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Abstract—In very narrow pathways, the speed of sound 

propagation and the phase of sound waves change due to the air 
viscosity. We have developed a new finite element method (FEM) that 
includes the effects of air viscosity for modeling a narrow sound 
pathway. This method is developed as an extension of the existing 
FEM for porous sound-absorbing materials. The numerical calculation 
results for several three-dimensional slit models using the proposed 
FEM are validated against existing calculation methods. 
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I. INTRODUCTION 
OMPUTER-AIDED engineering has been used 
extensively in recent years for acoustic analyses. However, 

the conventional analysis approach is used predominantly for 
relatively large structures or large equipment. For example, for 
a structure with a small volume like a portable electronic device, 
very few methods of sound propagation analysis are available. 
The viscosity of air in these narrow pathways results in 
damping. Consequently, the speed of sound propagation 
decreases, and a phase delay occurs. Therefore, to carry out 
accurate acoustic analysis for small electronic devices, we must 
consider the effect of the air viscosity. This effect is not 
considered in conventional acoustic analysis. In the present 
study, we developed a new finite element method (FEM) that 
includes the effects of air viscosity in narrow places in the 
sound pathway of small electronic devices. This has been 
developed as an extension of the acoustic FEM proposed by 
Yamaguchi [1], [2] for a porous sound-absorbing material. We 
attempted numerical analysis in the frequency domain with our 
acoustic solver that uses the proposed FEM [3]-[5]. 

For the numerical calculations, we used several slit models 
having a rectangular cross section. Then we compared the 
proposed FEM with the theoretical analysis and with the 
generally used finite element analysis that does not include the 
effects of the viscosity of the air. 
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II.  NUMERICAL PROCEDURES 
We have developed a new FEM that incorporates air 

viscosity at small amplitudes. Fig. 1 shows the direct Cartesian 
coordinate system and a constant strain element of a 
three-dimensional (3D) tetrahedron. Here, ux, uy, and uz are the 
displacements in the x, y, and z directions at arbitrary points in 

the element. The strain energy U~  can be expressed as follows: 
 

 

Fig. 1 Direct Cartesian coordinate system and a constant strain 
element 
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where E is the bulk modulus of elasticity of the air. The time 
derivative of the particle displacement is expressed as u

．
. 

Therefore, the kinetic energy T~  can be expressed as follows: 
 

   { } { }dxdydzuuT
T

e∫∫∫= ρ
2
1~                    (2) 

 
where ρ is the effective density of the element, and T  represents 

a transposition. The viscosity energy D~  of a viscous fluid can 
be expressed as follows: 

 

{ } { }dxdydzTD
T

e
Γ= ∫∫∫ 2

1~
        (3) 

 

where { }T is the stress vector attributable to viscosity. The 
relationship between the particle velocity and the stress can be 
expressed as follows: 
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where u

．
x, u
．

y, and u
．

z are the particle velocities in the x, y, and z 
directions, respectively, at arbitrary points in the element, and μ 
is the coefficient of viscosity of the air. In the above equation,
｛Γ｝is the strain vector. The relationship between the particle 
velocity and the strain can be expressed by the constant strain 
element of a 3D tetrahedron as shown in Fig. 2. 

 

 

Fig. 2 Relationship between particle velocity and strain 
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Ve is the volume of the element, and b1–d4 are constants. 

These constants can be expressed as follows:  
 

( ) ( ) ( ){ }lmnnlmmnlkk zzyzzyzzyb −+−+−= ε~    

( ) ( ) ( ){ }lmnnlmmnlkk xxzxxzxxzc −+−+−= ε~   

( ) ( ) ( ){ }lmnnlmmnlkk yyxyyxyyxd −+−+−= ε~   (6)

 ( )
( )4,2

3,1
1

1~
=
=

⎩
⎨
⎧
−

=
k
k

kε                                       

  
where subscripts k, l, m, and n represent circular rotations of 1, 

2, 3, and 4, respectively. Next, we consider the formulation of 
the motion equation of an element for the acoustic analysis 

model that considers viscous damping. The potential energy V~  
can be expressed as follows: 

 

  { } { } { } { }T T

e
V u P d u F dxdydzΓ= Γ +∫ ∫∫∫      (7)                   

 
where { }P  is the surface force vector, ｛Ｆ｝is the body force 

vector, and ∫Γ
Γd  represents the integral of the element 

boundary. The total energy E~  can be derived by using the 
following expression: 
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 We can obtain the following discretized equation of an 

element by using Lagrange’s equations: 
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where eiu  is the i th component of the nodal displacement 

vector { }eu , and eiu  is the i th component of the nodal particle 

velocity vector { }eu . We can obtain the following discretized 
equation of an element by substituting (1)–(7) into (9):  
 

[ ]{ } [ ]{ } [ ]{ } { }eeeeeee fuCjuKuM =++− ωω 2        (10) 
 
We use { } { }ee uju ω=  in this equation because a periodic 

motion having angular frequency ω is assumed. [Me], [Ke], 
[Ce], and ｛fe｝are the element mass matrix, element stiffness 
matrix, element viscosity matrix, and nodal force vector, 
respectively. 

III. CALCULATION 

A.  Damping Analysis by the Three-Dimensional Finite 
Element Method  

To verify our method, we carried out an acoustic damping 
analysis for slits using 3D FEM. As shown in Fig. 3, this model 
is a 1/4 solid model symmetrical about the x-z plane and the x-y 
plane. The width of the model was 2.0mm, the height was 
0.5mm, and the length was 16.6mm. 
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Fig. 3 Three-dimensional slit model for the FEM 

 

 

Fig. 4 The distribution of the particle displacement contour and the 
isosurface view (10,200Hz and 20,400Hz) 

 
This model used 3D tetrahedral elements having four nodes. 

There were 39 divided elements in the length (x) direction, 10 
layers in the height (y) direction and 5 layers in the width (z) 
direction. Both ends of this model were closed. We selected the 
effective density ρR = 1.2 kg/m3, the coefficient of viscosity μ = 
1.82 × 10–5 N·s/m2, the real part of the complex volume 
elasticity ER = 1.4 × 105 Pa, and the sound propagation speed c 

= 340 m/s in air. As the boundary conditions, the particle 
displacements of all nodes on the outside in contact with 
surfaces were fixed, except for the plane of symmetry and the 
side walls which were not defined in the theoretical analysis. 
Fig. 4 shows the contours of the calculated particle 
displacements and the isosurface view of the model for the 
proposed finite element method, near the resonance conditions 
(10,200 Hz and 20,400 Hz). As can be seen, the magnitude of 
the displacement of the particles changes significantly near the 
contact surface. However, the displacement becomes flatter 
with distance from the contact surface. 

B.  Damping Analysis by Theoretical Analysis  
We have carried out theoretical analysis of the resonant 

response of the slit to verify the proposed FEM. The frequency 
response of the pressure can be expressed by the following 
general expression [6]: 

 

0
cos ( )

sin
j t k x lP j cv e

kl
ωρ −

= −       (11) 

 
where ρ is density of the air, c is the speed of sound, l is the 
length of the slit, x is the position of a reference point, k is ω/c, 
v0 is an excitation velocity, and t is time. 

 

 

Fig. 5 The slit model and velocity Vc(y) 
 

In this equation, we introduce the complex sound speed c* 

and the complex effective density ρc
* to include the attenuation 

due to the viscosity of the air. We replace the speed of sound 
and the density with the complex sound speed and the complex 
effective density as shown below. 

 

ρ ⇒ *
cρ                      (12) 

 
     c  ⇒ *c                                   (13) 

 
Using the two substitutions above in (11) and the slit model 

is assumed infinite width, as shown in Fig. 5 the effective 
density can be expressed as follow [7]: 
 

    

21

21
0*

)tanh(1
js

jsc

′
′

−
=

ρρ                (14) 

 
where 0ρ is mass density. s’ and c*  are expressed as follow. 
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where a is the distance between the contact surfaces, κ is the 
bulk modulus, p0 is atmospheric pressure, and γ is the specific 
heat at constant volume. For the case of a = 0.5mm, the 
complex density and complex sound velocity are shown in Figs. 
6 and 7, respectively. By calculating the frequency response 
with (11) using the values of these parameters, the theoretical 
solution that includes the viscosity is obtained. 

 

 

Fig. 6 Effective density ρc
* in the slit model (a = 0.5mm) 

 

 

Fig. 7 Sound speed c* in the slit model (a=0.5mm) 

C.  Verification and Comparison of the Proposed Method 
We have analyzed frequency responses using the proposed 

FEM, and compared them with the above-described theoretical 
method that includes the viscosity and with the conventional 
FEM that does not include the attenuation.  

 
 
 
 
 
 
 
 
 

 

[a=0.8mm] 

 
 
[a=0.50 mm] 

 
 
[a=0.25 mm] 

 
Fig. 8 Pressure versus frequency response for a slit model 

 
Fig. 8 shows the comparison of the analysis results for 

models of a = 0.8, 0.5, 0.25mm. The condition of excitation 
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was constant displacement excitation. From Fig. 8, we 
determined the effect of damping on the calculated results by 
using the proposed FEM and the theoretical method. The 
conventional FEM does not show attenuation of the resonance 
peaks. As can be seen from Fig. 8, when the slit is narrow, the 
resonance peak decreases. That is, the attenuation increases 
when the slit width is narrowed. In addition, it can be seen that 
over the entire frequency domain, the calculated results of the 
proposed FEM and the theoretical method are approximately 
equal. 

IV. CONCLUSION 
We developed a new acoustic FEM that considers the effects 

of damping by the viscosity of air. We compared calculation 
results for sound pressure versus frequency characteristics 
using the proposed method with that of the theoretical method, 
and the conventional acoustic FEM without viscosity of air for 
slit models. The comparison showed that the calculated results 
are very close. Therefore, proposed new acoustic FEM was 
confirmed that have good analytic accuracy. We plan to 
consider the possibility of applying this analysis to various 
shapes in the future. 
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