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Abstract—This work deals with unsupervised image deblurring. 

We present a new deblurring procedure on images provided by low-
resolution synthetic aperture radar (SAR) or simply by multimedia in 
presence of multiplicative (speckle) or additive noise, respectively. 
The method we propose is defined as a two-step process. First, we 
use an original technique for noise reduction in wavelet domain. 
Then, the learning of a Kohonen self-organizing map (SOM) is 
performed directly on the denoised image to take out it the blur. This 
technique has been successfully applied to real SAR images, and the 
simulation results are presented to demonstrate the effectiveness of 
the proposed algorithms. 
 

Keywords—Blur, Kohonen self-organizing map, noise, speckle, 
synthetic aperture radar.  

I. INTRODUCTION 
N many practical situations, a recorded image presents a 
noisy and blurred version of an original scene. The image 

degradation process can be adequately modeled by a linear 
blur and an additive noise process. Then the degradation 
model is described by [1] 

 
nfDg +=                                       (1) 

 
However, for multiplicative noise, which generally it is 

called speckle, we propose the follow degradation model  
 

sfDg •=                                        (2) 
 

where the vectors g, f, n and s represent, respectively, the 
lexicographically (raster scan) ordered noisy blurred image, 
the original image, the additive noise, and the multiplicative 
noise (speckle), and the matrix D is the linear degradation 
process, while the operator “•” means element-by-element 
multiplication. The image deblurring problem calls for 
obtaining an estimate of f given g and D. For the blind 
restoration problem, D is not known.  

A large number of techniques exist for the denoising [2]-[9] 
and the deblurring problems [10]-[12]. The image restoration 
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problem is an ill-posed problem. Therefore, a common ingre-
dient in all restoration approaches is that prior information is 
used in order to restrict the number of possible solutions 
(basic idea of regularization). Such prior knowledge can be 
stochastic (i.e., the original image is a sample of a random 
field) or deterministic (the high frequency energy of the 
restored image is bounded) in nature. Regularization theory is 
also applied to the blind restoration problem.  

In this paper, an original approach is developed toward both 
the denoising and the deblurring problems. Such a (non-
traditional) approach for denoising is based on the work of 
Mastriani and Giraldez [13]. They directly apply the 
Directional Smoothing (DS) filter [16] in the Bidimensional 
Discrete Wavelet Transform (DWT-2D) domain to reduce the 
presence of speckles, because the edges will be protected from 
blurring while smoothing. While, in order to face blur 
generated for the despeckling process, the learning of a 
Kohonen self-organizing map (SOM) is performed directly on 
the despeckled image. The proposed algorithms differ from 
the reported results in the literature in a number of ways. 
Kohonen SOM, for example, is designed from a different 
point of view than is previously reported in the literature. In 
the proposed approach, each image to be used for the 
deblurring problem contains both the low frequency 
information of the degraded image (the one which is 
represented by the degraded edges generated for the 
despeckling process) and the corresponding high frequency 
information of the original image. 

The paper is organized as follows: The Speckle Model is 
outlined in Section II. The Bayesian Denoising is outlined in 
Section III. The Directional Smoothing of Coefficients in 
Wavelet Domain (SmoothShrink) as a denoiser tool is 
outlined in Section IV. In Section V, we discuss the 
deblurring method based on Kohonen SOM. In Section VI, 
the experimental results using the proposed algorithm are 
presented. Finally, Section VII provides a conclusion of the 
paper.  

II. SPECKLE MODEL 
Speckle noise in SAR images is usually modelled as a 

purely multiplicative noise process of the form 
                           Is(r,c) = I(r,c) S(r,c)  
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                          = I(r,c) [1+ S’(r,c)]  

                                    = I(r,c) + N(r,c)                              (3)                        
 

The true radiometric values of the image are represented by 
I, and the values measured by the radar instrument are 
represented by Is. The speckle noise is represented by S. The 
parameters r and c means row and column of the respective 
pixel of the image. If S’(r,c) = S(r,c) – 1 and N(r,c) = I(r,c) 
S’(r,c), we begin with a multiplicative speckle S and finish 
with an additive speckle N [6], which avoid the log-transform, 
because the mean of log-transformed speckle noise does not 
equal to zero [15] and thus requires correction to avoid extra 
distortion in the restored image. 

For single-look SAR images, S is Rayleigh distribu-ted (for 
amplitude images) or negative exponentially distributed (for 
intensity images) with a mean of 1. For multi-look SAR 
images with independent looks, S has a gamma distribution 
with a mean of 1. Further details on this noise model are given 
in [16]. 

III. BAYESIAN DENOISING 
In this section, the denoising of an image corrupted by 

white Gaussian noise will be considered, i.e., 
 

nxg +=                                    (4) 
 

where n is independent Gaussian noise. We observe g (a noisy 
signal) and wish to estimate the desired signal x as accurately 
as possible according to some criteria. In the wavelet domain, 
if we use an orthogonal wavelet trans-form, the problem can 
be formulated as 

 
nwy +=                                     (5) 

 
where y noisy wavelet coefficient, w true coefficient, and        
n noise, which is independent Gaussian. This is a classical 
problem in estimation theory. Our aim is to estimate from the 
noisy observation. The maximum a posteriori (MAP) 
estimator will be used for this purpose. Such estimators have 
been widely advocated for image restoration and 
reconstruction problems, deriving appro-priately their 
probability distribution functions (pdf’s). Time-variant and 
time-invariant models will be discussed for this problem in 
Sections III-A and B, and new MAP estimators are derived. 

 

A. Classical Models 
The classical MAP estimator for (5) is 
 

.)|()(ˆ y|ww
ywpmaxargyw =                      (6) 

Using Bayes rule, one gets 
          ])()|([ˆ ww|y

w
. wpwypmaxarg(y)w =    

         .wn
w

[ (w)p.w)-(ypmaxarg=                           (7)  

Therefore, these equations allow us to write this estimation 
in terms of the pdf of the noise (pn) and the pdf of the signal 
coefficient (pw). From the assumption on the noise, pn is zero 
mean Gaussian with variance σn , i.e., 
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It has been observed that wavelet coefficients of natural 

images have highly non-Gaussian statistics [7]-[9]. The pdf 
for wavelet coefficients is often modeled as a generalized 
(heavy-tailed) Gaussian [7]-[9]. 
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where s, p are the parameters for this model, and K(s, p) is the 
parameter-dependent normalization constant. Other pdf mo-
dels have also been proposed [7]-[9]. In practice, generally, 
two problems arise with the Bayesian approach when an 
accurate but complicated pdf pw(w) is used: 1) It can be 
difficult to estimate the parameters of pw for a specific image, 
especially from noisy data, and 2) the estimators for these 
models may not have simple closed form solution and can be 
difficult to obtain. The solution for these problems usually 
requires numerical techniques [17]-[19]. 

Let us continue developing the MAP estimator and show it 
for Gaussian and Laplacian cases. Equation (7) is also equiva-
lent to 

 
.]))(()-(([ˆ wn

w
wplogwyplogmaxarg(y)w +=           (10) 

As in [7]-[9], let us define f(w) = log(pw(w)). By using (8), 
(10) becomes 
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This is equivalent to solving the following equation for ŵ  if 
pw(w) is assumed to be strictly convex and differentiable. 
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If pw(w) is assumed to be a zero mean gaussian density with 

variance σ2, then f(w) = – log( σπ2 ) – w2/2σ2 , and the 
estimator can be written as 
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If it is Laplacian 
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then f(w) = – log( 2σ ) – w2 /σ , and the estimator will be 
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Here, (g)+ is defined as 
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Equation (15) is the classical soft shrinkage function. Let us 

define the soft operator as 
 

.)|(|.)(),( +−= ττ ggsigngsoft                (17) 
 
The soft shrinkage function (15) can be written as 
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B. Mask Convolution Model 
If pdf is 
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where M is a matrix that represents a convolution mask and I 
is the identity matrix, then 
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Replacing (21) into (12), the estimator can be written as 
 

..)(ˆ yMyw =                                (22) 

 
where Eq.(22) represents a 2D-convolution between the mask 
M, and the noisy wavelet coefficients y. 

If the image has R rows and C columns, and the kernel 
(mask) has r rows and c columns, then the size of the output 
image will have R-r+1 rows, and C-c+1 columns.  

 
Mathematically we can write the convolution as: 
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where i runs from 1 to R-r+1 and j runs from 1 to C-c+1.  

 
That is to say, the novel method was deduced for all kind of 

convolutional mask filter, however, we choose the directional 
smoothing because protect the edges from blurring while 
smoothing the wavelet coefficients. 

IV. DIRECTIONAL SMOOTHING OF COEFFICIENTS IN WAVELET 
DOMAIN (SMOOTHSHRINK) 

Since Sveinsson et al. [20] directly apply the Enhanced-
Lee filter in the Bidimensional Discrete Wavelet Transform 
(DWT-2D) domain to reduce the presence of speckles, then and 
with the same approach, we use the DS [14], because the 
edges will be protected from blurring while smoothing. The 
experi-mental results demonstrate that DS is better than 
Enhanced-Lee filter in all the carried out experiments. 

Therefore, we begin decomposing the speckled SAR image 
into four wavelet subbands: Coefficients of Approximation 
(CA), and speckled coefficients of Diagonal Detail (CDDs), 
Vertical Detail (CVDs), and Horizontal Detail (CHDs), respec-
tively. We apply DS within each high subband, and 
reconstruct a SAR image from the modified wavelet 
coefficients, that is to say, despeckled coefficients of Diagonal 
Detail (CDDd), Verti-cal Detail (CVDd), and Horizontal Detail 
(CHDd), respecti-vely, as shown in Fig. 1, where: IDWT-2D is 
the inverse of DWT-2D. Based on Eq.(3) SmoothShrink does 
not need log-transform [6]. 

 

A. Theory of Directional Smoothing 
To protect the edges from blurring while smoothing, a 

directional averaging filter must be applied. Spatial averages 
d(r,c:Θ) are calculated in several directions as shown in the 
follow equation 

 

d(r,c:Θ) = 

ΘN

1
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Fig. 1 Smoothing of Coefficients in wavelet domain 
(SmoothShrink) 

 
and a direction Θ* is found such that | x(r,c) - d(r,c:Θ*) | is 
minimum, where x is the respective detail subband. Then 

 
d(r,c) = d(r,c:Θ*)                       (25) 

 
gives the desired result for the suitably chosen window W, NΘ 
is the number of directions, and k and l depends on the size of 
such windows (kernel) [21]. 

The DS filter has a speckle reduction approach that 
performs spatial filtering in a square-moving window defined 
as kernel, and is based on the statistical relationship between 
the central pixel and its surrounding pixels as shown in Fig. 2. 

 
 

 
 

Fig. 2 3-by-3 filter window on a subband (CHD, CVD, and CDD) 
 

The size of the filter window can range from 3-by-3 to 33-
by-33, with an odd number of cells in both directions. A larger 
filter window means that a larger area of the image will be 

used for calculation and requires more computation time 
depending on the complexity of the filter’s algorithm. If the 
size of filter window is too large, the important details will be 
lost due to over smoothing. On the other hand, if the size of 
the filter window is too small, speckle reduction may not be 
very effective. In practice, a 3-by-3 or a 7-by-7 filter window 
usually yields good results in the cases under study [22]. 

DS performs the filtering based on either local statistical 
data given in the filter window to determine the noise variance 
within the filter window, or estimating the local noise variance 
using the effective equivalent number of looks (ENL) [13], 
[22] of the image under study. The estimated noise variance is 
then used to determine the amount of smoothing needed for 
each subimage. The noise variance obtained from the local 
filter window is more applicable if the backscatter of an area 
is constant (flat and homogeneous) whilst ENL is suitable if 
there are difficulties determining if an area of the image is flat. 

Most simple nonlinear thresholding rules for wavelet 
based denoising assume that the wavelet coefficients are 
independent [17]-[19]. However, wavelet coefficients of 
natural images have significant dependencies. In this paper, 
we will consider the dependencies between the coefficients 
and their neighbors in detail. The Smooth Shrink do not 
assume the independence of wavelet coefficients, because, It 
is based on the DS algorithm, which keeps in mind the 
incidence of the neighboring elements by means of the 
employment of a mask, which can be observed in the 
algorithm that is detailed next.  

 

B. Algorithm 
Algorithm represents DS function for four directions and a 

3x3 kernel in MATLAB® code 
 
function x = ds(x) 
 
[ROW,COL] = size(x); 
 
for r = 2:ROW-1 
  for c = 2:COL-1 
    d(1) = (x(r,c-1)  +x(r,c)+x(r,c+1)  )/3; 
    d(2) = (x(r-1,c)  +x(r,c)+x(r+1,c)  )/3; 
    d(3) = (x(r-1,c-1)+x(r,c)+x(r+1,c+1))/3; 
    d(4) = (x(r+1,c-1)+x(r,c)+x(r-1,c+1))/3; 
    for n = 1:4 
      D(n) = abs(d(n)-x(r,c)); 
    end 
    [Dmin,aDmin] = min(D); 
    x(r,c) = d(aDmin); 
  end 
end 

 
where:  
x represents the bitmap matrix of the image 
ds(•) is the function that calculate the directional  

 smoothing of (•) 
size(•) is the function that calculate the dimensions of  

matrix (•) 
ROW is the number of rows and COL is the number of  

   columns of x.  
d represents the vector of directions 
D represents the vector of absolute differences 
abs(•) is the function that calculate the absolute  
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value of (•) 
min(•) is the function that calculate the minimum of  

vector (•) and its location 
Dmin is the minimum of vector D 
aDmin is the location of Dmin 

V. DEBLURRING VIA SELF-ORGANIZING MAP 

A. Self-Organizing Map 
Researches on neurobiology have shown that centers of 

diverses activities as thought, speech, vision, hearing, lie in 
specific areas of the cortex and these areas are ordered to 
preserve the topological relations between informations while 
performing a dimensionality reduction of the representation 
space. Such organization led Kohonen to develop the SOM 
algorithm [23]. This kind of competitive neural network is 
composed of one or two dimensional array of processing 
elements or neurons in the input space. All these neurons 
receive the same inputs from external world. Learning is 
accomplished by iterative application of unlabeled input data. 
As training process, the neurons evolve in the input space in 
order to approximate the distribution function of the input 
vectors. After this step, large-dimensional input vectors are, in 
a sense, projected down on the one or two-dimensional map in 
a way that maintains the natural order of the input data. This 
dimensional reduction could allow us to visualize and to use 
easily, on a one or two-dimensional array, important relation-
ships among the data that might go unnoticed in a high-
dimensional space. 

 
The model of SOM used in our application is a one-

dimensional array of n nodes. To each neuron Ni, a weight 
vector wi = (wi1 ,wi2 ,….,wip)t ∈ pℜ is associated.  
 

During learning procedure, an input vector x∈ pℜ  
randomly selected among vectors of the training set, is 
connected to all neurons in parallel. The input x is compared 
with all the neurons in the Euclidean distance sense via 
variable scalar weight wij . At the kth step, we assign the 
vector x to the winning or leader neuron Nl if: 

 
][][ wxminwx k

ii

k
l −− =                          (26) 

 
All the neurons within a certain neighborhood around the 

leader participate in the weight-update process. Considering 
random initial values for ][w 0

i  ( ni0 ≤≤ ), this learning 
process can be described by the following iterative procedure: 
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The lateral interactions among topographically close 

elements are modeled by the application of a neighbourhood 
function or a smoothing Kernel defined over the winning 

neuron [23]. This Kernel can be written in terms of the 
Gaussian function 
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where d(l, i) = ||l - i|| is the distance between the node l and i in 
the array, )(k t][α  is the learning-rate factor and ][kσ defines 
the width of the Kernel at the iteration k. For the convergence, 
it is necessary that 0][ →k

liH when Tk → , where T is the 
total number of step of the process [23]. Therefore, for the 
first step, ][kα  should start with a value that is close to unity, 

thereafter decree-sing monotonically [23]. To achieve this 
task, we use 
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Moreover, as learning proceeds, the size of the neighbour-

hood should be diminished until it encompasses only a single 
unit. So, we applied for the width of the Kernel the monoto-
nically decreasing function: 
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The ordering of the map occurs during the first steps, 

while the remaining steps are only needed for the fine 
adjustment of the weight values. 

 

B. Iterative Learning 
The learning process is performed directly on the real image 

to be deblurred. An input vector is filled with the grey levels 
of the pixels of the image, see Fig. 3. Therefore, each neuron 
has rows-by-columns weights allowing to locate it in the input 
space. At each step, the weights are modified according to Eq. 
(27). Experiments have shown that this training strategy 
provides as good results as an ordered image scanning process 
while spending less processing time. 

σ has a significant impact on the quality of the conver-
gence. We have to start with a fairly large value to globally 
order the map. The initial value 0σ  of σ p can be half the 
length of the network. During learning, σ  has to decrease 
monotonically until it reaches a small value. Experiments have 
shown that 1.0=σ −1T  is a good choice and provides the 
minimum quantization error defined by 

 

lquant wxE −=           (31) 

where wl is the weight vector associated to the leader neuron 
of the input vector x after learning step. 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1893

 

 

C. SOM Deblurring 
The deblurring task consists in using the Eq.(27) over the 

image. For each iteration, the corresponding input vector x is 
compared with all the neurons using Eq. (26). The winning 
neuron, the one which leads to the smallest distance, gives the 
class of the winner pixel in which iteration. However, before 
any deblurring task, we have to calibrate the map in order to 
associate the label mean or edges to each neuron. 

Assuming that the input vector x0 = (0 ,…., 0)t should 
represent an image setting on a identical mean value, it is very 
useful to define the distance graph representing the Euclidean 
distance in the rows-by-columns-dimensional space between 
the point x0 and all the neurons. Such a graph is given in Fig. 
4 and Fig. 5 respectively before and after learning for a 512-
by-512-neuron network.  

Both these figures show that the maximal distance between 
two successive cells is widely smaller after learning than 
before. We show only 100 of 512x512 neurons around the 
winner. We can deduce that, after learning, neurons that are 
topologically close in the array are close in the input space 
too. As a matter of fact, neurons that are physical neighbors 
should respond to a similar input vectors [10]. 

Experiments have shown that Equant is a monotonically 
decreasing function of the number of steps and reaches an 
asymptotic value for large value of T. Similar to [10], one 
hundred times the number of network units seems to be a 
reasonable compromise solution between speed and quality of 
learning. 

VI. EXPERIMENTAL RESULTS 
Several experiments have been performed in studying the 

effectiveness of the proposed algorithms. In this section, we 
first describe some of the experimental results obtained with 
the proposed image restoration algorithm in Section IV, and 
then some of the experimental results obtained with the 
proposed blur identification algorithm in Section V. 
 

A. Experiment 1 
In this case, we dealt with an image degraded by the 

Gaussian degradation function and additive zero-mean 
Gaussian noise, as shown in Fig.6. The Gaussian degradation 
function is expressed as follows: 
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where K is a normalizing constant ensuring that the blur is of 
unit volume and 2σ is the variance. We experimented with values  

 
 

Fig. 3 Denoising and deblurring 
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Fig. 4 The distance graph between the 100 neurons of the SOM before learning. One dimensional curve of neurons. 
 
 
 

 
 

Fig. 5 The distance graph between neurons obtained after learning. One dimensional curve of neurons. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6 a) Noisy image, b) blurred image by denoised filtering,  

and c) deblurred image by SOM 

of 2σ equal to 1.5 and 3.5 and two levels of noise resulting 
in values of blurred SNR (BSNR) of 20 and 10 dB. The 
BSNR in dB for an I x J image is defined by [11] 
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where D and f are respectively the blurring function and the 
original image, shown in (3), E{g} is the expected value of 
the degraded image and 2

nσ  the variance of the noise. For 
comparison, we present deblurring results obtained by a 
VQ-based blind image restoration algorithm [11], and 
Constrained Least Squares (CLS) filter. The last one is a 
widely used linear restoration technique [1], [24]-[26].  

A 3 x 3 Laplacian filter is used to implement the CLS 
filter and the regularization parameter is chosen as the 
reciprocal of the BSNR of the observed image. The choice 
of 1/BSNR can be justified through the set-theoretic formu-
lation of the problem, where the loose bounds on the 
constraints we try to satisfy are the noise variance and the 
high frequency signal variance [27]. 

Only one type of image is used for the experimental 
results reported here. It is an 8 bit/pixel, 512 x 512 pixels, 
natural image (Lena), which is often used for the evaluation 
of image-processing algorithm. As a quantitative metric of 
the performance of the restoration algorithm, we used the 
improvement in SNR (ISNR) defined by 
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where f(i,j), j)(i,f̂  and g(i,j) are the original, restored and 
degraded images, respectively. Although the ISNR metric 
reflects the global properties of the restoration and may not 
fully reflect the subjective improvement of the image 
quality, it is useful for providing an objective means to 
measure and compare the quality of the results. 

Finally, the comparative study is shown in Table I, 
where, RP means regularization parameter [11]. 
 

TABLE I 
COMPARATIVE STUDY BASED ON ISNR 

Restored Image by  
Metric SOM VQ CLS  

RP = 0.05 
CLS 

RP = 0.1 
ISNR 3.08 dB 2.91 dB 2.47 dB 0.91 dB 
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Fig. 7 a) Original low-resolution image from satellite ERS-2  without noise and, b) enhanced resolution of image by SOM 
 
 

B. Experiment 2 
In this case, we dealt with an original low-resolution 

image from satellite ERS-2, see Fig. 7. The combined 
action of SmoothShrink [13] and SOM allows it to obtain 
an enhanced resolution of image, with an improvement in 
the ISNR, as shown in Table II. 

 
TABLE II 

COMPARATIVE STUDY BASED ON ISNR 
Restored Image by  

Metric SOM VQ CLS  
RP = 0.05 

CLS 
RP = 0.1 

ISNR 2.15 dB 1.72 dB 1.45 dB 1.17 dB 
 

C. Employed Algorithm 
SOM in MATLAB® code 
 

function I = som(I) 
 
[ROW,COL] = size(I); 
sigma = input('sigma = '); 
alfa = input('alfa = '); 
d = floor(sigma/2); 
 
for r = 1+d:ROW-d 
  for c = 1+d:COL-d 
    Sigma = I(r-(1+d)+1:r-(1+d)+sigma, 
              c-(1+d)+1:c-(1+d)+sigma); 
    e = I(r,c)-mean2(Sigma); 
    I(r,c) = I(r,c)+alfa*e; 
  end 
end 
 
where:  
I represents the bitmap matrix of the image 
som(•) is the function that calculate the SOM of (•) 

size(•) is the function that calculate the dimensions of  
matrix (•) 

ROW is the number of rows and COL is the number of  
   columns of I.  

sigma = σ , and defines the width of the Kernel 
alfa = α , is the learning-rate factor 

VII. CONCLUSION 
Although the SOM-based deblurrer 

1) did not use the traditional Gaussian neighbourhood 
function as a property for the algorithm,  

2) the learning-rate factor is constant along iterations, and 
3) the width of the Kernel is constant along iterations too, 
the results are better than the results of such well-known 
methods as deblurring.  
 

An input vector if filled with the grey levels of the pixels 
contained in a σ x σ  pixels window sliding over the image. 
Therefore, each neuron has σ x σ  weights allowing to 
locate it in the input space. Contrary to the Yao et al’s 
method, at each step, the location of the window in the 
image is determined in an ordered sliding form. Experi-
ments have shown that this training strategy provides better 
results with less processing time and a more simply code. 

The main drawback of applying the combination of 
wavelets and SOM on low-resolution synthetic aperture 
radar (SAR) images is the sum of their respective computa-
tional complexities. 

Finally, the natural extension of this work is in medical 
applications, as well as in microarrays denoising. 
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