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Linear elasticity problems solved by using the
fictitious domain method and Total - FETI domain

decomposition
Lukas Mocek, Alexandros Markopoulos

Abstract—The main goal of this paper is to show a possibility,
how to solve numerically elliptic boundary value problems arising in
2D linear elasticity by using the fictitious domain method (FDM) and
the Total-FETI domain decomposition method. We briefly mention
the theoretical background of these methods and demonstrate their
performance on a benchmark.
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I. INTRODUCTION

THE paper deals with solving method for 2D linear
elasticity problems based on the use of the fictitious

domain method [5], [6], together with the Total-FETI domain
decomposition [2], [7]. The main idea of the fictitious domain
method applied on elliptic boundary value problems is to em-
bed the original domain ω with possibly complicated geometry
into a new simple shaped domain called the fictitious one.
The original problem is reformulated to a new one defined
on the fictitious domain. The advantage of this method is
in using a special partition of the fictitious domain, which
enables us to apply effective solvers to compute the solution
of the resulting algebraic system. The classical approach of
the fictitious domain method is based on the use of La-
grange multipliers, defined on the original boundary, to enforce
boundary conditions on that boundary. This approach leads
to a singularity concentrated on the original boundary. To get
better convergence rate we use the modified (smooth) fictitious
domain approach [6], based on the introduction of a new
auxiliary boundary located outside of the original domain.
On this boundary we define new control variable, which
enforces the boundary conditions prescribed on the original
boundary, instead of Lagrange multipliers. The solution still
has a singularity but now located on the auxiliary boundary
instead of the original boundary.

For increasing efficiency we also use the Total-FETI domain
decomposition based on the decomposing of the fictitious
domain to non-overlapping subdomains. These subdomains are
glued together again by Lagrange multipliers. This method
is use to find a solution in parallel. After the finite element
discretization of the fictitious domain formulation we get a
linear system of algebraic equations called the generalized
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Fig. 1: Elastic body ω

saddle-point system. This system is solved by the projected
biorthogonal conjugate gradient method for non-symmetric
operators with preconditioning (ProjBiCGSTAB) [6] and for
the numerical solution we use the MatSol library. [8]

II. FORMULATION OF THE LINEAR ELASTICITY PROBLEM

Let us consider an elastic body which is represented by the
domain ω ⊂ R

2 with a smooth boundary γ, see Fig. 1. This
boundary is divided into two disjoint parts γu and γp, where
γ = γu∪γp. On γu and γp we impose Dirichlet and Neumann
conditions, respectively. Let us formulate equilibrium equation
together with the standard boundary conditions:

−divσ(u) = f in ω,
u = o on γu,

σ(u)ν = p on γp,

⎫⎬
⎭ (1)

where σ(u) is the stress tensor in ω, ν = (ν1,ν2) is the unit
outward normal vector to γ and u = (u1,u2) is the unknown
displacement.

The strain which is caused by the displacement u is
characterized by the symmetric strain tensor given as

ε(u) :=
1

2
(∇u+∇Tu).

The stress tensor is related to the strain tensor by the linearized
Hooke law for linear isotropic materials, written as:

σ(u) := c1tr(ε(u))I + 2c2ε(u) in ω,

where ”tr” denotes the trace of matrices defined as

tr(A) =

n∑
i=1

aii, A ∈ R
n×n,

I ∈ R
2×2 is the identity matrix and c1, c2 > 0 are the Lamè

constants defined as follows:

c1 =
Eυ

(1 + υ)(1− 2υ)
, c2 =

E

2(1 + υ)
,
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Fig. 2: Fictitious domain method

with E > 0 being the Young modulus and υ ∈ (0, 1/2) the
Poisson ratio. The stress tensor can be written as follows:

σ(u) =

⎛
⎜⎜⎝

(c1 + 2c2)
∂u1

∂x1
+ c1

∂u2

∂x2
c2

(
∂u1

∂x2
+

∂u2

∂x1

)

c2

(
∂u1

∂x2
+

∂u2

∂x1

)
c1
∂u1

∂x1
+ (c1 + 2c2)

∂u2

∂x2

⎞
⎟⎟⎠ .

Above we formulated the linear elasticity problem and in
the following chapter we introduce the first ingredient which
is used to solve it efficiently. This ingredient is based on the
use of a fictitious domain containing the elastic body ω.

III. FICTITIOUS DOMAIN METHOD

The fictitious domain method represents an efficient tool
for the numerical solution of complicated problems arising
in physics and industry. The main reason for its popularity is
that it allows us to transform the original problem defined in a
domain ω with a possibly complicated geometry to a new one,
solved in a simple shape domain Ω containing original domain
ω. The advantage of the fictitious domain method (sometimes
called imbedding method) is that we can use fairly structured
meshes in Ω making possible to apply fast effective solvers
for the numerical solution of the resulting algebraic system
and special preconditioning techniques. There are several ways
how to associate the new problem in Ω with the original one
defined in ω. For example we can use Lagrange multiplier
technique, optimal control approach, penalty approach etc.

Let us describe mentioned principles in more details. Let ω
be a bounded domain in R

2 with the Lipchitz boundary ∂ω.
On this domain we define an elliptic boundary value problem.
The main idea of this method is to embed the real domain ω
of the original problem with possibly complicated geometry
to a new simple shaped domain Ω called the fictitious one,
see Fig. 2. The original problem is reformulated to a new
one defined in the fictitious domain Ω in such a way that its
solution when restricted to ω matches with the solution of the
original problem.

In classical approach, a possible way to formulate the
new problem is based on the use of Lagrange multipliers.
The imposed boundary conditions on γ can be viewed as a
constraint. This constraint is enforced by Lagrange multipliers
defined on γ. Thus the new formulation in Ω involves two
unknowns introduced as the primal variable u ∈ V and the
corresponding Lagrange multiplier λ ∈ Λ enforcing prescribed
boundary conditions on γ which leads to the singularity of u
concentrated on γ, that can result in an intrinsic error of the

computed solution. For more details, see [4]. To improve the
convergence rate a modified (smooth) approach was proposed
[6]. This modification is based on introduction of a new
control variable instead of the Lagrange multiplier defined
on the other auxiliary boundary Γ located outside of the
domain ω, see Fig. 4. The boundary Γ satisfies the condition
δ = dist(Γ, γ) > 0. This new control variable enforces the
original boundary condition on γ. Because the singularity is
moved from ω, the solution is smoother in ω, see Fig. 3.

γ

u

singularity

γ
Γ

u

no singularity

Fig. 3: Singularity on γ

To explain the modified fictitious domain method we define
the space

V (ω) =
{
v ∈ (H1(ω))2|v = 0 on γu

}
.

Then the weak formulation of (1) reads as follows:

Find u ∈ V (ω) such that

aω(u,v) =

∫
ω

f · v dx+ (p,v)γp
∀v ∈ V (ω),

⎫⎬
⎭ (2)

where
aω(u,v) =

∫
ω

σ(u) : ε(v) dx

and (·, ·)γp
is the scalar product in (L2(γp))

2.
Further we define the fictitious domain Ω such that ω ⊂ Ω

and auxiliary boundary Γ surrounding the original domain ω,
also we define space

V (Ω) = (H1
0 (Ω))

2,

with
H1

0 (Ω) = {v ∈ H1(Ω)|v = 0 on ∂Ω}.

Now we can introduce the modified fictitious domain formu-
lation of the original problem, which is given as:

Find (û,λ) ∈ V (Ω)× Λ(Γ) such that

aΩ(û,v) + 〈v,λ〉Γ =

∫
Ω

f · v dx ∀v ∈ V (Ω),

〈μu, û〉γu
= 0 ∀μu ∈ Λ(γu),

〈μp,σ(û)ν〉γp
= 〈μp,p〉γp

∀μp ∈ Λ(γp),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

where Λ(Γ) = (H−1/2(Γ))2, Λ(γu) = (H−1/2(γu))
2,

Λ(γp) = (H−1/2(γp))
2 and 〈 , 〉γu

, and 〈 , 〉γp
stand for

the duality pairings between H1/2(γu) and H−1/2(γu) and
H1/2(γp) and H−1/2(γp), respectively. Finally, aΩ : V (Ω)×
V (Ω) → R and 〈v,λ〉Γ : V (Ω) × Λ(Γ) → R are two
bounded bilinear forms. Here, the second component λ can be
viewed as a control variable working on Γ to enforce boundary
conditions imposed on the original boundary.

Let Vh ⊂ (H1
0 (Ω))

2, Lγu

H ⊂ (H−1/2(γu))
2, L

γp

H ⊂
(H−1/2(γp))

2, LΓ
H ⊂ (H−1/2(Γ))2, h,H > 0 be finite
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Fig. 4: Modified fictitious domain method

dimensional subspaces of the indicated spaces. Let dimLγu

H =
2mu, dimL

γp

H = 2mp, and dimLΓ
H = 2m, where mu+mp =

m. When we have finite dimensional subspaces, we can dis-
cretize variational problem (3) and then the discrete algebraic
form, based on the mixed finite element method, leads to the
following generalized algebraic saddle point system:

Find (u,λ) ∈ R
2n × R

2m such that⎛
⎝ K BT

Γ

Bγu
0

Cγp
0

⎞
⎠(

u

λ

)
=

⎛
⎝ f

0

p

⎞
⎠ ,

⎫⎪⎪⎬
⎪⎪⎭ (4)

where K ∈ R
2n×2n is the stiffness matrix. Matrices BΓ ∈

R
2m×2n and Bγu

∈ R
2mu×2n are the Dirichlet trace matrices

on Γ and γu, respectively. The matrix Cγp
∈ R

2mp×2n is the
Neumann trace matrix, they are constructed to be full row-
rank and highly sparse matrices. Vectors f and p are of order
2n and 2mp, respectively.

As follows we focus our attention to an efficient method
based on the domain decomposition which will be used to
solve the generalized algebraic saddle point system (4).

IV. TOTAL-FETI DOMAIN DECOMPOSITION

This section deals with the second powerful ingredient
based on the using of the Total-FETI decomposition. The
FETI (Finite Element Tearing and Iterconnecting) was in-
troduced by Farhat and Roux [3] and became to be one
of the most powerful method for parallel solution of ill-
conditioned systems of linear equations. The main idea of this
method is decomposing of the computational domain into non-
overlapping subdomains. These subdomains are glued together
again by Lagrange multipliers.

We focus our attention to a new variant of FETI called Total-
FETI (TFETI), introduced by Dostal, Horak and Kucera [2].
The main idea is to simplify work with pseudoinversions of the
subdomain stiffness matrices by using Lagrange multipliers
not only for gluing interconnected subdomains but also for
enforcing the Dirichlet boundary conditions, see Fig. 5. The
important property of the Total-FETI method is that we know
kernels of subdomain stiffness matrices which can be formed
directly. For more details about FETI and TFETI methods see
[2], [3], [7].

We simplify the generalized algebraic saddle point system
(4) as (

K BT
Γ

Bγ 0

)(
u

λ

)
=

(
f

g

)
, (5)

Fig. 5: Decomposition and discretization for Total FETI

where Bγ = (BT
γu
,CT

γp
)T ∈ R

2m×2n, f ∈ R
2n and g =

(0T ,pT )T ∈ R
2m.

We decompose given domain Ω into s subdomains Ωp, p =
1, . . . , s and from that reason matrix K = diag(K1, ...,Ks).
The diagonal blocks Kp that correspond to the subdomains Ωp

are positive semidefinite sparse stiffness matrices with a-priori
known kernels and f = (f1, ...,fs) ∈ R

2n.
We introduce (2m × 2n) full row rank matrix BG and

vector c of order 2m, where the matrix BG with its rows
bi and the vector c with the entries ci enforce the prescribed
displacements on the part of the boundary with imposed
Dirichlet boundary conditions and the continuity of the dis-
placements across the auxiliary interfaces. The continuity
requires that biu = ci = 0, where bi are vectors of the
order 2n with zero entries except 1 and −1 at appropriate
positions. The matrix BG is called gluing matrix. Using the
notation m = m + M , Bγ = (BT

G,B
T
γ )

T ∈ R
2m×2n,

BΓ = (BT
G,B

T
Γ )

T ∈ R
2m×2n and g = (cT , gT )T ∈ R

2m

we get problem of the same form as (5) again.
For solving the whole algebraic saddle-point system (5) we

use the method based on the Schur complement reduction.
As the stiffness matrix K is singular, the first component u
of (5) cannot be completely eliminated. It follows that the
Schur complement reduction leads to another algebraic system
with two unknowns. The first unknown λ is from the previous
saddle point system and new unknown α, which corresponds
to the null space of K . We can formulate this new algebraic
system with unknowns (λ,α) as(

BγK
†BT

Γ −BγR

−RTBT
Γ 0

)(
λ

α

)
=

(
BγK

†f − g

−RTf

)

and the first unknown u of the algebraic system (5) is given
as

u = K†(f −BT
Γλ) +Rα.

Columns of the matrix R span the kernel of the matrix K

and K† is arbitrary generalized inverse of the matrix K which
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satisfies
KK†K = K.

We simplify this algebraic system to the following reduced
one (

F GT
1

G2 0

)(
λ

α

)
=

(
d

e

)
, (6)

where

F := BγK
†BT

Γ , G1 := −RTBT
γ , G2 := −RTBT

Γ ,

d := BγK
†f − g e := −RTf .

For effective solving of (6), we can use orthogonal projec-
tors. We define the orthogonal projectors P i onto kernels of
Gi as

P i = I −GT
i (GiG

T
i )

−1Gi, i = 1, 2.

The first projector splits the saddle-point algebraic structure
of the reduced system and the second projector decomposes
the unknown λ ∈ R

2m into two components λKer and λIm

as
λ := λKer + λIm,

where λIm belongs to the image of G2 and λKer belongs to
the kernel of G2. Then λ is the first component of the solution
to the algebraic system (6) if

λIm = GT
2 (G2G

T
2 )

−1e

and λKer satisfies the following equation

P 1FλKer = P 1(d− FλIm).

The componentλKer is solved by a projected Krylov subspace
method for non-symmetric operators with preconditioning,
e.g. projBICGSTAB [6]. Finally the second component of
algebraic system (6) is given by

α = (G1G
T
1 )

−1G1(d− Fλ).

For the numerical solution we use the MatSol library [8].

V. NUMERICAL EXPERIMENT

Let us consider an elastic body which is represented by
the domain ω ⊂ R

2 with a smooth boundary γu. Let us
formulate equilibrium equation together with the Dirichlet
boundary conditions:

−divσ(u) = f in ω,
u = c on γu,

}
(7)

The domain ω is defined as interior of the circle

ω = {(x, y) ∈ R
2|(x− 0.5)2 + (y − 0.5)2 < 0.252},

which is embeded into the fictitious domain Ω = (0, 1)×(0, 1)
(see Fig. 6). The righthand sides of (1) are f = −divσ(û),
c = û|γu

, where û(x, y) = (0.1xy, 0.1xy), (x, y) ∈ R
2. The

auxiliary boundary Γ is constructed by shifting γu 6h in the
direction of outward normal vector ν. The problem is solved
in parallel by using 8 processors.

In Fig. 7 we can see original and deformed geometry of ω
for decomposition into 36 square subdomains of size H .

0
0

1

1

Ω

ω

Γ

γu

δ

Fig. 6: Geometry of ω

Fig. 7: Original and deformed geometry

Table I shows computed results for the fixed number of
elements and increasing number of subdomains. We can
see the number of subdomains, decomposition parameter h,
number of primal and control variables, number of matrix
multiplications, computational time and see relative errors of
approximate solution ûh to exact solution û in these norms:

Erel(ω) =
‖ûh − û‖ω

‖û‖ω
, Erel(γ) =

‖ûh − û‖γ
‖û‖γ

.

TABLE I: COMPUTATIONAL RESULTS

N 64 144 196 256

h 1/256 1/384 1/448 1/512

Primal var. 139393 313632 426888 557568

Control var. 9442 20394 27428 35504

Matrix mult. 139 167 165 205

Time(s) 65,5 200 283 388

Erel(γ) 2.9230e-004 1.6940e-004 1.1154e-004 6.8340e-005

Erel(ω) 1.0339e-004 5.9920e-005 3.3490e-005 2.0810e-005

VI. CONCLUSION

The goal of this paper was to illustrate the efficient way for
the numerical solution of the linear elasticity problems based
on the modified fictitious domain approach and the Total-FETI
domain decomposition. We briefly explained those methods
and illustrated their performance on a numerical example.
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