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Abstract—Chemical detection is still a continuous challenge when 

it comes to designing single-walled carbon nanotube (SWCNT) 
sensors with high selectivity, especially in complex chemical 
environments. A perfect example of such an environment would be in 
thermally oxidized soybean oil. At elevated temperatures, oil oxidizes 
through a series of chemical reactions which results in the formation of 
monoacylglycerols, diacylglycerols, oxidized triacylglycerols, dimers, 
trimers, polymers, free fatty acids, ketones, aldehydes, alcohols, 
esters, and other minor products. In order to detect the rancidity of 
oxidized soybean oil, carbon nanotube chemiresistor sensors have 
been coated with polyethylenimine (PEI) to enhance the sensitivity 
and selectivity. PEI functionalized SWCNTs are known to have a high 
selectivity towards strong electron withdrawing molecules. The 
sensors were very responsive to different oil oxidation levels and 
furthermore, displayed a rapid recovery in ambient air without the 
need of heating or UV exposure. 
 

Keywords—Carbon nanotubes, polyethylenimine, sensor, 
oxidized oil  

I. INTRODUCTION 
INCE their discovery in 1991, carbon nanotubes (CNTs) 
have shown a great amount of potential for molecular 
detection. Recently, researchers have even shown that 

CNTs are able to detect chemical concentrations of up to 
several ppb [1]. These highly sensitive sensors can be applied to 
various fields, ranging from chemical, medical, environmental, 
industrial, and homeland security [1-3]. However, in order to be 
of practical use, researchers must first improve the selectivity 
of the CNTs. Most CNT experiments are carried out in 
controlled environments where the sensors are only exposed to 
the target analyte without the presence of other interference 
chemicals. In thermally oxidized soybean oil, sensors are 
constantly exposed to dozens of chemicals at the same time and 
the presence of interference with our target analyte is 
practically unavoidable. Multiple contributors can influence the 
response of the sensor, thus making selectivity to a specific 
group of chemicals extremely important.  

Our work focuses on developing a room-temperature sensor 
for detecting the oxidation levels of soybean oil. Oxidation can 
occur in ambient conditions but at elevated temperatures, this 
process is accelerated. Frying is one of the most common 
methods for food preparation, because of its resultant desirable 
texture and savory flavor.  However, repeated use of the oil 
produces chemical constituents that can be detrimental to 
health [4]. The science of frying is a very complex process due 
to the continuous or repeated heating to high temperatures of 
around 180 to 200°C. The chemical reactions that take place at 

these temperatures are hydrolysis, oxidation, polymerization, 
and pyrolysis. Therefore, numerous studies have been 
dedicated to identifying the products of these reactions in order 
to fully understand the health effects of oxidized oil in the 
human body. Among the major groups which have been 
identified are monoacylglycerols, diacylglycerols, oxidized 
triacylglycerols, dimers, trimers, polymers, hydroperoxides, 
free fatty acids, ketones, aldehydes, alcohols, and esters [5,6]. 
As the oil oxidizes at high temperatures, volatile components 
such as ketones, aldehydes, and alcohols will volatize leaving 
behind accumulated large polymers, polar compounds, and free 
fatty acids. Continuous accumulation of these products can 
cause adverse health effects; therefore the oil needs to be 
discarded after a certain point in time. In order to determine the 
oxidation level at which to discard the used oil, numerous 
efforts have been carried out to quantify these oxidation 
products. 

Currently, there are many analytical methods available to 
determine the oxidation level of oil, for example, the peroxide 
value, the iodine value, the free fatty acid value, the p-anisidine 
value, the TOTOX value, and the total polar compounds value. 
In spite of that, most of these methods are time consuming and 
require expensive equipment for accurate results; therefore, 
these indexes are more often used in research studies rather 
than in regular quality control. In this paper, we will 
demonstrate a simple and quick method for detecting the 
oxidation level of soybean frying oil using polymer coated 
CNT sensors. The responses of these sensors are large and they 
have a rapid recovery time, making them suitable detection 
devices that can be deployed for quality control in the food 
industry. Free fatty acid value will be used in this report as a 
gauge for the oxidation level of our oil samples and to measure 
the accuracy of our sensors.  

II.  EXPERIMENTAL 

A. Sensors 
1mg of purified HIPCO SWCNTs, purchased from Unidym, 

were dispersed in 30 ml of N,N-dimethylformamide and bath 
sonicated for 4 hours. The dispersion was then centrifuged at 
15,000 rpm for 15 minutes; only the top 20% of the dispersion 
was collected in order to reduce the number of SWCNT 
bundles. Previous works [7,8] have shown that the binding 
energy at the adsorption sites of the bundles is significant, 
which would make the recovery of the sensor difficult. Next, 
prefabricated glass substrates with Au as electrodes were 
heated to 170°C and the SWCNT thin films were sprayed 
uniformly onto the substrates. For enhancing the sensitivity and 
to impart selectivity to the sensors, we adsorbed 
polyethylenimine (PEI), purchased from Sigma Aldrich, onto 
the SWCNT network. A solution of 20wt% PEI/methanol was 
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sensitivity of the sensor can be configured based on the 
different chemical environments. 
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