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Validity Domains of Beams Behavioural Models:
Efficiency and Reduction with Artificial Neural

Networks
Keny Ordaz-Hernandez, Xavier Fischer, and Fouad Bennis

Abstract— In a particular case of behavioural model reduction
by ANNs, a validity domain shortening has been found. In me-
chanics, as in other domains, the notion of validity domain allows
the engineer to choose a valid model for a particular analysis or
simulation. In the study of mechanical behaviour for a cantilever
beam (using linear and non-linear models), Multi-Layer Perceptron
(MLP) Backpropagation (BP) networks have been applied as model
reduction technique. This reduced model is constructed to be more
efficient than the non-reduced model. Within a less extended domain,
the ANN reduced model estimates correctly the non-linear response,
with a lower computational cost. It has been found that the neural
network model is not able to approximate the linear behaviour while
it does approximate the non-linear behaviour very well. The details
of the case are provided with an example of the cantilever beam
behaviour modelling.

Keywords— artificial neural network; validity domain; cantilever
beam; non-linear behaviour; model reduction.

I. INTRODUCTION

A
MODEL is an abstraction of reality and no model
represents it perfectly [16]. In mechanical engineering,

as in other areas, it is possible to find a number of models
to simulate the same phenomenon. These variety is created
for many reasons. Mainly, because a model represents only a
limited view of reality: some aspects of reality are incorpo-
rated, others are leaved out. Also, because disposing of several
models permits the engineer to select an more efficient or more
adequate model. While that is true, another reason is that the
same phenomenon may be modelled differently according the
activity where it is to be employed; e.g. within an off-line
analysis, models are essentially accurate and precise; while
within an on-line simulation, models are primarily fast. Also,
specific models are usually developed to be more efficient
than their generic counterparts; but not without a penalty
—typically the diminution of the applicability domain. The
domain where a model can be applied limits its validity
domain, since only there its validity can be assessed. In many
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situations (as in the reuse of mechanical models, see [40]), a
model should always be accompanied of its validity domain
in order to be used. Moreover, the validity domain must be
verified if the model is modified: during the application of a
model reduction to beam behavioural models, a modification
of the resulting validity domain was noticed. While using
model reduction techniques to create a more efficient model
(lower time of response with a negligible loss of accuracy),
changes in the validity domain must be expected.

In this paper, the case of Artificial Neural Networks
(ANN) employment as model reduction technique for beam
behavioural models is considered. The efficiency and validity
domain of the reduced model are studied to a means to support
decision making in the successful use of models:

• A shortening of validity domain after reduction of the
original model is reported.

• An improvement of the efficiency of the model after
reduction is reported.

The next section (sect. III) provides a background of
the utilisation of ANN in mechanics and engineering, and
as model reduction techniques. Section IV presents some
behavioural models for beams and discusses their validity
domain. Section V illustrates the application of ANN-based
model reduction to a cantilever beam case. Section VI dis-
cusses the resulting efficiency and validity domain of the
cantilever beam case.

II. PROBLEM STATEMENT

A recent trend in the creation of virtual prototypes for
product design is the inclusion of interactivity. Virtual proto-
types are digital representations or simulations of the product
concept. Simulation of interactive prototypes (or interactive
simulations) can be used to explore and experiment prod-
uct concepts according to the expertise and intuition of the
designer[9] and the future user. Similarly, it has been sug-
gested that the use of interactive simulation shall speed up
the findings and reviewing of concept design in the early
stages of the development process [5]. Interactivity in the
virtual prototype is its capability to simulate the human’s
interaction with the design. In the past, the effectiveness of
an interactive virtual prototype was limited to the following
features: realistic visualisation, geometry-related constrains,
and realistic simulation of physical behaviour [39]. However,
human-product interaction should be included [36] as well as
real-time processing and rendering [29], [5] to maintain the
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illusion of realism in the simulation [45]. In fact, as stated
by Liu et al. [28], the key problem of virtual prototyping is
how to build credible VP models. Today, virtual prototyping
for product design must provide interactive simulation that
ensures: realism (visual and behavioural), fast processing
(computation of models), and integration of the human-object
interaction. Also, extensible and reusable models are desired to
simulated different design alternatives with a minimal effort.
Therefore, the interactive simulation must reflect the following
features:

• Accuracy and appropriate speed. Visualisation and simu-
lation of physical behaviour must be accurate to provide
a realistic reliable experience to the user [39], and fast
enough to maintain the sensation of immersion [45].

• Human integration. Object-object interactions as well as
also human-object interaction must be integrated. [45],
so that the designer is able to explore and experiment the
future user reaction with the design alternatives.

• Extensibility and reusability. Quickly integration of
changes in the virtual prototype [39] and easy derivation
of virtual prototype variations [13] allow the creation of
prototypes for the different design alternatives.

In the current research, exploration of the interactive sim-
ulation models is performed. It aims to develop a modelling
methodology with the features mentioned above, except for
the realistic visualisation.

In this study, the diversity of behavioural models for compo-
nent simulation is addressed. The efficiency of a model within
is validity domain is studied in the search of realistic real-time
simulations.

III. BACKGROUND ON ANN IN MECHANICAL MODELLING

Neural networks are a computational approach to build mod-
els where complexity or lack of information of the problem
make the development of a classical model more difficult.
They have found great acceptance in function interpolation
and approximation [10], [27], [33]. Moreover, they have been
successfully used in engineering [41] in different areas: in
mechanics of structures and materials [42], [11], [46]. For
modelling: in physics-based modelling [14], in model updating
[4].

Many behavioural models are governed by differential equa-
tions, as in the case of the cantilever beam. Some general ap-
plication of neural networks to solve differential equations are
found in: linear ordinary differential equations by feedforward
neural networks [20], [21], artificial neural networks for solv-
ing ordinary and partial differential equations [24]. With the
Finite Elements Method: solving partial differential equations
in real-time using artificial neural network signal processing
as an alternative to finite-element analysis [38], MLP networks
for differentiation of finite-element solutions [8], finite element
analysis based Hopfield neural network model for solving non-
linear electromagnetic field problems [15], FEM-based neural-
network approach to non-linear modeling with application to
longitudinal vehicle dynamics control [22], direct solution
method for finite element analysis using Hopfield neural
network [43], the use of neural networks combined with FEM

to optimize the coil geometry and structure of transverse flux
induction equipments [44], the use of finite elements and
neural networks for the solution of inverse electromagnetic
problems [30].

As presented above, neural networks have been used is a
vast range of applications related to mechanical engineering
in a way or another. But the most important characteristics
of neural networks (parsimony, non-linear relations with lin-
earised connections) make them good candidates for reduction
of non-linear models.

A. Beam modelling by neural networks

Artificial neural networks have been used specifically for
modelling beams. ANN were used in [26] for an efficient
clamped-clamped microbeam model for the non-linear dy-
namic response of MEMS, reduced by a neural network
method. However, In [1], two neural networks were used to
estimated the static response of a large deflection cantilever
beam. Its validity domain included the small displacements
and the great displacements domains. See Sect. IV for further
information about validity domains. Although their proposed
model was the fastest compared to four models (linear, elliptic,
reversion and numeric), its accuracy was the worst. There was
no further information that would lead to understanding the
reasons of the lack of accuracy.

Nonetheless, this work supposes that neural networks are a
good option to model reduction of beam behavioural models,
and it investigates one of the possible reasons of lack of
accuracy.

IV. BEAMS BEHAVIOURAL MODELS AND THEIR VALIDITY
DOMAINS

Beam behaviour depends on the geometry behaviour (dis-
placements, deflections), the material behaviour (elasticity,
plasticity), and the forces (independent of displacements, fol-
lower forces—non-linear functions of displacements).

As a result, many models have been developed and they
correspond to different validity domains. The following list
presents some beam models grouped by their validity domain
(Table IV). For illustration purposes, only geometric and
material aspects are included, and no specific values are given.

Geometric domains are related to displacements and de-
formations. Change in geometry as the structure deforms is
taken into account in setting up the strain-displacement and
equilibrium equations [12]. Material behaviour depends on
current deformation state and possibly past history of the
deformation. Other constitutive variables (pre-stress, temper-
ature, time, moisture, electromagnetic fields, etc.) may be
involved.

A. A cantilever beam

A long thin cantilever beam, statically charged on the free
end, is to be modelled for interactive simulation (see Figure 1).

The cantilever beam is considered of uniform rectangular
cross section made of a homogeneous and isotropous elastic
material, that follows a linear elastic constitutive law. Only
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TABLE I
BEAM BEHAVIOURAL MODELS CLASSIFIED BY THEIR VALIDITY DOMAIN.

Domain Indicator References
Geometric Domains
Small displacements and small deforma-
tions

δ � L; εeq ≤ 1% [47], [17], [6]

Great displacements and small deformations εeq ≤ 1% [32], [35], [31], [25], [6], [1], [7], [19], [3], [34]
Great displacements and great deformations εeq > 1% [23]
Material Domains
Elasticity σeq ≤ σelast [18]
Elasto-plasticity σ0.2, εplast = 0.2%, [25]
Plasticity σeq ≥ σplast [37]

TABLE II
DATA OF THE CANTILEVER BEAM [6].

Description Value
Length L 300 mm
Width b 30.4 mm
Height h 0.78 mm
Moment of inertia I 1.20 × 10−12 m4

Young’s modulus E 200 GPa
External force F 3.92 N

small deformations are accepted, but large deflections may
appear. Since large rotations move away the current configu-
ration (CD) from the base configuration (C0), a linear model
cannot be used but only for small rotations. A total lagrangian
(TL) formulation model is accurate and precise enough; but
the computing time exceeds the acceptable threshold for an
interactive simulation since it requires an iterative solution
process (usually a variant of the Newton-Raphson is used).

Fig. 1. Long deflection cantilever beam problem for flexible modelling

Table II resumes the data of the cantilever beam used as the
test case. It is analogous to the problem experimented in [6].
Their results where validated experimentally. Table III presents
the resulting displacements at the free end of the beam (which
correspond to the maximal values).

It is important to consider the validity of a model when used
in a particular domain. For the beam described above, the non-
linear model (TL formulation) is clearly more accurate than
the linear model (see Fig. 2). However, the linear model is
normally faster than the former.

The models presented above are the base of the creation and
comparison of the reduced model. Both models are presented
in the following sections.

TABLE III
DISPLACEMENTS AT THE FREE END OF THE CANTILEVER BEAM.
NUMERICAL RESULTS OF THE REFERENCE MODEL, VALIDATED

EXPERIMENTALLY [6].

Displacements Response of the reference model
δx 31.4 mm
δy 121.6 mm
θz 36.09◦

0.05 0.1 0.15 0.2 0.25 0.3
x �m�

�0.1

�0.05

0

0.05

y
�m
�

Linear Formulation

TL Formulation

Fig. 2. Comparison of a non-linear model against a linear model in the
behaviour of a cantilever beam under great displacements.

B. Selected beam models

The three models are organised in Table IV and in Table V.
Their known accuracy, speed and validity domains are in-
cluded in Table IV; while their definition is presented in table
Table V .

The linear model [47] corresponds to the Euler-Bernoulli
Beam Theory. The non-linear model [19] only takes geometric
non-linearities into account.

V. MODEL REDUCTION OF THE BEHAVIOURAL MODEL OF
A CANTILEVER BEAM

In this section, the construction of a reduced behavioural
model for a cantilever beam is presented. Artificial neural
network is used as model reduction technique. To introduce
the concept of reduced model, short definitions of model and
model reduction are presented as follows.

Let’s define a model and its reduction as follows:
A model is a mathematical relation that links the
changes of a given response to the changes of one
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TABLE IV
BEHAVIOURAL MODELS FOR THE CANTILEVER BEAM. VALIDITY DOMAINS AND REPORTED PERFORMANCE.

Model Validity Domain Accuracy Speed
Linear [47] ϕl Small displacements Regular Very fast
Non-linear [19] ϕnl Small and great disp. High Slow

TABLE V
BEHAVIOURAL MODELS FOR THE CANTILEVER BEAM. DEFINITION.

Model Definition
Ku = f

Linear [47]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
L

0 0 −EA
L

0 0

0 12EIzz
L3

6EIzz
L2

0 − 12EIzz
L3

6EIzz
L2

0 6EIzz
L2

4EIzz
L

0 − 6EIzz
L2

2EIzz
L

−EA
L

0 0 EA
L

0 0

0 − 12EIzz
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L2
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L
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L

⎤
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ke

l

u = ϕl (f , (pg , pm))
K(u)u = f

ke
nl = ke

l + ke
nlgeo ; N = EA

L
(L′ − L)

Non-linear [19] N

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 6

5L
sym.

0 1

10

2L
15

0 0 0 0
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5L
− 1

10
0 6

5L

0 1
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− L

30
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2L
15

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ke

nlgeo

u = ϕnl(f ,u, (pg , pm))

or many factors.
The reduction of a model, or model reduction, is
obtaining an equivalent mathematical relation gen-
erated from the features of the connections between
the changes of a given response and the changes of
one or many factors.

As a consequence, it is possible to establish —within
this context— that a reduced model is another equivalent
transformation of the original model.

A. Reduced non-linear beam model

It is assumed that the elastostatic response of a mechanical
system can be simulated with more realism by using a reduced
model that ensures an appropriate accuracy-speed ratio. In this
test case, ANN modelling is used as a technique to replace
the non-linear model (see IV-A). The learning capability of
neural networks provides an alternative path to obtain the
force-displacement connections of the non-linear model. An
important feature their capability to approximate non-linear
functions by using less variables and linear relations among
them.

a) ANN Description.: The architecture to be used is
the multilayer perceptron (MPL). This is a network of nhl

hidden layers, where every neuron is totally connected with
the neurons of the next layer. The first and final layers are
dimensioned (i.e. the number of neurons within) accordingly

to the size of input and output vectors, respectively.

u = ϕann (f , pg, pm, cann) , (1)

where cann is the configuration of the network:
• number of hidden layers,
• dimension of each layer,
• transfer function of each layer.
For the cantilever beam, a possible structure of MLP net-

work is presented in Figure 3.
Backpropagation (BP) learning [2] has been selected as the

training algorithm as it is a well known technique used for
function approximation. Even if the architecture and learning
algorithm are selected, configuring and tuning a neural net-
work and capable to properly response to unknown data is not
simple: establishing the appropriate configuration (the number
of hidden layers, their dimension and the transfer function)
is a complicated task. This is the reason that has fostered
the employment of optimisation techniques to find a nearly
optimal structure of a neural network to a given problem. Here,
the selected technique is based on genetic algorithms (GA).

b) ANN Construction.: In this work, defining the appro-
priate configuration of a neural network can be seen as an
optimisation problem. An optimisation technique is used to
automatically define the structure and overall configuration of
the ANN to model the cantilever beam. The neural network
is built as follows.

Genetic algorithms are a particular class of algorithms
that use techniques inspired by evolutionary biology. The
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Fig. 3. Non-linear reduced model by means of an artificial neural network.
Material and geometric properties as well as the point force are the input to
the model; displacements are the output. The configuration of the boundary
conditions is fixed.

2 10 03 20 00

2nd gene: 

transfer 

function

1st gene:

number of 

hidden 

layers

3rd to 7th gene:

Size (number of 

neurons) of the i

hidden layer

Fig. 4. Abstract representation of a candidate solution (an individual) for
the neural network selection. The structure of the chosen network is given by
the number of hidden layers (gene 1), their dimensions (genes 3 to 5), and
the transfer function (gene 2).

genetic algorithm technique is about searching one of the
best individuals of a population of potential solutions; in this
case, one of the neural networks for the reduced modelling
of static behaviour. Population is composed of the candidate
configurations of MLP networks (i.e. hidden layers, neurons
by layer, transfer functions). In certain cases, also the training
algorithm could be variable in the search of an optimal
network. An example of the structure of an individual or
candidate solution is shown in Fig. 4. The structure of the
chosen network is given by the number of hidden layers (gene
1), their dimensions (genes 3 to 5), and the transfer function
(gene 2). The transfer function is indexed from a list of known
functions. Some of the functions commonly used are: linear
function, logarithmic sigmoid function, radial basis function,
tangent sigmoid function, triangular basis function.

The objective of the genetic algorithm is to minimize the
residual error in the verification of a candidate neural network.

The neural network selection process for the case presented
in section IV-A was executed on a computer for 20 hours
(1.81 Ghz processor and 1 Gb RAM). The winning individual
was coded as: (2, 4, 8, 12, 0, 0, 0), 2 hidden layers (8 and 12
neurons) with tangent sigmoid transfer function.

c) ANN Specification.: After executing the genetic al-
gorithm, the resulting configuration of the employed neural
network is shown in Table VI.

The ANN model is specified in terms of weights and transfer

functions (2):

u = ϕann (f)

uj = Lin
(
w

(j)
3

Tansig
(
w

(j)
2

Tansig
(
w

(j)
1

f

)))

Lin(x) = x

Tansig(x) =
2

1 + e−2x
− 1

j = 1, 2, . . . , n

(2)

It is important to emphasize that the ANN model (2) pro-
vides a representation u = ϕann (f) of the non-linear model
u = ϕnl (f ,u) that has been created with different connections
between the input (f ) and the output (u) without the need of
iterations. This is, the dependency of the displacements with
themselves and the forces has been reduced to a dependency
of the forces only. The non-linear mapping has been captured
in the weights of the ANN (w(j)

i ).

B. Validity domain of the reduced model

As stated in sect. IV-A, the validity domains considered in
this study correspond only to geometric aspect of the beam
behaviour, since the material is considered ideally elastic,
so the beam stays in the elasticity domain. Also, under
the assumption that deformation remains small, the possible
domains for the models are:

DS small deflections domain
DS ∪ DG small and great deflections domain
DG great deflections domain

The preliminary tests of the reduced model have shown that
its validity domain corresponds to DG; but it is not certain if it
covers DS∪DG. The results of the application to the cantilever
beam are presented in the next section.

VI. RESULTS AND DISCUSSION

The behaviour of a cantilever beam has been modelled with
three different models: a non-linear, a linear, and a non-linear
ANN-reduced model. Their different performance is discussed
in the following sections as well as the interest of ANN-
reduced model.

A. Validity domain

While the linear model is known to be valid only under
small displacements (θz < 15◦, for this case [6]), the non-
linear model is valid under small displacements and great
displacements (but small deformation). Sect. V-B Figures 5, 6,
and 7 show a detailed view of the zone were the domain switch
occur for horizontal displacement, vertical displacement and
rotation at the free end of the beam. The reduced model ϕred

provides not only inaccurate results at the configurations near
the initial configuration (C0, Fy = 0), but also non-logical
response in the case of Figure 5. It is stated as non-logical
since it provides a negative horizontal displacement while the
beam is in equilibrium without the action of external forces.
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TABLE VI
CONFIGURATION OF THE NEURAL NETWORK USED TO MODEL THE NON-LINEAR BEHAVIOUR.

Element Option
Learning algorithm backpropagation
Architecture multi-layer perceptron
Structure 3 layers (8, 12 et 3 neurons), which implies 2 hidden layers
Transfer function tangent sigmoid (hidden layers) and linear (output layer)
Training epochs 300
Target error 1 × 10−7

0.05 0.1 0.15 0.2

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−3

u
x

F

Reference model (nl)
Reduced non−linear model
Linear model
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Linear

Fig. 5. Comparison of horizontal deflection δx estimation at the free end of
the beam

In that case, the linear model is more “accurate” even if it
always estimates the horizontal displacement as zero (see top
of figure 5). Also, it is possible to see in Figures 6 and
7 that the linear model approximates better the non-linear
response than the reduced model. It is evident that the non-
linear reduced model is not capable to estimate the beam
behaviour under small displacements.

The resulting validity domains are concentrated in Ta-
ble VII.

B. Efficiency

It has been defined, previously in this section, that the
reduced model was only valid in the great displacements
domain. In its validity domain, the interest relies in how the
model performs compared to the original non-linear model.
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−1

0
x 10

−3

u
y

F

Reference model (nl)
Reduced non−linear model
Linear model

Linear

Non−linear

Fig. 6. Comparison of vertical deflection δy estimation at the free end of
the beam

The reduced model presents a loss of accuracy compared
to the non-linear model. However, the gain in speed is as
expected: almost as fast as the linear. Although, the linear
model is not valid in this domain (θz > 15◦, as stated in
[6]), it is include for speed comparison. The estimated error
and response time tcalc for the three models are reported in
Table VIII.

As presented above, the behavioural model reduced by ANN
has shown that it is a fast alternative to be used in interactive
simulations. Its accuracy is not an issue if the ANN-reduced
model is to be used only within its validity domain. In fact,
the small loss of accuracy compared to the original non-linear
model is negligible for an interactive simulation.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1931

0 0.005 0.01 0.015 0.02
−0.02

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

θ
z

F

Reference model (nl)
Reduced non−linear model
Linear model

Linear

Non−linear

Fig. 7. Comparison of rotation θz estimation at the free end of the beam

TABLE VII
VALIDITY DOMAIN OF THE BEAM MODELS. SEE SECT. V-B FOR A

DESCRIPTION OF THE DOMAINS.

Model Validity domain
Linear Small deflections, DS

Non-linear Small and great deflections, DS ∪ DG

Non-linear reduced Strictly great deflections, DG

VII. CONCLUSION

A validity domain study is reported in the context of a
reduced cantilever beam static behaviour model. The orig-
inal model is reduced by a multi-layer perceptron network
giving an alternative model that is more efficient only in a
reduced domain. The validity domain of the reduced model is
emphasised as a delicate aspect to verify in the application
of ANN as model reduction techniques. In short, for the
behavioural modelling of cantilever beam, the application of
this reduction technique (based on ANN) has provided a good
model (accurate and fast) but with the limitation that it is
only valid in a non-linear geometric domain. Thus, for an
interactive simulation this model could be used alternatively
with the linear model. A dynamic selection strategy is needed
to change between those models.
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APPENDIX

NOMENCLATURE

A area of the cross section (m2)
ANN artificial neural network
MLP multi-layer perceptron
B beam definition
C0 undeformed configuration
cann configuration of the neural network
C0 deformed configuration
δ displacement (m)
E Young’s modulus (MPa)
εeq equivalent deformation (%)
εplast plastic deformation (%)
f sollicitations (N)
Izz moment of inertia of the cross section (m4)
k

e
l linear element stiffness matrix

k
e
nl non-linear element stiffness matrix

k
e
nlgeo non-linear geometric contribution to the element stiff-

ness matrix
L length of the beam (m)
L′ length of the deformed beam (m)
ν Poisson’s ratio
pg geometric properties
ϕ behavioural model
ϕann ann-based reduced model
ϕflex flexible model
ϕl linear model
ϕnl non-linear model
ϕred non-linear reduced model
pm material properties
σ0.2 elasto-plastic transition with εeq = 0.2% (MPa)
σelast elastic limit (MPa)
σeq equivalent stress (MPa)
σplast plastic limit (MPa)
θz rotation at the free end of the beam (rad)
u displacements (m)
w

(j)
i weights of the ANN connections


