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Abstract—A satured liquid is warmed until boiling in a 

parallelepipedic boiler. The heat is supplied in a liquid through the 
horizontal bottom of the boiler, the other walls being adiabatic. 
During the process of boiling, the liquid evaporates through its free 
surface by deforming it. This surface which subdivides the boiler into 
two regions occupied on both sides by the boiled liquid (broth) and 
its vapor which surmounts it. The broth occupying the region and its 
vapor the superior region. A two- fluids model is used to describe the 
dynamics of the broth, its vapor and their interface. In this model, the 
broth is treated as a monophasic fluid (homogeneous model) and 
form with its vapor adiphasic pseudo fluid (two-fluid model). 
Furthermore, the interface is treated as a zone of mixture 
characterized by superficial void fraction noted *α . The aim of this 
article is to describe the dynamics of the interface between the boiled 
fluid and its vapor within a boiler. The resolution of the problem 
allowed us to show the evolution of the broth and the level of the 
liquid.     
 

Keywords—Two-fluid models, homogeneous model, interface, 
averaged equations, Jumps conditions, void fraction. 

 
I.  INTRODUCTION 

OME numerous problems linked to thermal transfers in 
fluids in transition’s phase are still posed. For instance, the 

transfer of mass through a liquid-vapor interface and the 
effects of imbalance that arise from it are not cleared up in a 
satisfactory way. Also the dynamic of bubbly vapor within a 
liquid remains a difficult problem because of macroscopic 
phenomenons put in game such as thermal transfer, sticky 
dissipation, compressibility, and non-linear interactions 
between the bubble and le liquid.   The problem becomes 
more complex when it is question of several bubbles. The 
complete formulation of such problems requires an important 
number of variables (spatio-temporal), that must check up a 
system of equations strongly non linear and including a lot of 
discontinuities. The numerical study of these problems is 
delicate, near the interfaces (fluid-fluid and solid-fluid) where 
we take part to the degradation the accuracy of these diagrams 
of integration (finite difference type). Despite those 
difficulties, some studies most of the times experimental have 
allowed to obtain some diagram or abacus extremely useful 
for the use; and also allowed to put into evidence 
phenomenons of instabilities linked to the coupling flow-
change of phase [10]. 

We also find a number of articles treating in a basic way 
those subjects. For a dynamic of bubbly liquids, models for  
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the obtaining of averaged equation (of continuities) are 
proposed by Drew and Segal and William [5 et 13] whereas 
Drumheller and Bedford [6] use a varitional approach. For the 
jumps’ conditions at a fluid-fluid interface, Gatignol [7] use an 
asymptotic model to obtain jumps equations where [4] use the 
theory of non-linear distributions. We also know that for an 
interface without mass it is impossible to define a material 
velocity [11]. For interface between two interfering fluids 
Bedeaux [1] define the tangential component of the material 
velocity as being the average of tangential component of 
velocity in every fluid near the interface. 

In this study we will use a different approach of those that 
have been made till now to define the material quantities of 
the interface.  

This present article records itself in the thematic of 
numerical resolution of problems of thermal transfer in a two-
phase flow. Therefore it will be articulated around a following 
point: modelling and numerical simulation of the evolution, a 
fluid-fluid interface with material properties. 

The study will be led in respecting the following plan: In 
section 2 position of problem and basic hypothesis, section 3 
general equation of the dynamic, section 4 equations of the 
dynamic, section 5 definition of material properties of the 
interface, section 6 additional modelling and closed equations, 
section 7 numerical modelling.   

II.  PROBLEM POSITION AND BASIS HYPOTHESIS 
The fundamental hypotheses that we will have to do all 

along this study are the followings: 
 
Interface: 
- Doted of material properties like the mass and interfacial 

energy 
- Is a zone of mixture characterized by a sign of superficial 

space noted *α . 
- Material surface that coincides every time with the 

geometrical surface of equation ),,( yxthz = . We will note 

W the geometrical velocity of the interface. The spacial 
variations of h are weak, therefore we will pose hh =  where 
h indicates the average level of the interface. 

 
Vapor: 
- Check up the equation of perfect gas. 
 
 

S 
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Broth: 
- The broth is considered as an incompressible pseudo fluid 

monophonic (homogeneous model) although formed of water 
and bubbly water. 

 
In the equations: 
- We will neglect the terms deriving from process of 

average in front of the other terms. 
 

 
III.  GENERAL EQUATIONS OF THE DYNAMIC 

The fluid system considered is formed of two separated 
phases. In most of the works marking on the general 
formulation on the dynamic of diphasic fluids, we begin to 
begin to give a local instantaneous formulation of fluid flow, 
then at middle quantities in order to obtain a system of average 
equations. The step that we adopt here is different from that 
classical step. 

In fact we go from a global formulation of equations of the 
dynamic for each phase then we deduct a system of average 
equations. Let us go from the general equation of the 
following transfer 
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In the equation (1), ψ represents the density of a physical 

property of a fluid, ( )fV +ψ  is the flow of ψ , V is the local 

velocity of the fluid, s is the external source of density, AV  is 
the geometrical velocity of the interface, n  is a normal unit 
vector pointed external to V∂ , aβ  the function of presence 
defined by : 
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The expressions of f,ψ  and s are given in the table below 

 
TABLE I 

EXPRESSION OF PHYSICAL QUANTITY IN FUNCTION OF PHYSICAL LAWS 

Quantity ψ  f  s 
Mass ρ  0 0 

Quantity of 
movement Vρ  -Σ  bρ  

Energy 2

2
1( Ve +ρ ) Vq .Σ−

 
QVb ρρ +.  

 
 

IV.  AVERAGED EQUATIONS OF DYNAMIC 
 

A.  Definition of Averaged Quantities 
Let us design the average of all quantity 

),( Ytf by ⎣ ⎦),( Ytf . The spatio temporal average of f is 
defined like this:  
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In the above equalities D represents domain occupied by the 

broth-vapor (internal volume of the boiler) and D its volume. 
Let us design kψ  a physical quantity attached to phase k. 

We define the intrinsic averages of vapor and broth 
respectively like this: 
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In the above relations +D  and −D design respectively the 

domain occupied by the vapor-phase and the broth at this 
instant.  

We also have the following relation:   
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where kα  is the average void fraction of phase k. 

 
B.  Homogeneous General Equations 
In re-writing the equation (1) in the terms of our problem, it 

becomes:      
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When the boundaries conditions at the boiler are those of 
viscous fluid (adherence conditions), in applying the temporal 
average (3), then in dividing the result by the volume D of the 
boiler, equation (8) becomes: 
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We show that the normal unit vector n  expresses itself in 
function of the interface displacement h by the above relation:  
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h
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In substituting (10) in (9) it comes, 
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The spatial variations of  h being weak, we can neglect the 

terms comprising h∇  in front of the other terms In this case 
equation (11) becomes 
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In the above equation ⎣⎦*. designes a surfacic average 

defined by a quantity g attached at the interface and is defined 
like this 
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Equation (12) will be modelled for each phase and for each 

law (mass, QM and energy) in order to obtain a homogeneous 
average equations system. 

 
    C.  Balance Equations of Emitted Vapor 

 
- Mass 
In the case whereψ , f  and s  take their corresponding 

valor at the mass (Box 1) equation (12) becomes 

⎣ ⎦*)()( WV
dt
d

−= ++ ραρα                       (14)  

Where +α is the presence function of the superior vapor near 
the interface       
                                                                  

- Quantity of Movement 
Now let’s identifyψ , f  and  s  at their corresponding valor 

at the quantity of movement (box 1) then (12) becomes 
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where +
kα  represents the  presence function  of vapor  on face 

k of the boiler. In taking account the adherence condition of 
the vapour phase on the faces, equation (15) is written: 
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- Energy 
Lastly in giving toψ , f  and s  their corresponding valor 

to the energy (box 1), and taking account 0=b  (neglect the 
external body forces) then equation (12) becomes: 
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- State Law 
It will be a perfect gas given to the following relation: 

 
+++ = TRMp ρ                                   (19) 

 
where +++ Tp   and  , ρ  are respectively, the pressure, the 
density mass and the absolute temperature of the vapor. R and 
M are the constant of perfect gas and molar mass.  
 

D.  Balance Equations of the Broth 
The balance equations and mass transfer, the quantity of 

movement and energy are respectively: 
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However the state law of the broth is not classical but when 

the differences of temperature are weak, it is equal to [3]: 
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V.  DEFINITION OF MATERIAL PROPERTIES OF THE INTERFACE 
In our hypothesis the interface is a material surface formed 

of liquids and vapors zones (zone of mixture), characterized 
by a sign of superficial space noted *α . This model allows us 
to define the interfacial body mass, the material velocity and 
the surfacic internal energy respectively as in [9] by the 
relations below: 
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Furthermore we define the superficial enthalpy like this: 
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** α
ρ
ρ

−

+

=x  

We deduct the expression of the following interfacial internal 
energy: 
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where *p  is the average pressure of phase [9] we will define 
by the relation  

 
−+ −+= ppp )1( *** αα                          (28)           

 
 

VI.  ADDITIONAL MODELLINGS AND CLOSING EQUATIONS 
 

A.  Additional Modellings 
- Losses and flows through the interface 
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- Calorific Capacity  
The emitted vapor is considered as a perfect gas, its thermal 

capacity is given by the above relation  
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The thermal capacity of the water’s vapor will be defined 

by the following expression: 
 

23 )(*18.110*63.94.30 −−−+ ++= TTc        (31)   
                  

Heat transfer through the boiler’s base is given the following 
relation of Jens and Lottes, that given [8] 
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We will take as expression of latent heat, the formula given by  
Regnault below, 

 
TS m 93.23340−= .                                         (33)                   

 
We adopt for the pressure the following relation of Dupré 
(legitimate between 100°C and 200°C), 
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B.  Modelling Dynamic Equations 
In taking account hypothesis of the section 2 and the 

relations from (29) to (34) the averaged homogeneous 
equations of broth dynamic and its vapour, equations (14), 
(16), (18) and (20) to (22) becomes: 

- Vapor phase equation: 
Mass: 

 

++
+

+ =−+ zV
dt

d
dt
hd

H

_

)1( ραρααρ               (36) 

 
with   
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where h  is the average level of broth. In continuing we will 
write simply h                                                              

Quantity of movement: 
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- Broth equation: 
Mass: 
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with  
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where −α  is the average void fraction of vapor phase within 
the broth.                                                                                                                                                    

Energy: 
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C.  Closing Equations 
- Interfacial balance equation of mass. 
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where ),,,(* hyxt+= αα  is defined as in the relation (2) but 

on the interface. In fact *α is a presence function of vapor 

phase within the interfacial layer (homogenous model for the 
interface). Thus *α  is the average void fraction of interface.                     

- Equation linking the evolutions of the interface and the 
axial velocity +

zV               
We know that the quantity of evaporated water through the 

interface by unity of time (debit) is equal to the mass of vapor 
having left the interface during this time. This statement is 
translated by the following relation: 
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- Relation between the broth void fraction and its quality 
The expression of a mixture quality in function of void 

fraction is [2] 
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    -Modelling )( ** TT −γ term in the energy equation 
    We do hypothesis by that the heat received by the 
surmounting vapour is useful to rise temperature only. This is 
translated by the following relation: 
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VII.  NUMERICAL INVESTIGATION 

In considering that 0≈−α , then equation (41) becomes: 
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     In this case, we can close the equations system. In fact, in 
taking account the previous relation, the equations (40), (42) 
and (45) become respectively  
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The modelling equations ((36), (38), (39), (44), (47), (49), 

(50) et (51)) form a closed system of equations (of order 8) 
noted in a matrix way like this: 
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In order to solve system (53) we must add the following 
initial conditions: 
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then problem (52) to be solved is written: 
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Fig. 3 Graph of the evolution according to time 

 

VIII.  ANALYSIS OF SOLUTIONS 

The homogeneous problem is a simplified model of the 
general problem. In fact we had to solve an evolution problem 
(11) needing the initial conditions and boundaries.  

We will note that in the present model the conditions to 
boundary appear directly in the equations. The equations 
system (53) is obtained under the implicit form, we solve it 
therefore by an implicit scheme with of dassl primitive.  The 
resolution of the system (53) has allowed us to obtain the 
graph of function h  (Fig. 1).  We can see that the graph 
translating the interface evolution is decreasing. That 
expresses the mass transfer through the interface (loss of 
liquid).  
 

IX.  CONCLUSION 
This article presents a model to describe a dynamic of an 

interface between a boiled fluid (broth) and its vapor within a 
boiler. The system form by a broth is treated with the help of a 

two fluids model; the broth being considered as a pseudo-
homogenous fluid (homogeneous model). Averaged quantities 
have been defined in each domain occupied by phases in 
interaction and their interface. Afterwards homogeneous 
equations (depending only of time t) translating phases in 
presence and their interface have been obtained. Additional 
hypothesis have been posed in order to obtain a closing of 
equation system obtained. The numerical resolution of 
equation of movement has been made, and the law of 
evolution of the interface and some parameters of the problem 
has been obtained. We have considered the interface as a 
material surface formed of liquid and vapor zones 
characterized by indication void fraction *α . The definition of 
the interfacial void fraction has allowed us to define some 
material properties of the interface as the superficial density of 
mass, the material velocity, and surfacic internal energy. 

The resolution of system of modelling equation, the 
problem has allowed us to obtain the evolution law of average 
level of the broth. 
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