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 Abstract—Support Vector Domain Description (SVDD) is one 

of the best-known one-class support vector learning methods, in 
which one tries the strategy of using balls defined on the feature 
space in order to distinguish a set of normal data from all other 
possible abnormal objects. As all kernel-based learning algorithms its 
performance depends heavily on the proper choice of the kernel 
parameter. This paper proposes a new approach to select kernel's 
parameter based on maximizing the distance between both gravity 
centers of normal and abnormal classes, and at the same time 
minimizing the variance within each class. The performance of the 
proposed algorithm is evaluated on several benchmarks. The 
experimental results demonstrate the feasibility and the effectiveness 
of the presented method. 
 

Keywords—Gravity centers, Kernel’s parameter, Support Vector 
Domain Description, Variance. 

I. INTRODUCTION 
HE SVDD is kind of one-class classification method 
based on Support Vector Machine [1], which is proposed 

by Tax [2]-[4]. It tries to construct a boundary around the 
target data by enclosing the target data within a minimum 
hyper-sphere. Inspired by the support vector machines 
(SVMs), the SVDD decision boundary is described by a few 
target objects, known as support vectors (SVs). A more 
flexible boundary can be obtained with the introduction of 
kernel functions [5], [6], by which data are mapped into a 
high-dimensional feature space. The most commonly used 
kernel function is Gaussian kernel. This method has attracted 
many researchers from various fields. For example Liu et al. 
applied the SVDD techniques for novelty detection as part of 
the validation on an Intelligent Flight Control System (IFCS) 
[8]. Ji et al. discussed the SVDD application in gene 
expression data clustering [9]. Yu et al used SVDD for image 
categorization from internet images [10]. 

The performance of kernel methods strictly depends on 
their hyper parameters, especially the kernel parameters that 
directly control the non linear mapping of the features. 
Therefore, the tuning of parameters, known also as the model 
selection, plays an important role in kernel methods.  

In the literature, there are two widely used approaches in 
choosing the values of kernel parameters in kernel-based 
methods [11]-[13]. The first approach empirically chooses a 
series of candidate values for the kernel parameter, executes 
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the concerned method under these values again and again, and 
selects the one corresponding to the best performance as the 
final kernel parameter value. However, this approach suffers 
from the fact that only a very limited candidate values are 
considered, therefore the performance of the kernel-based 
methods may not be optimized. The second approach is the 
well-known cross-validation, which is also widely used in 
model selection. Compared with the first approach, cross-
validation often yields better performance because it searches 
the optimal value for kernel parameter in a much wider range. 
However, performing cross-validation is often time-
consuming and hence it cannot be used to adjust the kernel 
parameters in real time [12]. Furthermore, when there are only 
a limited number of training examples, the cross-validation 
approach can hardly ensure robust estimation. Another 
approach is to minimize some generalization bounds, such as 
the leave-one-out (LOO) error bounds, using numerical 
optimization methods [20], [14]. The numerical methods are 
generally more efficient than grid search. However, owing to 
the non-convexity of the generalization bounds, these methods 
may get stuck into local optimum and cause instabilities [17], 
[19]. Recently, some global stochastic optimization 
techniques, such as genetic algorithm (GA), particles warm 
optimization (PSO) and simulated annealing (SA) algorithm 
have been adopted to tune the SVM parameters for their better 
global search abilities [15], [18]. These methods, although can 
find the global solution in a high probability, are limited by 
the facts that they usually suffer from the problem of 
premature convergence, the slow convergence rate and the 
convergence to a single point [21].  

In this paper we aim to find a feature space, in which the 
objects of each cluster are well separated. To do that we 
propose a new numerical optimization methods defined as the 
maximization of the distance between both gravity centers, of 
normal and abnormal classes and at the same time the 
minimization of the variance of each class in feature space.  

To evaluate our approach, we run our algorithm on SVDD, 
we focus on optimizing the Gaussian kernel since it is widely 
used in pattern recognition, neural network and other fields, 
and shows good features and strong learning capability.  

The rest of this paper is organized as follows. In Section II 
the theory behind the Support Vector Domain Description is 
presented. Section III gives a detailed description of our 
approach. In the last section we give several experiments 
results to show the validity of our proposed algorithm. 
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II. SUPPORT VECTOR DATA DESCRIPTION (SVDD) 
The normal data description model [2]-[3], gives a closed 

boundary around the data: a hypersphere characterized by 
center a and radius R > 0. It minimizes the volume of the 
sphere by minimizing R2, and demand that the sphere contains 
all training objects xi. 

Let ሼݔ௜ሽ א ߯ be a data set of N points, with, ݔ௜ א ܴௗ the data 
space, we look for the smallest enclosing sphere of radius R 
which is described by the following constraints:   

                   
ฮݔ௝ െ ܽฮଶ ൑ ܴଶ   (1)           ݆׊ 

 
where ԡ. ԡ is the Euclidean norm. Soft constraints are 
incorporated by adding slack real and positive variable εj: 
 

ฮݔ௝ െ ܽฮଶ ൑ ܴଶ ൅  (2)          ݆׊   ௝ߝ
         

To solve this problem we introduce the Lagrangian:  
 

ܮ ൌ ܴଶ െ ∑ ቀܴଶ ൅ ௝ߝ െ ฮݔ௝ െ ܽฮଶቁ ௝௝ߙ െ ∑ ௝௝ߤ௝ߝ ൅ ܥ ∑ ௝௝ߝ    (3) 

 
where αj ≥ 0 and μj ≥ 0 are Lagrange multipliers, C is a 
constant, and ܥ ∑ ௝௝ߝ  is a penalty term. Setting the partial 
derivatives of L with respect to R, a, εi to zero gives the 
following constraints: 

 
డ௅
డோ

ൌ 0 ֜ ∑ ௜௜ߙ ൌ 1           (4) 

 
డ௅
డ௔

ൌ 0 ֜ ܽ ൌ ∑ ௜௜ߙ  ௜         (5)ݔ
 

డ௅
డఌ೔

ൌ 0 ֜ ௜ߙ ൌ ܥ െ  ௜          (6)ߤ
 

The solution of the primal problem can be obtained by 
solving its dual problem [2]. 

 Max:  
 

ܹ ൌ ∑ ௝ݔ
ଶߙ௝௝ െ ∑ ௝௜,௝ݔ௜ݔ௝ߙ௜ߙ         (7) 

 
0  ݋ݐ ݐ݆ܾܿ݁ݑܵ ൑ ௝ߙ ൑ ෍ ݀݊ܽ  ݆׊  ܥ ௝ܽ ൌ 1   

௝

 

 
When negative examples (objects which should be rejected) 

are available, they can be incorporated in the training to 
improve the description. In contrast with the training (target) 
examples which should be within the sphere, the negative 
examples should be outside it. In the following, the target 
objects are enumerated by indices i, j and the negative 
examples by l, m. Again, we allow for errors in both the target 
and the outliers set and introduce slack real positive variables 
εi and εl [2]: 
 

,ሺܴܮ ܽ, ,௜ߝ ௟ሻߝ ൌ ܴଶ ൅ 1ܥ ∑ ௜௜ߝ ൅ 2ܥ ∑ ௟௟ߝ      (8) 
    

 With the constraints:  
 

ԡݔ௜ െ ܽԡଶ ൑ ܴଶ ൅ ௟ݔ௜   ԡߝ െ ܽԡଶ ൒ ܴଶ െ ,௜ߝ     ௟ߝ ௟ߝ ൒ ,݅׊ 0 ݈ 

where C1, C2 are constants real positives, 1ܥ ∑ ௜௜ߝ  and, 
2ܥ ∑ ௟௟ߝ  are penalty terms, these constraints are incorporated 
in (8) and the Lagrange multipliers αi, αl ,γi, γl are introduced 
as follow:  
 

,ሺܴܮ ܽ, ,௜ߝ ,௟ߝ ,௜ߙ ,௟ߙ ,௜ߛ ௟ሻߛ ൌ ܴଶ ൅ 1ܥ ෍ ௜ߝ
௜

൅ 2ܥ ෍ ௟ߝ
௟

െ ෍ ௜ߝ௜ߛ
௜

െ ෍ ௟ߝ௟ߛ
௟

     

െ ෍ ௜ሾܴଶߙ ൅ ௜ߝ െ ԡݔ௜ െ ܽԡଶሿ
௜

െ ෍ ௟ݔ௟ሾԡߙ െ ܽԡଶ െ ܴଶ ൅ ௟ሿߝ
௟

    

                                                                                                (9) 
 

with ߙ௜ ൒ 0, ௟ߙ ൒ 0, ௜ߛ ൒ 0, ௟ߛ ൒ 0 are Lagrange multipliers. 
Setting the partial derivatives of L with respect to R, a, εi and 
εl to zero gives the following constraints: 

 
డ௅
డோ

ൌ 0 ֜ ∑ ௜௜ߙ െ ∑ ௟௟ߙ ൌ 1       (10) 

 
డ௅
డ௔

ൌ 0 ֜ ܽ ൌ ∑ ௜௜ݔ௜ߙ െ ∑ ௟௟ݔ௟ߙ          (11) 

 
డ௅
డఌ೔

ൌ 0 ܽ݊݀  డ௅
డఌ೗

ൌ 0 ֜ ௜ߙ  ൌ 1ܥ െ ௟ߙ  ௜ߛ ൌ 2ܥ െ ,݅׊  ௟ߛ ݈   (12) 
                  

When (10) and (11) are substituted into (9) we obtain: 
Max   
 

ܹ ൌ ෍ ௜ݔ௜ݔ௜ߙ
௜

െ ෍ ௟ݔ௟ݔ௟ߙ
௟

െ ෍ ௝ݔ௜ݔ௝ߙ௜ߙ
௜,௝

൅ 2 ෍ ௝ݔ௟ݔ௝ߙ௟ߙ
௟,௝

െ ෍ ௠ݔ௟ݔ௠ߙ௟ߙ
௟,௠

 

 
Subject to:  0 ൑ ௜ߙ ൑ 0 ݀݊ܽ  1ܥ ൑ ௟ߙ ൑ ,݅׊   2ܥ ݈                                (13)     
                  

෍ ௜ߙ
௜

െ ෍ ௟ߙ
௟

ൌ 1  

 
The formulations of SVDD can be extended to obtain a 

more flexible description. Data is mapped nonlinearly into a 
higher dimensional space where a hyperspherical description 
can be found. The mapping is performed implicitly, replacing 
all of the inner products by a kernel function K (xi, xj) [2], [3]. 
Table I describes some commonly used kernel functions. 

 
TABLE I 

SOME COMMONLY USED KERNEL FUNCTIONS 
Gaussian Radial Basis 

Function (RBF) ݇ሺݔ, ሻݕ ൌ ݁൬ିሺ௫ି௬ሻమ

ଶఙమ൘ ൰ 
Exponential Radial Basis 

Function ݇ሺݔ, ሻݕ ൌ ݁ቀି|௫ି௬|
ଶఙమൗ ቁ 

Hyperbolic Tangent ݇ሺݔ, ሻݕ ൌ tanh ሺܾሺݔ, ሻݕ ൅ ܿሻ 
Polynomial ݇ሺݔ, ሻݕ ൌ ሺ1 ൅ .்ݔ  ሻ௣ݔ

Fourier Series ݇ሺݔ, ሻݕ ൌ
sin ቀߜ ൅ 1

2ቁ ሺݔ െ ሻݕ

sin ቀ1
2 ሺݔ െ ሻቁݕ

 

Two-layer perception ݄ܶܽ݊ሺݏ଴்ݔ. ௜ݔ ൅  ଵሻݏ
 

For multiclass problems, to classify a test point z, we just 
investigate whether it is inside the hypersphere (ak,Rk) 
constructed during the training and associated to the class k 
[2], [3], [7]. Namely the decision function is calculated as 
(14), if its value is positive for the kth class and negative for 
the others we conclude that z belong to the class k. 
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݂ሺݖሻ ൌ ሺܴ௞݊݃ݏ

ଶ െ ԡݖ െ ܽ௞ԡଶሻ         (14) 
 
This function can be calculated as follows: 
In the normal data description case we obtain: 

      
ԡݖ െ ܽ௞ԡଶ ൌ .ݖ ݖ െ 2 ∑ ௜ݖ௜ݔ௞௜ߙ ൅ ∑ ௝௜,௝ݔ௜ݔ௞௝ߙ௞௜ߙ      (15) 

 
ܴ௞

ଶ ൌ .ݔ ݔ െ 2 ∑ ௜ݔ௜ݔ௞௜ߙ ൅ ∑ ௝௜,௝ݔ௜ݔ௞௝ߙ௞௜ߙ     (16) 
 
with αkj is the jth Lagrangian multiplier corresponding to the 
kth class. And  ݔ א ܸܵ  the set of Support Vectors having 
0 ൏ ௜ߙ ൏  .  ܥ

In the SVDD with negative examples case we obtain:   
 

צ ݖ െ ܽ௞ ଶൌצ .ݖ ݖ െ 2 ൭෍ ݖ௜ݔ௞௜ߙ
௜

െ ෍ ݖ௟ݔ௞௟ߙ
௟

൱ ൅ ෍ ௝ݔ௜ݔ௞௝ߙ௞௜ߙ
௜,௝

൅ ෍ ௠ݔ௟ݔ௞௠ߙ௞௟ߙ
௟,௠

െ 2 ෍ ௟ݔ௜ݔ௞௟ߙ௞௜ߙ
௜,௟

 

(17) 

ܴ௞
ଶ ൌ .ݔ ݔ െ 2 ൭෍ ݔ௜ݔ௞௜ߙ

௜

െ ෍ ݔ௟ݔ௞௟ߙ
௟

൱ ൅ ෍ ௝ݔ௜ݔ௞௝ߙ௞௜ߙ
௜,௝

൅ ෍ ௠ݔ௟ݔ௞௠ߙ௞௟ߙ
௟,௠

െ 2 ෍ ௟ݔ௜ݔ௞௟ߙ௞௜ߙ
௜,௟

  

(18)
      

For any  ݔ א ܸܵ the set of support vectors having 0 ൏ ௜ߙ ൏
or 0 (with x is a target object) 1ܥ ൏ ௟ߙ ൏  with x is) 2ܥ
negative object).  

III. OPTIMIZATION OF GAUSSIAN KERNEL 

A. Generalization Ability of a Classifier 
Generalization is the ability that a trained model predicts 

the target value of an input sample which is not in the training 
set. Many indexes can be used to assess the generalization 
ability [27]. For example, the training process of the grid 
search uses the validation accuracy to indicate the 
generalization ability of the classifier, when the validation data 
are not available, k-fold cross validation can be used to 
acquire the validation accuracy [22].  

Other indexes that estimate the generalization ability can be 
used. Takahashi [23], proposed the ratio of the numbers of 
SVs to the training samples as an index. Phetkaew [24] 
suggested using the SVM margin to identify a classifier that 
causes wrong classifications, Wu and Wang [25] introduced a 
separation index which indicates the separation of two classes 
in the feature space. The index is derived from inter-cluster 
distances δ4 which was used by Bezdek [26], for unsupervised 
data clustering. Bezdek and Pal mentioned several inter-
cluster distance measures δi. They are the measurements of the 
distance between two clusters.  

  
,ଵሺܺାߜ ܺିሻ ൌ min dሺݔା, ௑శאሻ௫శିݔ

௫షא௑ష

      (19) 

 
,ଶሺܺାߜ ܺିሻ ൌ max dሺݔା, ௑శאሻ௫శିݔ

௫షא௑ష

      (20) 

 

,ଷሺܺାߜ ܺିሻ ൌ ଵ
୪శ୪ష

 ∑ dሺݔା, ௑శאሻ௫శିݔ
௫షא௑ష

       (21) 

 
,ସሺܺାߜ ܺିሻ ൌ dሺݔାതതത, തതതሻିݔ ൌ d ቀ

∑ ୶శ౮శאXశ
୪శ

,
∑ ୶శ౮శאXశ

୪ష
ቁ    (22) 

 
,ହሺܺାߜ ܺିሻ ൌ ଵ

௟శା௟ష
൫∑ ݀ሺݔା, ௑శאതതതሻ௫శିݔ ൅ ∑ ݀ሺିݔ, ௑షאାതതതሻ௫షݔ ൯   (23) 

 
where X+ and X− are positive and negative classes, l+ and l− are 
sample sizes of X+ and X−, and ݔାതതതand ିݔതതതare the class means of 
X+ and X−. δ1, δ2 and δ3 are the shortest, the longest and the 
average distance between two samples from different classes. 
δ4 is the distance between two class means, and  δ5 is a 
combination of  δ3 and  δ4. 

B. Our Approach 
As mentioned previously our goal is to find a feature space 

induced by a Gaussian kernel, in which the objects of each 
cluster are well separated, to do that we will introduce a new 
separation index based on δ3 and on the variances within-
class. 

Contrarily to the approach mentioned by [27], who use 
those indexes to evaluate the generalization ability through 
grid search method, we will use our new index to calculate an 
optimal parameter of Gaussian kernel, by maximizing an 
objective function defined by (24).   

In what follows a detailed description of our proposed 
algorithm is presented.

   

ሻߪሺܨ ൌ ะ
1
ܰ

෍ Φሺx୧ሻ
ே

௜ୀଵ

െ
1
ܯ

෍ Φሺx୩ሻ
ெ

௞ୀଵ

ะ

െ ߚ ቌ
1

ܰଶ ෍ ෍ฮΦሺx୧ሻ െ Φ൫x୨൯ฮଶ
ே

௝

ே

௜

൅
1

ଶܯ ෍ ෍ԡΦሺx୩ሻ െ Φሺx୪ሻԡଶ
ெ

௟

ெ

௞

൱  

(24) 

 
β is real and positive parameter used to control the variance. 
After substituting the inner product by RBF kenel, and 
expanding the equation 24, we obtain the following result: 
 

ሻߪሺܨ ൌ
1 ൅ ߚ2

ܰଶ ෍ ෍ e
ିฮ୶౟ି୶ౠฮమ

ଶ஢మ

ே

௝

ே

௜

െ
2

ܯܰ ෍ ෍ e
ିԡ୶౟ି୶ౡԡమ

ଶ஢మ

ெ

௞

ே

௜

൅
1 ൅ ߚ2

ଶܯ ෍ ෍ e
ିԡ୶ౡି୶ౢԡమ

ଶ஢మ

ெ

௟

ெ

௞
െ  ߚ4

 

ሻߪሺܨ ൌ
1 ൅ ߚ2

ܰଶ ቌܰ ൅ 2. ෍ ෍ e
ିฮ୶౟ି୶ౠฮ

మ

ଶ஢మ

ே

௜ழ௝

ேିଵ

௜

ቍ െ
2

ܯܰ ෍ ෍ e
ିԡ୶౟ି୶ౡԡమ

ଶ஢మ

ெ

௞

ே

௜

൅
1 ൅ ߚ2

ଶܯ ൭ܯ ൅ 2. ෍ ෍ e
ିԡ୶ౡି୶ౢԡమ

ଶ஢మ

ெ

௞ழ௟

ெିଵ

௞

൱ െ  ߚ4

(25) 
The derivative of F(σ)  with respect to σ: 
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3).test, as testing set. Concerning Ionosphere, we train SVDD 
with the first 200 instances, which were split 50% positive and 
50% negative. We use the remaining 150 instances as testing 
set. 

For iris, and wine, datasets, we randomly split each one into 
20 subsets, each subset contains training and testing sets, with 
the scheme described in Table II. Training and test sets do not 
intersect. 

  
 

 

 

 

 

 

Fig. 2 Recognition rates (%) for the selected datasets, using the optimal values of Gaussian width (σ*) found by our approach, for different 
values of the parameter β  
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B. Numerical Results 
In all experiments we fix C= 200 and we use one versus all 

method. For each dataset from monks-1, monks-2, monks-3, 
Ionosphere, iris, and wine: after setting the value of β, we run 
the algorithm described above to find the optimal value of σ 
for each class. Using that value, the algorithm SVDD will be 
trained by the training set and then, tested by the training and 
the corresponding testing set.  

In the case of the Monk s (1,2,3) and Ionosphere dataset, we 
just calculate the recognition rate directly, for both training 
and testing set. For iris, and wine we repeat this experiment 20 
times for all subsets and we calculate the mean and the 
standard deviation of the recognition rate. The results are 
shown in Fig. 2. 

Fig. 2 shows that a good choose of β, which imply an 
optimal compromise between the distance inter cluster and the 
variance within cluster, gives a good value of gaussian width 
(σ*), which achieves an important classification rate. 

V. CONCLUSION 
In this paper, a novel approach for learning the kernel 

parameters is proposed and successfully applied to the SVDD 
classifier. An optimal value of the Gaussian kernel width is 
obtained by maximizing the distance between the gravity 
centers of both normal and abnormal clusters, and at the same 
time minimizing the variance of both clusters. The 
performance of the proposed algorithm is evaluated on two 
artificial datasets and six benchmark datasets from UCI 
repository [16]. The experimental results for different datasets 
show that our method achieves good performance.  
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