
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:3, 2007

47

Abstract—The purposes of this paper are to (1) promote

excellence in computer science by suggesting a cohesive innovative
approach to fill well documented deficiencies in current computer
science education, (2) justify (using the authors’ and others anecdotal
evidence from both the classroom and the real world) why this
approach holds great potential to successfully eliminate the
deficiencies, (3) invite other professionals to join the authors in proof
of concept research. The authors’ experiences, though anecdotal,
strongly suggest that a new approach involving visual modeling
technologies should allow computer science programs to retain a
greater percentage of prospective and declared majors as students
become more engaged learners, more successful problem-solvers,
and better prepared as programmers. In addition, the graduates of
such computer science programs will make greater contributions to
the profession as skilled problem-solvers. Instead of wearily
rememorizing code as they move to the next course, students will
have the problem-solving skills to think and work in more
sophisticated and creative ways

Keywords—Algorithms, CASE, UML, Problem-solving.

I. INTRODUCTION
N many countries including USA, the number of computer
science students continues to decline. Students who show

an initial interest in the field drop out in substantial numbers
as the tedious realities of traditional programming instruction
emerge.

A. Evidence of Deficiencies in CS Education
Most entry-level programming courses focus on coding and

introduce students to Object-Oriented Programming (OOP) in
C++ or JAVA [14, 21]. The following summarizes the
resulting problems cited in the literature:

• Students focus on the syntax of the programming language

and begin solving the problem by using the programming
language, more often by trial and error, rather than first
analyzing and designing solutions to the problem.

• Since students are unable to make a connection between
problem-solving and coding, they often lose motivation and
ultimately switch to other degree programs.

Manuscript received March 8, 2007.
Carol Collins is with East Carolina University, Greenville, NC 27858 USA

(phone: 252-328-9692; fax: 252-328-0715; e-mail: collinsc@ ecu.edu).
M. H. N. Tabrizi is with East Carolina University, Greenville, NC 27858

USA (e-mail: tabrizim@ ecu.edu).

• Without a basic understanding of software design and

programming concepts, those students who stay with the
program face an uphill battle in dealing with more complex
programming related CS courses.

• Students develop unproductive habits like mimicking code
and tinkering with the code to fix problems.

• Professors must repeatedly teach the same topics because
students have not learned concepts that are transferable
across topics and curriculum levels.

• Students enrolled in senior level courses such as compiler
construction and computer graphics spend excessive
amounts of time with coding when working on projects
instead of mastering the new concepts that the course and
project are supposed to emphasize.

• The inability to code effectively and efficiently becomes
more serious when students take the software engineering
courses. With years of course work in OOP, students often
cannot program adequately. For students who lack an
understanding of programming concepts and problem-
solving capabilities, the syntax of the programming
languages simply overwhelms them.

The authors have witnessed the same symptoms in the

senior level software engineering as in introductory computer
science courses. Even the good programmers mimic or tinker
with code, not truly understanding concepts behind
programming.

Although these students already had taken several
semesters of courses using OOP languages like data
structures, compiler, database, and computer graphics, they
could not clearly state in English what an “object” was
without referencing a particular syntax of a programming
language. These deficiencies often are published and
discussed [9, 12, 15, 20] at computer science and information
technology-related conferences.

The symptoms are not an aberration; they are the norm. To
convince the students that the process itself of creating
software is indeed linked to software quality, in the software
engineering course, the authors reverse engineered students’
cherished “A” rated programs from earlier courses. Upon
seeing the result, the students were appalled at their programs’
structure and design. Clearly, knowledge and proficiency in
writing code is a necessary but insufficient first step to create
object-oriented software [7]

Often only a few graduating seniors are viewed as good
programmers. At Microsoft PDC03 conference, most of the
participating Faculty and Deans from leading universities

Using Visual Technologies to Promote
Excellence in Computer Science Education

Carol B. Collins, and M. H. N Tabrizi

I

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:3, 2007

48

throughout the USA, at the general academic session, felt that
most of their graduates could not program effectively.

One can also cite the results of the last year’s ACM World
Finals Programming Contest sponsored by IBM: MIT was the
highest placing university in the USA at position 8, and the
next highest USA University, CIT University, placed 39. One
cannot say that the USA did poorly because of financial
resources devoted to a select few students, when an elite
university like MIT placed eighth and no other USA
university placed above 39.

B. Approaches to Address the Deficiencies
ACM: ACM’s Computing Curricula 2001 is a major

contribution as far as it goes. But evidently from the number
of curricula revision requests from NIH, the document does
not go far enough in supporting problem- solving. For
example, Chapter 7 lists the deficiencies already cited and
links these to the current emphasis on early coding. Three
alternatives are suggested, but all suggestions involve listing
and ordering topics, and do not address how to provide
support for the problem-solving needed, although “developing
cognitive models” is mentioned. (Chapter 7.5). Even in the
table of activities, the activities imply verbal descriptions (for
example, “describe” is used, not “sketch”). Even in the
“Algorithms First approach”, where visual modeling would
seem natural, the modeling referenced is pseudo-code.
Imagine a building architect describing what is in a blueprint
with some sort of pseudo-code!

The next chapter deals with “Intermediate Courses”—at
some point pseudo-code is abandoned, but what takes its
place? Here is where the study of computer science is really
fragmented, creating an impression of a hodgepodge of topics
but not a unified field like physics or biology.

The authors contend that whatever the topics and whether
coding is early or late, without models to support the thinking
involved in the solution process the situation will not improve.
In particular, visual modeling seems to offer a unifying
approach to problem-solving that allows students to build
upon and expand the problem-solving techniques already
learned instead of abandoning them as new topics are
introduced. The ACM updated Computing Curriculum
report’s focus is to specify curricula specific to subfields of
computing and computer science, like software engineering
and IT. The issue of a coherent toolbox with appropriate
problem-solving tools is again addressed in passing.

Textbooks: Textbooks generally offer local remedies, but no
support for problem-solving in the context of programming,
e.g., popular texts like Savitch’s [18]. Analysis with real data
gets little attention even if textbooks note problem-solving
structures involving branching, looping, and recursion. Design
models often are expressed as pseudo-code or code. No
wonder students think that problem-solving starts with code!

Using pseudo-code merely avoids some complexity
involving syntax of programming language while offering
nothing or very little in the way of guidance in the early stages
of problem-solving. Other textbooks like [2] show once
visual models (flow diagrams) of coding structures (e.g.,

if/else) but then do not use these for problem-solving. Instead,
example solutions start with code or pseudo-code.

Other remedies, including class diagrams, also have been
proposed and appear in newer textbooks [6]. Visual-based
class diagrams represent a potential improvement over
pseudo-code. However, being static design models, class
diagrams are fixed and structured too close to the code level.
These diagrams will not fully support the students’
engagement in the problem-solving process from the
beginning.

In addition, approaching software development from
pseudo-code or the class diagram level requires that the
student already know how the problem should be solved --
often by using step-by-step and algorithmic methodologies.
Moreover, writing pseudo-code to describe what needs to be
done is like describing a movie with prose. In summary, these
approaches generally compress into linearity the inherent non-
linearity of the solution process.

Other approaches based on software aids, (e.g., BlueJ [3]);
memory diagrams [10] also require thinking that is too close
to the code level. Functional programming languages, like Dr.
Scheme have built-in analysis and design support via the
“design template” as suggested by the author [8]. However,
this template is specifically suited to functional programming
and is also nearer the code level. Alice [1] is one of the better
approaches that can be used to support analysis and design
first, but can also be misused, allowing and even encouraging
the habit of using only trial and error tinkering. Alice does
seem to contribute to retention and better attitudes as
measured on standard scales [13].

What is missing in all of these approaches is a unified and
formalized methodology that involves a general process with
effective tools that:

• Support problem-solving irrespective of the code that will

ultimately be produced.
• Enable students to apply the principles and approaches to

problem-solving and programming, and
• Show the interaction of these approaches, to include

creating granularity, abstraction, top-down, divide-and-
conquer, foot-in-door, modularity of functionality, and flow
of events.

Moreover, such a unified method can be enhanced by the

use of the other existing aids, including memory maps, BlueJ,
Alice, and design templates, depending on the specific code to
be used. In fact, these aids would seem to make more sense
and to be used more effectively if presented as enhancements
to a common process with toolbox instead of as isolated
pieces.

Overall, the collective effort to overcome the difficulties
related to syntax-based teaching of programming courses has
been piecemeal. Proposed methodologies have focused on
specific languages and provided solutions for specific
problems in specific courses, or addressed thinking that is too
close to the code level.

However, our methodology, based on the authors’ extensive
anecdotal experience over many years, is grounded in a

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:3, 2007

49

process supported by visual modeling, is broadly applicable,
and will fit with current textbooks and be applicable as the
breadth of computer science continues to increase. Problem-
solving based in visual models, already demonstrated for the
engineering fields and other sciences, can create an
environment beginning with existing partially effective
systems (like BlueJ and Alice) can be seen as part of a larger
picture and be more effective in aiding learning throughout a
student’s academic and professional career in computer
science.

Moreover, the student will be prepared for today’s world
where visual modeling is becoming ubiquitous (e.g. see VB
Studio and its visual models of GoF patterns).

II. THE VISUAL MODELING APPROACH
Based on their own classroom experiences over the years,

the authors have seen that an effective problem-solving
methodology becomes an iterative process supported by visual
modeling tools. The advantage is that students have
appropriate visual modeling tools that can be used throughout
the computer science curriculum. Moreover, as the
complexity and scope of problems increase, the process and
tool set can be augmented not supplanted. The keys are
“enough complexity” and “appropriate tools” at each
curriculum level. In this way, students get to practice thinking
that is repeated within CS1 and throughout the curriculum,
just as the physical science students do using their methods
with visual models.

Two major consequences can occur by using this approach:
(1) Professors need not spend lots of time re-teaching because
the concepts were presented too close to the code level. (If
concepts are taught too close to the code level, students
associate the concepts with the code; thus cannot apply the
concepts when the programming language changes.) (2) The
approach naturally evolves into processes widely used by
professionals, like the Rational Unified Process (RUP)
supported by UML and Rational Rose [17].

A. Visual Modeling
One key to the visual modeling approach is to make the

programming assignments sufficiently complex, unlike the
traditional approach of assigning extremely simple problems
to solve, like averaging three numbers. Make the problem trip
up even those who have already written programs.

In this way, students more readily see how using a formal
process with appropriate problem-solving tools allow them “to
work smarter not harder”, and increase the likelihood of
“doing it right the first time.”

Moreover, by asking students to develop software that
involves in-depth thinking and providing them with a process
(using visual modeling) that adequately support this thinking,
the authors have noticed that the advantage of those with prior
programming experience disappears! The playing field is
leveled for all students.

Another key is to identify an appropriate subset of UML.
The authors have found the use-case diagram, flow of events,
and activity diagram to be especially useful, taking the student
smoothly from problem statement to code.

For example, in designing a “homework help” web page
(i.e. provides conversions, like binary to decimal, feet to
meters, etc.), the students represent these forms of “help” as
use-cases as in Fig. 1. Only then do they propose various
solutions. Students see that the use-case is an abstract version
of a future solution that allows students to brainstorm later
how the solution will be crafted. Instructors just need to
augment with additional support that is readily available.

Fig. 1 Example use case diagram

B. Evidence Supporting the Approach
The authors have successfully used the iterative approach

with RUP, UML in CS and Software Engineering courses.
Based on their positive experiences, described below, the
authors feel that formal research by those involved in the
computer science education communities is necessary.

Entry Level Computer Science Courses: Over the last four
years one of the authors who is also involved in Software
Engineering has integrated parts of the RUP and Visual
Modeling tools in her courses as a precursor to a formal proof
of concept project. She introduces the use-case diagrams
initially by asking students to provide a solution to selected
problems like the following: “I want to toast bread.” The
students respond, “Get a toaster.” She then says, “OK, I got a
toaster, and I see that I must have electricity to use it; but I
live in a cave.”

Because the students have already invested in part of the
solution, they now say that they must wire the cave. Had the
students focused initially on the functionality (toast bread)
instead of the solution (toaster), they could have proposed not
just one but several solutions as they found out more and more
about her situation.

With the toaster already in the solution, they had to do the
equivalent of “code tinkering” to make this solution work.
When students start solving problems using code or even
pseudo code instead of focusing on functionality, the structure
of the solution is set, just as the toaster set the structure of the
solution. That is, students must fix analysis and design
problems at the code level.

The activity diagram provided more detail about how the
activities would be made to materialize. The students would
first write only everyday English into these activity diagrams.
Then the students would iteratively re-express the English into
paraphrased sentences that finally used only the “verbs”
JavaScript or C++.

At that point, the code would write itself, with the tops and
bottoms of boxes in the flow diagram becoming the open and
closed braces. (Yes, later, much later, the students were told
some housekeeping details about omitting certain braces,

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:3, 2007

50

indenting, and commenting.) Students then learned visually
about creating procedural solutions.

For the part of the course focusing on object oriented
solutions and languages, this instructor used part of “Learning
to Program with Alice”. From their visual storyboards,
students created textual storyboards, again starting with given
English and then retelling until the code practically wrote
itself. The important point is that students focused on solving
problems, not coding.

Since the transition from problem statement to code
involves no huge gap in thinking between the steps, and the
visual models preserve the multidimensional thinking process
used, any difficulties that arise are clearly traceable to a
particular point in the problem-solving process.

In this way, the students do not fix problems inherent with
the design of the program (solution) by tinkering with the
code or using blind trial and error. (Instead of buying a
toaster for a cave without electricity, they know early that a
toaster will not work.) Moreover, students focused on the
concepts, no matter the language; in particular they applied
concepts before creating the final code:

• The student was able to successfully and efficiently create

designs directly translatable to correct code, including
nesting and sequencing structures like if and while.

• The Each student was able to explain code and correct
his/her own mistakes by referencing the visual models.

• Anyone, including those with coding experience, made
moderate to serious errors if they failed to use the process
and supporting tools.

• With object oriented programming via Alice, students
clearly saw how the storyboards and visual models in
Alice related to UML and the overall iterative approach.

• Students gravitated to the visual models and away from
pseudocode. Some students in reading the texts would
sketch the diagrams in place of the given pseudocode.

• Those with prior programming experience lost their
advantage over the others, but all were successful when
properly applying the visual models.

Following these courses, former students often returned for

help with their first program in the next course. They would
have code but no visual models. In no more than 1/2 hour, the
student would not only create the visual models but also
correct the code themselves. Their failure to rely on visual
models in subsequent courses occurred they said because
neither the text nor professor used them.

Software Engineering: At the Software Engineering level,

once students had developed software using RUP supported
by UML, they were amazed with the code they produced.
Each semester many of even the top students said that without
the visual modeling they would not have produced such high
quality code. Given this anecdotal evidence of the
effectiveness of a visual problem-solving methodology
semester after semester, both at the intro and advanced levels,
the authors felt that the computer science profession should

look more closely at developing a visual modeling based
methodologies to support problem-solving at all levels of
software development.

The Professional World: In dealing with co-op and newly

graduated students, the authors have much contact with the
professional world of software development. Businesses
repeatedly state that they need people who can communicate
with the outside world and with a gamut of technical people.
Students need to be problem-solvers, not just good coders.
Students need to innovate and be able to teach themselves. To
this end, large companies have their own in house schools.
Returning students verify this environment with comments
like, “I have been there six months and still have not written a
line of code”, and “To write any new code instead of using
libraries, I have to complete a lengthy form justifying my
proposed new code.” Many students taking interviews have
said, “The fact that I used UML with Rational Rose got me the
interview”, or “Despite my excellent grades, I never would
have been hired but for my RUP and UML experience.”

The anecdotal and survey data from the authors’ classes and
employer contacts indicate that the authors’ proposed
approach holds promise. Since this approach is amenable to
any level of software development, the formal investigation of
the effectiveness of this approach in CS education is
encouraged.

The next section describes research that indicates why the
authors’ approach is likely to be validated by this proposed
proof of concept research.

III. NEED FOR PROPOSED APPROACH
Wide agreement exists that students enrolled in

introductory level programming courses should acquire a firm
foundation in problem-solving instead of focusing too much
on the details of programming languages’ syntax. Authors like
Coad tried to focus more attention on design [4]. Some, like
[19], propose to use Ada to teach problem-solving to non-
computer science majors due to the simplicity of the Ada
syntax. This simplicity helps students to understand the
distinct phase of design method.

Others, like [12], use a spreadsheet/database package as a
valuable tool to aid the process of problem-solving. Other
approaches [5, 11, 12] involve techniques to improve
students’ problem-solving by integrating different criteria into
an undergraduate computer science introductory course
without using any specific programming tools. However,
none of these adequately addresses bridging the huge gap
between the problem statement and the code. The students still
develop their programs at the keyboard and tinker to get the
code to work.

That no pervasive problem-solving methodology exists is
evident from the contents of textbooks and work presented in
papers and conferences. Even the ACM/IEEE CC2001
recommendations and the “algorithms first” approaches do not
address the issues related to problem-solving, especially
support for modeling. Finally, the method that enables
students to perform documentation is missing. One may ask,
“Why UML?” The reason is that UML:

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:3, 2007

51

• Being a visual-based modeling language, will help to
remove ambiguity when analyzing and designing the
system,

• Facilitates communication (including with oneself) about
the structure during the software development process, from
overall functionality down to the code framework,

• Permits use of prior experiences in all walks of life via
analogous thinking,

• Preserves visually the thinking process providing students
the means to improve their thinking processes.

• Supports modifications in the software structure at every
level from describing the functionality to starting coding,
and

• Already exists and is an accepted modeling tool. (A few of
the UML diagrams, like the class diagram and flow
diagram, already appear as isolated pieces in some current
texts.)

In summary, UML diagrams serve as a set of progressively

more detailed visual models of the software developer’s
concept of the system to be developed. In this way, UML
provides the support for problem-solving and clear
communication and also serves as a means for
conceptualization using OOA and OOD. In addition, the
visual models can be used to offer insights into new OO
technologies, like Aspect Oriented Programming [22].

IV. CONCLUSION
This study reports on using visual tools that enable students

to seamlessly progress from the problem statement to the code
in beginning and advanced computer science courses. This
approach is designed to enhance the quality of students’
learning, specifically in the area of problem-solving and
programming concepts.

Proper use of UML via hand sketches is adequate, but other
aids to visualization are often freely available for educators.
Tools like MS Visio [16], Alice, and Rational Rose, will avoid
the shortcomings of current approaches to addressing the
syntax issues of code. Professors and students will spend
more time on problem-solving that results in better coding.
While ACM/IEEE 2001 does not mention such an approach to
problem-solving at entry level courses, ACM/IEEE does not
exclude experimentation with methods. Moreover, we are not
proposing changing the ACM/IEEE 2001 body of knowledge.

In addition, the implementation of the proposed
methodology does not require massive re-conceptualization of
the computer science course offerings, nor does it require that
students learn less about core computer science theory while
devoting time to visual-based software development skills.
We propose using UML to foster, not hinder thinking. Time
will be productively spent thinking about the problem instead
of trying to fix analysis and design problems at the code level,
often by trial and error.

Thus, professors teaching CS will be able to create their
own learning environments, using their techniques, but still
support and be supported by a unified system of models that
facilitate problem-solving and is seamlessly applied

throughout the core courses. Moreover, professors in
advanced computer science courses will be able to spend more
time on topic instead of dealing with recurring coding issues
while promoting excellence in computer science.

REFERENCES
[1] Alice is a 3D Interactive Graphics Programming Environment for

Windows 95/98/NT built by the Stage 3 Research Group. Retrieved
April March, 20, 2004, from http://www.alice.org/.

[2] Anderson J., & Franceschi, H. (2005). Java 5 Illuminated. Jones and
Bartlett.

[3] BlueJ and interactive Java development environment. Retrieved April,
10, 2004 from http://www.bluej.org/,

[4] Coad, P. & Yourdon, E. (1991). Object-Oriented Design. Prentice Hall.
[5] Deek, F.P., McHugh, J.A., Hiltz, S.R., Rotter, N., & Kimmel, H. (1997).

On the evaluation of a problem-solving and program development
environment. Proceedings of 27th Annual Conference on Frontiers in
Education Conference.

[6] Eckel, B. (2003). Thinking in Java, (Third Ed.), Pearson/Prentice-Hall.
[7] Fayad, M.E., Tsai, W.-T., & Fulghum, M.L. (1996). Transition to object-

oriented software development. Communication. ACM, 39(2), 108-121.
[8] Felleisen, M., Findler, R.B. , Flatt, M., and Krishnamurthi, S. (2003).

How to Design Programs, MIT Press Cambridge.
[9] Guizzardi, G., Pires, L.F., & van Sinderen, M.J. (2002). On the role of

domain ontologies in the design of domain-specific visual modeling
languages. Invited presentation at Second Workshop on Domain-
Specific Visual Languages, 17th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications.
Retrieved April 5, 2005 from
http://www.dsmforum.org/events/DSVL02/Guizzardi.pdf).

[10] Holliday, M. & Lugenbuhl, D. (2004). CS1 assessment using memory
diagrams. Proceedings of the 26th SIGCSE Technical Symposium on
Computer Science Education.

[11] Hyde, D.C., Gay, B.D., and Utter D., (1979). The integration of a
problem-solving process in the first course. Proceedings of the 10th
SIGCSE Technical Symposium on Computer Science Education.

[12] Kolesar M.V., Allan V.H. (1995). Teaching computer science concepts
and problem-solving with a spreadsheet” in Proceedings of the 26th
SIGCSE Technical Symposium on Computer Science Education.

[13] Lloyd, B.H., & Gressard, C. (1984). Reliability and factorial validity of
computer attitude scales, Educational and Psychological Measurement,
42(2), 501-505.

[14] Naked Objects Framework. (2002). Retrieved April, 12, 2005 from
http://www.nakedobjects.org/static.php?content=home.html.

[15] Mahmoud, Q.H., Dobosiewicz, W., & Swayne, D., (2004). Redesigning
introductory computer programming with HTML, JavaScript, and Java.
in Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education.

[16] Microsoft Visio (2003). Visio Fact Sheet, Retrieved May 1, 2005
http://www.microsoft.com/office/visio/prodinfo/facts.mspx.

[17] Rational Rose. Retrieved April, 20, 2004 from http://www-
306.ibm.com/software/rational/sw-atoz/indexR.html.

[18] Savitch, W. (2005). Problem-Solving with C++: The Object of
Programming. (Fifth Ed.), Addison-Wesley.

[19] Suchan, W.K. and Smith, T.L. (1997). Using Ada 95 as a tool to teach
problem-solving to non-CS majors. in Proceedings of the Conference on
TRI-Ada.

[20] Tabrizi, M., Collins, C., Ozan, E., & Li, K. (2004). Implementation of
Object-Orientation Using UML in Entry Level Software Development
Courses. Proceedings of SIGITE Conference. 128-131.

[21] Ventura, P., & Ramamurthy, B. (2004). Factors that lead to success in
CS: Wanted: CS1 students. no experience required. In Proceedings of
the 35th SIGCSE Technical Symposium on Computer Science
Education.

[22] Wikipedia: Aspect-oriented programming
(http://en.wikipedia.org/wiki/Aspect-oriented_programming).

