performance of the solver. 

 
MUMPS solver 
The sequential version of out-of-core MUMPS solver is 

built on a 64 bit machine. The choice of the out-of-core solver 
can be invoked by setting the value of 
mumps_par%ICNTL(22) as 1. MUMPS has different inbuilt 
ordering packages (AMD [20], QAMD [21], AMF, PORD 

[22]). In addition, there is a provision to link METIS [23] as 
an external package. Memory relaxation is taken as 100%. 
MUMPS out-of-core solver is used for all the cases. Table 1 
shows the comparison of the performance of the various 
ordering methods. All the cases are run for 30x30x30 mesh. 
The CPU time and memory for each of the solver are 
compared. The CPU time reported is the CPU time for the 
first Newton iteration. The CPU time and memory 
requirement for the complete in-core solution is also included 
in the brackets for a quick comparison. It is to be first noted 
that the out-of-core solution is around 3-5 times slower 
compared to the in-core solution. Of all the ordering packages, 
METIS gives best results. Compared to AMD, METIS results 
in almost one-third of the floating point operations. The 
computational time and memory requirements are the lowest 
for the METIS ordering. Nested bisection algorithm of 
METIS is found to generate good ordering for three 
dimensional meshes. Based on this result, METIS ordering is 
used for all subsequent runs using MUMPS solver.  

 
TABLE  1: COMPARISON OF ORDERING METHODS FOR THE MUMPS SOLVER 

Memory (GB) 
ordering #dof's Cpu time (sec) in-core 

arrays 
out-of-

core files 

AMD 89373 438.4 (142.8) 1.4 (4.06) 2 

QAMD 89373 446.6 (142.75) 1.4 (4.04) 2 

AMF 89373 352 (105.7) 1.34 (3.48) 1.67 

PORD 89373 309 (86.6) 1.09 (3.18) 1.5 

METIS 89373 250.3 (55.01) 0.78 (3.02) 1.28 
 

HSL_MA78 solver 
The HSL MA78solver does not any internal ordering 

techniques but however the HSL solver package has other 
routines which do the function of ordering the finite element 
entries to reduce the fill-in during factorization. HSL MC68 is 
generally used for efficient ordering of finite element 
matrices. In addition, external ordering packages can be 
hooked to the HSL MA78 solver. In this paper METIS 
ordering is also used by hooking the METIS library to the 
solver. Table 2 shows the performance of HSL MC68 and 
METIS ordering on the CPU time and memory of the HSL 
MA78 solver. It is found that METIS performs better than 
HSL MC68. Hence METIS is used for all subsequent runs for 
the HSL MA78 solver. 

 
TABLE  II: COMPARISON OF ORDERING METHODS FOR THE HSL-MA78 FOR 

30X30X30 GRID 

Memory (GB) 
ordering #dof's Cpu time (sec) in-core 

arrays 
out-of-

core files 

HSL_MC68 89373 536 (524) 1.4 (6.88) 3.5 

METIS 89373 321 (318) 0.79 (4.72) 2 
 

PARDISO solver 
PARDISO has minimum dissection (MD) and METIS 
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ordering hooked internally within the solver. The user has the 
choice to use either of the ordering techniques. Table 3 
compares the effect of MD and METIS ordering on the 
performance of PARDISO solver. It is found that METIS 
performs better than the MD ordering technique. Hence 
METIS is used for all subsequent runs for the PARDISO 
solver. 

 
TABLE III: COMPARISON OF ORDERING METHODS FOR THE PARDISO SOLVER 

FOR 30X30X30 GRID 
MEMORY (GB) ORDERING #DOF'S CPU TIME 

(SEC) 
IN-CORE 
ARRAYS 

OUT-OF-CORE 
FILES 

MD 89373 284 (162) 0.5 (2.71) 2.8 

METIS 89373 97 (59) 0.3 (1.42) 1.25 

 
Table 4 and Table 5 show the time split between different 

phases of the solver for in-core and out-of-core solution. 
Interestingly, the performance of in-core and out-of-core for 
HSL_MA78 solver is almost the same in terms of 
computational time. This may be because of the efficient I/O 
operation used in HSL_MA78 package. It used virtual 
memory management using HSL_F01 packages to handle 
efficient I/O operations. This strategy is found to be very 
effective in developing good out-of-core solvers. Although the 
out-of-core HSL is performing well in comparison to the in-
core, the overall computation time is much larger compared to 
the other solvers. MUMPS out-of-core solver is almost 4 
times slower than in-core solver. PARDISO out-of-core solver 
is around 1.6 times slower than its in-core solver. Another 
interesting observation is that out-of-core PARDISO has a 
relatively large solve phase compared to out-of-core MUMPS. 
PARDISO has much less in-core memory requirement 
compared to MUMPS or HSL. 

 
TABLE  IV: COMPARISON OF TIME SPLIT FOR IN-CORE SOLUTION OF 30X30X30 

GRID 

            

Computational time (Seconds) In-core 
solvers 
 

Matrix 
assembly 

Analysi
s phase 

Numeric 
phase 

Solve 
phase 

Total 
time 

Memory 
(GB) 
  

MUMPS 4 1.51 53.3 0.58 59.39 3.02 

PARDISO 4 2.19 52.6 0.47 59.26 1.42 
HSL_MA7
8 4 0.64 313.14 317.78 4.72 

 

TABLE 5: COMPARISON OF TIME SPLIT FOR OUT-OF-CORE SOLUTION OF 
30X30X30 GRID 

Computational time (Seconds) Memory (GB) 

Out-core 
solvers 

Matrix 
assembly 

Analysis 
phase 

Numeric 
phase 

Solve 
phase 

Total 
time 

Incore 
files 

Out-
of-core 
files 

MUMPS 4 1.6 243.2 1.45 
250.2
5 0.78 1.28 

PARDISO 4 2.2 87.76 3.07 97.03 0.3 1.25 
HSL_MA7
8 4 0.64 314 

318.6
4 0.79 3.174 

 
Tables 6-8 shows the performance of out-of-core MUMPS, 

HSL_MA78 and PARDISO solvers for different grid sizes. 
The performance of in-core solution is also presented for 
relative comparison. Table 4 shows that out-of-core MUMPS 
solver is always greater than 4 times slower compared to the 
in-core solver. This shows that the out-of-core implementation 
of MUMPS solver is less efficient. The in-core memory 
requirement is maintained low. Surprisingly the out-of-core 
HSL_MA78 solver is very efficient with respect to the in-core 
solver. The computational times for both in-core and out-of-
core implementations are almost similar. The in-core memory 
for the out-of-core solver is maintained low. The out-of-core 
memory requirement is larger for HSL_MA78 solver 
compared to the other two solvers. 

 
TABLE VI: PERFORMANCE OF MUMPS SOLVER ON DIFFERENT GRID SIZES 

        MUMPS in-core MUMPS out-of-core 
Memory (GB) 

nex ney nez #dof's 

cpu 
time 
(min) 

Memory 
(GB) 

cpu 
time 
(min) 

incor
e 

Out-of-
core 

50 10 10 18513 0.047 0.23 0.31 0.075 0.11 

100 10 10 36663 0.089 0.52 0.63 0.12 0.23 

200 10 10 72963 0.177 1.1 1.25 0.2 0.465 

50 20 10 35343 0.14 0.65 0.82 0.17 0.285 

100 20 10 69993 0.278 1.4 1.74 0.27 0.612 

100 20 20 133623 1.127 3.87 5.31 0.72 1.72 

100 50 20 324513 6.4 13.42 21.39 2.54 6.13 

100 50 50 788103 * * 126.1 10.2 24.1 

50 20 20 67473 0.45 1.81 2.36 0.47 0.78 

50 50 10 85833 0.495 2.11 2.72 0.45 0.925 

50 50 20 163863 2.228 5.93 8.67 1.3 2.64 

50 50 50 397953 * * 42.5 5 10.12 

 
TABLE VII: PERFORMANCE OF HSL_MA78 SOLVER ON DIFFERENT GRID SIZES 

        HSL in-core HSL out-of-core 
Memory (GB) 

nex ney nez #dof's 

cpu 
time 
(min
) 

Memo
ry 
(GB) 

cpu 
time 
(min) 

In-
core 

Out-
of-
core 

50 10 10 18513 0.18 0.24 0.193 0.14 0.32 

100 10 10 36663 0.35 0.5 0.363 0.14 0.625 

200 10 10 72963 0.59 0.79 0.612 0.14 1.15 

50 20 10 35343 0.78 0.65 0.8 0.23 0.84 

100 20 10 69993 1.06 1.53 1.074 0.23 1.475 

100 20 20 133623 4.83 3.91 3.936 0.5 3.54 

100 50 20 324513 28.9 13.94 23.52 1.56 12.67 

100 50 50 788103 * * 542.6 8.1 49.95 

50 20 20 67473 2.42 1.98 2.46 0.5 1.93 

50 50 10 85833 2.65 2.38 2.69 0.5 2.37 

50 50 20 163863 11.9 7.12 11.3 1.56 6.45 

50 50 50 397953 * * 358 5.8 24 
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Table 8 shows the performance of PARDISO solver. The 
out-of-core solver is around twice slower compared to the in-
core solver. Overall PARDISO out-of-core solver is must 
faster compared to the other two solvers. The in-core memory 
requirement is kept very low. For a 100x50x50 mesh, out-of-
core MUMPS requires around 10 GB of in-core memory and 
out-of-core HSL_MA78 requires around 8 GB of in-core 
memory and out-of-core PARDISO requires around 4 GB of 
in-core memory. Hence PARDISO can solve much finer grid 
sizes compared to the other two solvers. The finest grid sizes 
chosen to solve with PARDISO in this paper are 150x75x30 
and 200x80x40, which consists of around 1 million and 2 
million degrees of freedom. The 150x75x30 grid requires 
around 5.5 GB of in-core memory. The out-of-core memory is 
around 31 GB. It takes around 172 seconds for one Newton 
iteration. The 200x80x40 grid requires around 10.5 GB of in-
core memory and around 75 GB out-of-core memory. One 
Newton iteration takes around 16.5 hours of CPU time. Thus 
we observe that out-of-core PARDISO can solve very large 
three dimensional problems in the context of using direct 
solvers on a single desktop. Both in terms of computational 
time and memory requirement, PARDISO is found to the best 
solver. 

 
TABLE  VIII: PERFORMANCE OF PARDISO SOLVER ON DIFFERENT GRID SIZES 

        PARDISO in‐core  PARDISO out‐of‐core 

nex  ney 
ne
z  #dof's 

cpu 
time 
(min) 

Memory 
(GB) 

cpu 
time 
(min) 

Memory (GB)   
incore  out‐of‐ 
              core 

50  10  10  18513  0.038  0.08  0.067  0.087  0.1 

100  10  10  36663  0.073  0.25  0.15  0.17  0.22 

200  10  10  72963  0.157  0.57  0.304  0.34  0.47 

50  20  10  35343  0.105  0.29  0.209  0.17  0.27 

100  20  10  69993  0.243  0.69  0.515  0.337  0.593 

100  20  20  133623  1.073  1.92  1.758  0.665  1.693 

100  50  20  324513  6.517  6.62  9.5  1.65  6.035 

100  50  50  788103  *  *  114.2  4.1  24.5 

50  20  20  67473  0.432  0.85  0.731  0.33  0.763 

50  50  10  85833  0.457  1.02  0.84  0.42  0.895 

50  50  20  163863  2.233  2.86  3.4  0.83  2.6 

50  50  50  397953  17.650  10.67  25.4  2.03  10.15 

150  75  30  1067268  *  *  171.95  5.52  31 

200  80  40  2002563  *  *  993  10.5  74.8 

 
Correlations are generated for the CPU times and memory 

requirements of all the solvers with respect to the grid size. 
Equation 12-15 shows the correlations for the MUMPS solver. 
In these equations T refers to the CPU time in minutes taken 
by the solver for one Newton iteration. It includes the time for 
generation of the matrix, the analysis phase, factorization 
phase and the solve phase. M refers to the memory 
requirement in GigaBytes, the subscripts in-core and out-of-

core refers to the in-core and out-of-core memory 
requirements for the out-of-core solver, nex, ney and nez refer 
to the grid elements in the x,y and z directions respectively, n 
refers to the total number of degrees of freedom, ar and ar 
refers to the grid aspect ratio's nex/ney and nex/nez.   

MUMPS 
7 1.447 0.127 0.127 2

1 23.56 10 ;    0.95T n ar ar R− − −= × =   (12) 
7 1.214 0.197 0.197 2

1 28.28 10 ;    0.98incoreM n ar ar R− − −= × =  (13) 
7 1.377 0.127 0.127 2

1 22.11 10 ;    0.98outofcoreM n ar ar R− − −= × =  (14) 
HSL 

8 1.707 0.362 0.362 2
1 23.53 10 ;    0.7T n ar ar R− − −= × =   (15) 

4 0.736 0.33 0.33 2
1 22.6 10 ;    0.98incoreM n ar ar R− − −= × =   (16) 

6 1.219 0.155 0.155 2
1 23.42 10 ;    0.99outofcoreM n ar ar R− − −= × =  (17) 

PARDISO 
9 1.757 0.174 0.174 2

1 24.07 10 ;    0.85T n ar ar R− − −= × =   (18) 
6 1.02 0.01 0.01 2

1 23.84 10 ;    0.99incoreM n ar ar R− − −= × =   (19) 
7 1.407 0.112 0.112 2

1 21.39 10 ;    0.99outofcoreM n ar ar R− − −= × =  (20) 

 
The correlations will give an idea of how the solver 

requirements vary as the grid size is modified. The exponents 
of n is greater than 1 indicating that as the number of degrees 
of freedom increases, the CPU time and memory requirement 
are going to increase superlinearly. For the out-of-core 
solvers, the exponents of n are similar for all the three solvers, 
with MUMPS being the lower of around 1. 45. The CPU time 
(and memory requirement are not only a function of number 
of degrees of freedom but also a function of the grid aspect 
ratio’s. The absolute values of the exponents of the aspect 
ratio’s is larger for HSL solver compared to MUMPS and 
PARDISO. This indicates that the solver performance is also a 
strong function of the grid distribution also. The memory 
requirements of the out-of-core solver consists of in-core 
memory (for holding the frontal matrices and other working 
arrays) requirement and out-of-core memory (consists of LU 
factors written to the disk) requirements. Correlations are 
presented for both the memory requirements. An interesting 
observation is that the in-core memory requirement for 
PARDISO the least amongst the three solvers and that the 
memory requirement varies linearly with the number of 
degrees of freedom and is almost independent of the grid 
distribution. This behavior of out-of-core PARDISO is very 
conducive for choosing it for solving large three dimensional 
finite element problems. 
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Fig. 1 Comparison of CPU time and residual norm for Newton and 
modified Newton's method for 30x30x30 grid 

 
      Figure 1 shows the performance of Newton and 

modified Newton algorithms using out-of-core PARDISO as 
the linear solver for a 30x30x30 grid. No under-relaxation is 
used for both Newton and modified Newton's method. 
Newton's method converges in 4 iterations and quadratic 
convergence is observed. Modified Newton's method 
converges in 6 iterations. Linear convergence is observed. It is 
observed that significant computational time savings can be 
achieved using modified Newton's method. Newton's 
iterations converge in 381 seconds, whereas modified 
Newton's iterations converge in 128 seconds. 
 

TABLE  IX: COMPARISON OF CPU TIMES FOR NEWTON AND MODIFIED 
NEWTON FOR DIFFERENT GRIDS 

PARDISO out‐of‐core    Newton  Modified Newton 

nex  ney  nez  #dof's  cpu time (min)  cpu time (min) 

50  10  10  18513  0.34  0.152 

100  10  10  36663  0.8  0.327 

200  10  10  72963  1.78  0.77 

50  20  10  35343  0.99  0.405 

100  20  10  69993  2.35  0.937 

100  20  20  133623  7.65  2.53 

100  50  20  324513  39.51  11.83 

100  50  50  788103  468.1  122.5 

50  20  20  67473  3.27  1.09 

50  50  10  85833  3.57  1.247 

50  50  20  163863  14.4  4.37 

50  50  50  397953  106.4  27.98 

150  75  30  1067268  693  181.8 

 
Table 9 shows the comparison of CPU times for Newton 

and modified Newton methods for different grid sizes. It is 
clearly observed that the implementation of modified Newton 
methods leads to significant savings in computational time. 
Further it is observed that the number of degrees of freedom 

increases, the percentage of computational savings using 
modified Newton's method as compared to the Newton's 
method increases. 

V. CONCLUSIONS 
Three different out-of-core solvers (MUMPS, HSL_MA78, 

PARDISO) are evaluated for the solution of finite element 
Navier-Stokes formulation of laminar flow in a rectangular 
channel. METIS is found to be the best choice of ordering 
algorithm for reducing the fill in of LU factors. Of the three 
solvers, PARDISO is found to the best solver with lower 
computational time and lower in-core and out-of-core memory 
requirements.  

It is observed that out-of-core HSL_MA78 is found to 
perform almost identically with that of the in-core 
HSL_MA78 solver. HSL_F01 facilitates the efficient I/O 
operations for the HSL_MA78 solver. However the out-of-
core HSL_MA78 is much slower than MUMPS and 
PARDISO out-of-core solvers. Out-of-core strategy can help 
in solving large three dimensional finite element problems. 
Out-of-core PARDISO could solve around 2 million equations 
resulting from three dimensional finite element formulations 
on a single desktop. Further it is observed that the use of 
modified Newton's algorithm can significantly reduce the 
computational time as compared to the Newton's algorithm. 
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