
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

624

Abstract—In-core memory requirement is a bottleneck in solving

large three dimensional Navier-Stokes finite element problem
formulations using sparse direct solvers. Out-of-core solution
strategy is a viable alternative to reduce the in-core memory
requirements while solving large scale problems. This study
evaluates the performance of various out-of-core sequential solvers
based on multifrontal or supernodal techniques in the context of
finite element formulations for three dimensional problems on a
Windows platform. Here three different solvers, HSL_MA78,
MUMPS and PARDISO are compared. The performance of these
solvers is evaluated on a 64-bit machine with 16GB RAM for finite
element formulation of flow through a rectangular channel. It is
observed that using out-of-core PARDISO solver, relatively large
problems can be solved. The implementation of Newton and
modified Newton's iteration is also discussed.

Keywords—Out-of-core, PARDISO, MUMPS, Newton.

I. INTRODUCTION
HE use of sparse direct solvers in the context of finite
element discretization of Navier-Stokes equations for

three dimensional problems is limited by its huge memory
requirement. Nevertheless, direct solvers are preferred due to
their robustness. The development of sparse direct solvers
based on algorithms like multifrontal [1], supernodal [2] etc.
have significantly reduced the memory requirements
compared to the traditional frontal solvers [3]. The superior
performance of multifrontal solvers has been demonstrated for
different CFD applications [4]-[7] and also in power system
simulations [8]-[10]. It has been identified [4]-[7] that the
memory requirement is a bottleneck in solving large three-
dimensional CFD problems. There are different viable
alternatives for overcoming the huge memory requirements.
One alternative is to run on a 64 bit machine having large
RAM. The second alternative is to use out-of-core solver,
where the factors are written to the disk, thereby minimizing
the in-core requirements. The third alternative is to use
parallel solvers in a distributed computing environment where
the memory is distributed amongst the different processors.
Recent efforts by the authors show that by using a 64 bit and
16GB RAM machine, relatively larger problems can be
handled in-core.

Mandhapati P. Raju is currently with the General Motors Inc., Warren, MI
48093USA (phone: 586-986-1365; e-mail: raju192@gmail.com).

Siddhartha Khaitan, is with Iowa State University, Ames, IA 50011 USA.
(e-mail: skhaitan@iastate.edu).

However, as the problem size increases, the in-core
memory requirement quickly exceeds 16GB. To increase the
size of RAM is cost wise very expensive. On the other hand
out-of-core solvers can handle very large problems with
smaller in-core memory requirements. The disadvantage of
using out-of-core solvers is that the computational time
increases due to the I/O operations on the disk. In the recent
past there has been lot of research to reduce the time for I/O
and make the out-of-core solvers efficient. The capability and
performance of out-of-core solvers in the context finite
element Navier-Stokes code is assessed in this paper. Three
state-of-the art out-of-core solvers - MUMPS, HSL_MA78
and PARDISO are evaluated. To the best of author’s
knowledge no such comparison of the performance of out-of-
core has been reported in the literature.

MUMPS [11]-[13] is a parallel direct solver with out-of-
core functionality and is available in the public domain.
PARDISO [2], [14]-[17] also has an out-of-core solver and it
is available as a part of the INTEL Math Kernel Library [18].
HSL_MA78 [19], an out-of-core solver, is available as part of
HSL 2007, which is available free for any UK researchers. An
evaluation version of HSL_MA78 is used in this paper.

In finite element Navier-Stokes formulations, the set of
linear equations generated usually generate a matrix that zero
diagonal entries. Penalty formulation yields non-zero diagonal
entries but it is observed that the diagonal entries are few
orders of magnitudes smaller than the other non diagonal
entries. The iterative solution methods fail or pose severe
convergence problems for such ill conditioned matrices.
Although the iterative solvers are memory efficient, the
resolution of convergence issues is not straightforward and
results in lack of robustness. The performance of a suite of
iterative solvers is compared with the out-of-core direct
solvers to demonstrate the superiority of direct solvers.

II. MATHEMATICAL FORMULATION
A benchmark rectangular channel flow problem is chosen

for evaluating the out-of-core solvers. The governing
equations for laminar flow inside a rectangular channel are
presented below in the non-dimensional form. In three-
dimensional calculations, instead of the primitive
formulation, penalty approach is used to reduce the memory
requirements. The equations are all presented in the non-
dimensional form.

High Performance Computing Using Out-of-
Core Sparse Direct Solvers

Mandhapati P. Raju and Siddhartha Khaitan

T

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

625

ˆ ˆ ˆ
0,

ˆ ˆ ˆ
u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (1)

() () ()2 ˆ ˆ ˆ ˆ2ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ Re

ˆ ˆ ˆ ˆ1 1 ,
ˆ ˆ ˆ ˆˆ ˆRe Re

u v w uu uv uw
x y z x x y z x x

u v u w
y y x z z x

λ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ⎛ ∂ ∂ ⎞⎛ ⎞+ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 (2)

() () ()2 ˆ ˆ ˆ ˆ ˆ1ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ Re

ˆ ˆ ˆ2 1 ,
ˆ ˆ ˆˆ ˆRe Re

u v w u vuv v vw
x y z y x y z x y x

v v w
y y z z y

λ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3)

and
() () ()2 ˆ ˆ ˆ ˆ ˆ1ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆRe

ˆ ˆ ˆ1 2 .
ˆ ˆˆ ˆ ˆRe Re

u v w u wuw vw w
x y z z x y z x z x

v w w
y z y z z

λ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎛ ∂ ∂ ⎞⎛ ⎞+ + = + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

(4)

where ˆ ˆ ˆ, ,u v w are the components of velocity,. The bulk
flow Reynolds number, Re, and λ is the penalty parameter.
Velocities are non-dimensionalized with respect to inlet
velocity and the coordinates are non-dimensionalized with
respect to channel length.

The boundary conditions are prescribed as follows:
(1) Along the channel inlet:

 ˆ ˆ ˆ1; 0; 0.u v w= = = (5)

(2) Along the channel exit :
 ˆ ˆ ˆ

0; 0; 0.
ˆ ˆ ˆ
u v w
x x x

∂ ∂ ∂
= = =

∂ ∂ ∂
 (6)

(3) Along the walls:
 ˆ ˆ ˆ0; 0; 0.u v w= = = (7)

The flow Reynolds number is taken as 50 to simulate

laminar flow inside the channel.

III. NUMERICAL FORMULATION
Galerkin finite element method (GFEM) is used for the

discretization of the above penalty based Navier Stokes
equations. Three dimensional brick elements are used; the
velocity components are interpolated bilinearly. The
nonlinear system of equations obtained from GFEM is solved
by Newton’s method. Let be the available vector of field
unknowns for the ith iteration. Then the update for the
iteration is obtained as

() () ()1i i iX X Xα δ+ = + , (8)
where α is an under-relaxation factor, and ()iXδ is the

correction vector obtained by solving the linearized system
() (){ } { }()[] ii i

XJ X Rδ = − . (9)

Here, ()[] iJ is the Jacobian matrix at the (i+1)st iteration,

()
()

()[]
i

i X
i

RJ
X

∂
=

∂
. (10)

{ }()i
XR is the residual vector. Newton’s iteration is continued

till the infinity norm of the correction vector ()iXδ converges
to a prescribed tolerance of 10-10. A modified Newton’s
method is also used in this study. For modified Newton eq. (9)
is modified as shown in eq. 11

() (){ } { }()0[] ii
XJ X Rδ = − . (11)

In modified Newton’s method the Jacobian is evaluated
only during the first iteration. Consequently the Jacobian is
factorized only once. For all subsequent iterations, the same
Jacobian (and hence its LU factors) is used repeatedly. This
algorithm is referred as modified Newton. Since factorization
is the most expensive part of the computations, by using
modified Newton’s algorithm, the expensive factorization step
can be skipped after the first iteration.

We can see that the discretizations of the governing partial
differential equations from (7)-(10) by the GFEM scheme
results in a set of nonlinear equations. However the core of the
resulting nonlinear equations is the solution of a sparse linear
systems (eq. 9), which is the most computationally intensive
part of the solver both in terms of CPU time and memory
requirement. Here three different out-of-core solvers,
MUMPS, HSL_MA78 and PARDISO are implemented and
compared.

To gain maximum computational efficiency the codes are
optimized at three levels.

(a) The first is at the hardware level by using an optimized
Intel MKL BLAS library. This is highly optimized for Intel
processors.

(b) The second level is the choice of an efficient state-of-
the-art out-of-core solver. Three different out-of-core solvers
are evaluated for their performance. The efficiency of an out-
of-core solver not only depends on the factorization
algorithms of the solvers but also on the handling of different
I/O operations. For an out-of-core solver, the I/O operations
can be a bottleneck depending on how the I/O operations are
performed.HSL_MA78 handles efficiently using virtual
memory management package HSL_OF01 which facilitates
reading and writing from direct-access files. Real and integer
data have their own buffers associated with it. Each buffer can
be associated with more than one direct-access file.

(c) The third level is the choice of an efficient algorithm for
solving the system of non-linear equations. The choice of the
non-linear algorithm can affect the rate of convergence and
hence the computational time. The system of non-linear
equations is either solved using Newton or Picard iteration.
Newton iteration is quite popular and efficient due to its
quadratic convergence behavior. If the initial guess is chosen
properly, then Newton iteration can give convergence in a few
iterations. However the limitation is that the formation of
Jacobian matrices involving derivatives is not always
straightforward to compute. In addition the choice of the
initial guess will affect the convergence behavior. Picard

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

626

iteration however is more robust in terms of its flexibility for
choosing an initial guess. However, the rate of convergence
will be linear and hence would result in more computational
time.

 The choice of modified Newton or modified Picard can
further significantly reduce the computational time. In the
modified Newton method, the left hand side matrix is
factorized only once and the factors are reused. Since
factorization is the bottleneck, by avoiding the factorization in
the subsequent steps can reduce the computational time. The
rate of convergence will no longer be quadratic but linear.
Nevertheless, there will be significant savings in
computational time. This paper discussed only Newton and
modified Newton implementation.

IV. RESULTS AND DISCUSSION
In this paper, flow inside a three dimensional rectangular

channel is considered. Three dimensional finite element brick
elements are used for generating the grid. Weak Galerkin
finite element formulation is used to discretize the Navier-
Stokes equations to form a large set of non-linear equations.
Newton's iteration is used to generate a set of linear algebraic
equations. The matrices generated from such discretization are
usually very sparse and hence a good sparse solver is used to
reduce the computational efforts. It is to be noted that for three
dimensional grids, the matrices generated are less sparse
compared to the matrices generated from two-dimensional
grid.

Typically an interior node in a three-dimensional grid is
connected to 27 nodes including it. Since there are 3 dof's at
each node, a typical row consists of 81 non-zero entries. In a
two-dimensional grid, a typical row consists of 27 non-zero
entries. This would increase the frontal size considerably.
Hence solving three-dimensional problems using direct
solvers is quite challenging both in terms of computational
time and memory requirements. Large problems cannot be
solved on a 32-bit machine using in-core techniques [4], [7].
This paper studies the performance of out-of-core direct
solvers on a 64 bit machine with 16GB RAM. All the
computations are run a windows machine with Intel Xeon
processor.

Before comparing the various solvers for their relative
performances, each individual solver is tuned for its optimal
performance, specifically the choice of the ordering package.
Each solver has inbuilt ordering packages, whose choice can
affect the performance of the solver. In addition there are
other parameters like pivot tolerance etc which will affect the
performance of the solver.

MUMPS solver
The sequential version of out-of-core MUMPS solver is

built on a 64 bit machine. The choice of the out-of-core solver
can be invoked by setting the value of
mumps_par%ICNTL(22) as 1. MUMPS has different inbuilt
ordering packages (AMD [20], QAMD [21], AMF, PORD

[22]). In addition, there is a provision to link METIS [23] as
an external package. Memory relaxation is taken as 100%.
MUMPS out-of-core solver is used for all the cases. Table 1
shows the comparison of the performance of the various
ordering methods. All the cases are run for 30x30x30 mesh.
The CPU time and memory for each of the solver are
compared. The CPU time reported is the CPU time for the
first Newton iteration. The CPU time and memory
requirement for the complete in-core solution is also included
in the brackets for a quick comparison. It is to be first noted
that the out-of-core solution is around 3-5 times slower
compared to the in-core solution. Of all the ordering packages,
METIS gives best results. Compared to AMD, METIS results
in almost one-third of the floating point operations. The
computational time and memory requirements are the lowest
for the METIS ordering. Nested bisection algorithm of
METIS is found to generate good ordering for three
dimensional meshes. Based on this result, METIS ordering is
used for all subsequent runs using MUMPS solver.

TABLE 1: COMPARISON OF ORDERING METHODS FOR THE MUMPS SOLVER

Memory (GB)
ordering #dof's Cpu time (sec) in-core

arrays
out-of-

core files

AMD 89373 438.4 (142.8) 1.4 (4.06) 2

QAMD 89373 446.6 (142.75) 1.4 (4.04) 2

AMF 89373 352 (105.7) 1.34 (3.48) 1.67

PORD 89373 309 (86.6) 1.09 (3.18) 1.5

METIS 89373 250.3 (55.01) 0.78 (3.02) 1.28

HSL_MA78 solver
The HSL MA78solver does not any internal ordering

techniques but however the HSL solver package has other
routines which do the function of ordering the finite element
entries to reduce the fill-in during factorization. HSL MC68 is
generally used for efficient ordering of finite element
matrices. In addition, external ordering packages can be
hooked to the HSL MA78 solver. In this paper METIS
ordering is also used by hooking the METIS library to the
solver. Table 2 shows the performance of HSL MC68 and
METIS ordering on the CPU time and memory of the HSL
MA78 solver. It is found that METIS performs better than
HSL MC68. Hence METIS is used for all subsequent runs for
the HSL MA78 solver.

TABLE II: COMPARISON OF ORDERING METHODS FOR THE HSL-MA78 FOR

30X30X30 GRID

Memory (GB)
ordering #dof's Cpu time (sec) in-core

arrays
out-of-

core files

HSL_MC68 89373 536 (524) 1.4 (6.88) 3.5

METIS 89373 321 (318) 0.79 (4.72) 2

PARDISO solver
PARDISO has minimum dissection (MD) and METIS

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

627

ordering hooked internally within the solver. The user has the
choice to use either of the ordering techniques. Table 3
compares the effect of MD and METIS ordering on the
performance of PARDISO solver. It is found that METIS
performs better than the MD ordering technique. Hence
METIS is used for all subsequent runs for the PARDISO
solver.

TABLE III: COMPARISON OF ORDERING METHODS FOR THE PARDISO SOLVER

FOR 30X30X30 GRID
MEMORY (GB) ORDERING #DOF'S CPU TIME

(SEC)
IN-CORE
ARRAYS

OUT-OF-CORE
FILES

MD 89373 284 (162) 0.5 (2.71) 2.8

METIS 89373 97 (59) 0.3 (1.42) 1.25

Table 4 and Table 5 show the time split between different

phases of the solver for in-core and out-of-core solution.
Interestingly, the performance of in-core and out-of-core for
HSL_MA78 solver is almost the same in terms of
computational time. This may be because of the efficient I/O
operation used in HSL_MA78 package. It used virtual
memory management using HSL_F01 packages to handle
efficient I/O operations. This strategy is found to be very
effective in developing good out-of-core solvers. Although the
out-of-core HSL is performing well in comparison to the in-
core, the overall computation time is much larger compared to
the other solvers. MUMPS out-of-core solver is almost 4
times slower than in-core solver. PARDISO out-of-core solver
is around 1.6 times slower than its in-core solver. Another
interesting observation is that out-of-core PARDISO has a
relatively large solve phase compared to out-of-core MUMPS.
PARDISO has much less in-core memory requirement
compared to MUMPS or HSL.

TABLE IV: COMPARISON OF TIME SPLIT FOR IN-CORE SOLUTION OF 30X30X30

GRID

Computational time (Seconds) In-core
solvers

Matrix
assembly

Analysi
s phase

Numeric
phase

Solve
phase

Total
time

Memory
(GB)

MUMPS 4 1.51 53.3 0.58 59.39 3.02

PARDISO 4 2.19 52.6 0.47 59.26 1.42
HSL_MA7
8 4 0.64 313.14 317.78 4.72

TABLE 5: COMPARISON OF TIME SPLIT FOR OUT-OF-CORE SOLUTION OF
30X30X30 GRID

Computational time (Seconds) Memory (GB)

Out-core
solvers

Matrix
assembly

Analysis
phase

Numeric
phase

Solve
phase

Total
time

Incore
files

Out-
of-core
files

MUMPS 4 1.6 243.2 1.45
250.2
5 0.78 1.28

PARDISO 4 2.2 87.76 3.07 97.03 0.3 1.25
HSL_MA7
8 4 0.64 314

318.6
4 0.79 3.174

Tables 6-8 shows the performance of out-of-core MUMPS,

HSL_MA78 and PARDISO solvers for different grid sizes.
The performance of in-core solution is also presented for
relative comparison. Table 4 shows that out-of-core MUMPS
solver is always greater than 4 times slower compared to the
in-core solver. This shows that the out-of-core implementation
of MUMPS solver is less efficient. The in-core memory
requirement is maintained low. Surprisingly the out-of-core
HSL_MA78 solver is very efficient with respect to the in-core
solver. The computational times for both in-core and out-of-
core implementations are almost similar. The in-core memory
for the out-of-core solver is maintained low. The out-of-core
memory requirement is larger for HSL_MA78 solver
compared to the other two solvers.

TABLE VI: PERFORMANCE OF MUMPS SOLVER ON DIFFERENT GRID SIZES

 MUMPS in-core MUMPS out-of-core
Memory (GB)

nex ney nez #dof's

cpu
time
(min)

Memory
(GB)

cpu
time
(min)

incor
e

Out-of-
core

50 10 10 18513 0.047 0.23 0.31 0.075 0.11

100 10 10 36663 0.089 0.52 0.63 0.12 0.23

200 10 10 72963 0.177 1.1 1.25 0.2 0.465

50 20 10 35343 0.14 0.65 0.82 0.17 0.285

100 20 10 69993 0.278 1.4 1.74 0.27 0.612

100 20 20 133623 1.127 3.87 5.31 0.72 1.72

100 50 20 324513 6.4 13.42 21.39 2.54 6.13

100 50 50 788103 * * 126.1 10.2 24.1

50 20 20 67473 0.45 1.81 2.36 0.47 0.78

50 50 10 85833 0.495 2.11 2.72 0.45 0.925

50 50 20 163863 2.228 5.93 8.67 1.3 2.64

50 50 50 397953 * * 42.5 5 10.12

TABLE VII: PERFORMANCE OF HSL_MA78 SOLVER ON DIFFERENT GRID SIZES

 HSL in-core HSL out-of-core
Memory (GB)

nex ney nez #dof's

cpu
time
(min
)

Memo
ry
(GB)

cpu
time
(min)

In-
core

Out-
of-
core

50 10 10 18513 0.18 0.24 0.193 0.14 0.32

100 10 10 36663 0.35 0.5 0.363 0.14 0.625

200 10 10 72963 0.59 0.79 0.612 0.14 1.15

50 20 10 35343 0.78 0.65 0.8 0.23 0.84

100 20 10 69993 1.06 1.53 1.074 0.23 1.475

100 20 20 133623 4.83 3.91 3.936 0.5 3.54

100 50 20 324513 28.9 13.94 23.52 1.56 12.67

100 50 50 788103 * * 542.6 8.1 49.95

50 20 20 67473 2.42 1.98 2.46 0.5 1.93

50 50 10 85833 2.65 2.38 2.69 0.5 2.37

50 50 20 163863 11.9 7.12 11.3 1.56 6.45

50 50 50 397953 * * 358 5.8 24

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

628

Table 8 shows the performance of PARDISO solver. The
out-of-core solver is around twice slower compared to the in-
core solver. Overall PARDISO out-of-core solver is must
faster compared to the other two solvers. The in-core memory
requirement is kept very low. For a 100x50x50 mesh, out-of-
core MUMPS requires around 10 GB of in-core memory and
out-of-core HSL_MA78 requires around 8 GB of in-core
memory and out-of-core PARDISO requires around 4 GB of
in-core memory. Hence PARDISO can solve much finer grid
sizes compared to the other two solvers. The finest grid sizes
chosen to solve with PARDISO in this paper are 150x75x30
and 200x80x40, which consists of around 1 million and 2
million degrees of freedom. The 150x75x30 grid requires
around 5.5 GB of in-core memory. The out-of-core memory is
around 31 GB. It takes around 172 seconds for one Newton
iteration. The 200x80x40 grid requires around 10.5 GB of in-
core memory and around 75 GB out-of-core memory. One
Newton iteration takes around 16.5 hours of CPU time. Thus
we observe that out-of-core PARDISO can solve very large
three dimensional problems in the context of using direct
solvers on a single desktop. Both in terms of computational
time and memory requirement, PARDISO is found to the best
solver.

TABLE VIII: PERFORMANCE OF PARDISO SOLVER ON DIFFERENT GRID SIZES

 PARDISO in‐core PARDISO out‐of‐core

nex ney
ne
z #dof's

cpu
time
(min)

Memory
(GB)

cpu
time
(min)

Memory (GB)
incore out‐of‐
 core

50 10 10 18513 0.038 0.08 0.067 0.087 0.1

100 10 10 36663 0.073 0.25 0.15 0.17 0.22

200 10 10 72963 0.157 0.57 0.304 0.34 0.47

50 20 10 35343 0.105 0.29 0.209 0.17 0.27

100 20 10 69993 0.243 0.69 0.515 0.337 0.593

100 20 20 133623 1.073 1.92 1.758 0.665 1.693

100 50 20 324513 6.517 6.62 9.5 1.65 6.035

100 50 50 788103 * * 114.2 4.1 24.5

50 20 20 67473 0.432 0.85 0.731 0.33 0.763

50 50 10 85833 0.457 1.02 0.84 0.42 0.895

50 50 20 163863 2.233 2.86 3.4 0.83 2.6

50 50 50 397953 17.650 10.67 25.4 2.03 10.15

150 75 30 1067268 * * 171.95 5.52 31

200 80 40 2002563 * * 993 10.5 74.8

Correlations are generated for the CPU times and memory

requirements of all the solvers with respect to the grid size.
Equation 12-15 shows the correlations for the MUMPS solver.
In these equations T refers to the CPU time in minutes taken
by the solver for one Newton iteration. It includes the time for
generation of the matrix, the analysis phase, factorization
phase and the solve phase. M refers to the memory
requirement in GigaBytes, the subscripts in-core and out-of-

core refers to the in-core and out-of-core memory
requirements for the out-of-core solver, nex, ney and nez refer
to the grid elements in the x,y and z directions respectively, n
refers to the total number of degrees of freedom, ar and ar
refers to the grid aspect ratio's nex/ney and nex/nez.

MUMPS
7 1.447 0.127 0.127 2

1 23.56 10 ; 0.95T n ar ar R− − −= × = (12)
7 1.214 0.197 0.197 2

1 28.28 10 ; 0.98incoreM n ar ar R− − −= × = (13)
7 1.377 0.127 0.127 2

1 22.11 10 ; 0.98outofcoreM n ar ar R− − −= × = (14)
HSL

8 1.707 0.362 0.362 2
1 23.53 10 ; 0.7T n ar ar R− − −= × = (15)

4 0.736 0.33 0.33 2
1 22.6 10 ; 0.98incoreM n ar ar R− − −= × = (16)

6 1.219 0.155 0.155 2
1 23.42 10 ; 0.99outofcoreM n ar ar R− − −= × = (17)

PARDISO
9 1.757 0.174 0.174 2

1 24.07 10 ; 0.85T n ar ar R− − −= × = (18)
6 1.02 0.01 0.01 2

1 23.84 10 ; 0.99incoreM n ar ar R− − −= × = (19)
7 1.407 0.112 0.112 2

1 21.39 10 ; 0.99outofcoreM n ar ar R− − −= × = (20)

The correlations will give an idea of how the solver

requirements vary as the grid size is modified. The exponents
of n is greater than 1 indicating that as the number of degrees
of freedom increases, the CPU time and memory requirement
are going to increase superlinearly. For the out-of-core
solvers, the exponents of n are similar for all the three solvers,
with MUMPS being the lower of around 1. 45. The CPU time
(and memory requirement are not only a function of number
of degrees of freedom but also a function of the grid aspect
ratio’s. The absolute values of the exponents of the aspect
ratio’s is larger for HSL solver compared to MUMPS and
PARDISO. This indicates that the solver performance is also a
strong function of the grid distribution also. The memory
requirements of the out-of-core solver consists of in-core
memory (for holding the frontal matrices and other working
arrays) requirement and out-of-core memory (consists of LU
factors written to the disk) requirements. Correlations are
presented for both the memory requirements. An interesting
observation is that the in-core memory requirement for
PARDISO the least amongst the three solvers and that the
memory requirement varies linearly with the number of
degrees of freedom and is almost independent of the grid
distribution. This behavior of out-of-core PARDISO is very
conducive for choosing it for solving large three dimensional
finite element problems.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

629

Iterations

||δ
X

|| ∞

C
um

ul
at

iv
e

C
PU

tim
e

(s
ec

)

0 1 2 3 4 5 6 7

10-10

10-8

10-6

10-4

10-2

100

0

50

100

150

200

250

300

350

400

Modified Newton
Newton

Fig. 1 Comparison of CPU time and residual norm for Newton and
modified Newton's method for 30x30x30 grid

 Figure 1 shows the performance of Newton and

modified Newton algorithms using out-of-core PARDISO as
the linear solver for a 30x30x30 grid. No under-relaxation is
used for both Newton and modified Newton's method.
Newton's method converges in 4 iterations and quadratic
convergence is observed. Modified Newton's method
converges in 6 iterations. Linear convergence is observed. It is
observed that significant computational time savings can be
achieved using modified Newton's method. Newton's
iterations converge in 381 seconds, whereas modified
Newton's iterations converge in 128 seconds.

TABLE IX: COMPARISON OF CPU TIMES FOR NEWTON AND MODIFIED
NEWTON FOR DIFFERENT GRIDS

PARDISO out‐of‐core Newton Modified Newton

nex ney nez #dof's cpu time (min) cpu time (min)

50 10 10 18513 0.34 0.152

100 10 10 36663 0.8 0.327

200 10 10 72963 1.78 0.77

50 20 10 35343 0.99 0.405

100 20 10 69993 2.35 0.937

100 20 20 133623 7.65 2.53

100 50 20 324513 39.51 11.83

100 50 50 788103 468.1 122.5

50 20 20 67473 3.27 1.09

50 50 10 85833 3.57 1.247

50 50 20 163863 14.4 4.37

50 50 50 397953 106.4 27.98

150 75 30 1067268 693 181.8

Table 9 shows the comparison of CPU times for Newton

and modified Newton methods for different grid sizes. It is
clearly observed that the implementation of modified Newton
methods leads to significant savings in computational time.
Further it is observed that the number of degrees of freedom

increases, the percentage of computational savings using
modified Newton's method as compared to the Newton's
method increases.

V. CONCLUSIONS
Three different out-of-core solvers (MUMPS, HSL_MA78,

PARDISO) are evaluated for the solution of finite element
Navier-Stokes formulation of laminar flow in a rectangular
channel. METIS is found to be the best choice of ordering
algorithm for reducing the fill in of LU factors. Of the three
solvers, PARDISO is found to the best solver with lower
computational time and lower in-core and out-of-core memory
requirements.

It is observed that out-of-core HSL_MA78 is found to
perform almost identically with that of the in-core
HSL_MA78 solver. HSL_F01 facilitates the efficient I/O
operations for the HSL_MA78 solver. However the out-of-
core HSL_MA78 is much slower than MUMPS and
PARDISO out-of-core solvers. Out-of-core strategy can help
in solving large three dimensional finite element problems.
Out-of-core PARDISO could solve around 2 million equations
resulting from three dimensional finite element formulations
on a single desktop. Further it is observed that the use of
modified Newton's algorithm can significantly reduce the
computational time as compared to the Newton's algorithm.

REFERENCES
[1] T. A. Davis and I.S. Duff, “A combined unifrontal/multifrontal method

for unsymmetric sparse matrices,” ACM Trans. Math. Soft., vol. 25, no.
1, 1997, pp. 1–19.

[2] O. Schenk, K. Gartner, and W. Fichtner, “Efficient Sparse LU
Factorization with Left-right Looking Strategy on Shared Memory
Multiprocessors,” BIT, vol. 40, no. 1, 2000, pp. 158–176.

[3] B. M. Irons, “A frontal solution scheme for finite element analysis,”
Numer. Meth. Engg., vol. 2, 1970, pp. 5-32.

[4] M. P. Raju, and J. S. T’ien, “Development of Direct Multifrontal Solvers
for Combustion Problems,” Numerical Heat Transfer-Part B, vol. 53,
2008, pp. 1-17.

[5] M. P. Raju, and J. S. T’ien, “Modelling of Candle Wick Burning with a
Self-trimmed Wick,” Comb. Theory Modell., vol. 12, no. 2, 2008, pp.
367-388.

[6] M. P. Raju, and J. S. T’ien, “Two-phase flow inside an externally heated
axisymmetric porous wick,” vol. 11, no. 8, 2008, pp. 701-718.

[7] P. K. Gupta, and K. V. Pagalthivarthi, “Application of Multifrontal and
GMRES Solvers for Multisize Particulate Flow in Rotating Channels,”
Prog. Comput Fluid Dynam., vol. 7, 2007, pp. 323–336.

[8] S. Khaitan, J. McCalley, Q. Chen, "Multifrontal solver for online power
system time-domain simulation," IEEE Transactions on Power Systems,
vol. 23, no. 4, 2008, pp. 1727–1737.

[9] S. Khaitan, C. Fu, J. D. McCalley, "Fast parallelized algorithms for
online extended-term dynamic cascading analysis," PSCE, 2009, pp. 1–
7.

[10] J. McCalley, S. Khaitan, “Risk of Cascading outages”, Final Report,
PSrec Report, S-26, August 2007. Available at
http://www.pserc.org/docsa/Executive_Summary_Dobson_McCalley_C
ascading_Outage_ S-2626_PSERC_ Final_Report.pdf

[11] P. R. Amestoy, and I. S. Duff, “Vectorization of a multiprocessor
multifrontal code,” International Journal of Supercomputer
Applications, vol. 3, 1989, pp. 41–59.

[12] P. R. Amestoy, I. S. Duff, J. Koster and J. Y. L’Excellent, “A fully
asynchronous multifrontal solver using distributed dynamic scheduling,”
SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 1, 2001,
pp. 15–41.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

630

[13] P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent, “Multifrontal parallel
distributed symmetric and unsymmetric solvers,” Comput. Methods
Appl. Mech. Eng., vol. 184, 2000, pp. 501–520.

[14] O. Schenk, “Scalable Parallel Sparse LU Factorization Methods on
Shared Memory Multiprocessors,” Ph.D. dissertation, ETH Zurich,
2000.

[15] O. Schenk, and K. Gartner, “Sparse Factorization with Two-Level
Scheduling in PARDISO,” in Proc. 10th SIAM conf. Parallel Processing
for Scientific Computing, Portsmouth, Virginia, March 12-14, 2001.

[16] O. Schenk, and K. Gartner, “Two-level scheduling in PARDISO:
Improved Scalability on Shared Memory Multiprocessing Systems,”
Parallel Computing, vol. 28, 2002, pp. 187-197.

[17] O. Schenk, and K. Gartner, “Solving Unsymmetric Sparse Systems of
Linear Equations with PARDISO,” Journal Future Generation
Computer Systems, vol. 20, no. 3, 2004, pp. 475-487.

[18] Intel MKL Reference Manual, Intel® Math Kernel Library (MKL), 2007.
Available: http://www.intel.com/software/products/mkl/

[19] J. A. Scott, Numerical Analysis Group Progress Report, RAL-TR-2008-
001, Rutherford Appleton Laboratory, 2008.

[20] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum
degree ordering algorithm,” SIAM Journal on Matrix Analysis and
Applications, vol. 17, 1996, pp. 886–905.

[21] P. R. Amestoy, “Recent progress in parallel multifrontal solvers for
unsymmetric sparse matrices,” in Proc. 15th World Congress on
Scientific Computation, Modelling and Applied Mathematics, IMACS,
Berlin, 1997.

[22] J. Schulze, “Towards a tighter coupling of bottom-up and top-down
sparse matrix ordering methods,” BIT, vol. 41, no. 4, 2001, pp. 800–841.

[23] G. Karypis, and V. Kumar, “METIS – A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes, and Computing
Fill-Reducing Orderings of Sparse Matrices – Version 4.0,” University
of Minnesota, September 1998.

