International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

Modelling Multiagent Systems

Gilbert Ndjatou

Abstract—We propose a formal framework for the specification of
the behavior of a system of agents, as well as those of the constituting
agents. This framework allows us to model each agent’s effectoric
capability including its interactions with the other agents. We also
provide an algorithm based on Milner’s “observation equivalence” to
derive an agent’s perception of its task domain situations from its
effectoric capability, and use “system computations” to model the
coordinated efforts of the agents in the system . Formal definitions
of the concept of "behavior equivalence” of two agents and that of
system computations equivalence for an agent are also provided.

Keywords—Multiagent system, object system, observation equiv-
alence, reactive systems.

I. INTRODUCTION

In [2], page 308, Genesereth and Nilsson have introduced
a model of a "tropistic agent” that consists of the following
6-tuple:

(S, T, A, see do, action)
where

S is the set of states where the agent’s world can be in or
task-domain situations,

T is a set of partitions of S that represents the sensory
limitations of the agent: the agent can not distinguish states
from the same partition,

A is the set of actions that the agent can perform

see is the "sensory function” see : S — T that maps each
state to its partition,

do is the "effectory function” do : A x S :— S that
specifies the effects of the execution of each action, and

action is a function action : T — A that maps each state
partition into the action that the agent is to perform whenever
it finds itself in a state in that partition.

The operation of a tropistic agent can be summarized as
follows: on each cycle, the agent’s world or task domain is
in a state s. The agent observes the partition see(s) and uses
the function action to determine the action a = action(see(s))
that corresponds to the partition see(s). It then execute action
a which transforms its task domain to state do(a, s), and the
cycle repeats. However, in this paper, we are only concerned
with the “effectoric capability” of an agent: that means what it
can do or how it can be affected at each task domain situation.

The single agent model of Genesereth and Nilsson pre-
sumes a world in which there is only one agent and which
therefore does not change except through the actions of this
agent. However, as they claim themselves, "much work in Al
concerns multiple agents and their interactions.” Their model
must therefore be extended to take into consideration the
interactions among the agents. We do so by assuming that our
system consists of autonomous agents: An agent has access

G. Ndjatou is with the Department of Computer Science, William Paterson
University, Wayne, NJ, 07470 USA, e-mail: ndjatoug@wpunj.edu.

to its task domain situations (or local states), but not to the
task domain situations of the other agents in the system. The
interactions among the agents are achieved by using "external
actions” which correspond to Lamport’s interface actions. An
agent initiates an external action at one of its local states with
respect to another agent in the system, which then executes
it at one of its own local states with the resulting effect a
transition to another local state.

Genesereth and Nilsson’s agents also have sensory limi-
tations (or perception of their task domain situations), and
the system designer is supposed to know about them when
he/she is specifying the “action function” to solve a problem
or to perform a task. Although this is possible for some task
domains such as their maze world [2], this information is not
always available to the system designer. In our framework,
an agent’s perception of its task domain situations is derived
from its “effectoric capability” by using an algorithm based
on Milner’s observation equivalence. In addition to specifying
the “effectoric capability” of the agents in our system and
to providing an algorithm to derive an agent’s perception of
its task domain situations, we also introduce the concept of
“behavior equivalence” of agents, and the notion of system
computations that describe the coordinated efforts of the agents
in a system.

Our model to specify an agent’s "effectoric capability” is
provided in section 2. In section 3, we specify an algorithm
to determine an agent’s perception of its task domain situ-
ations, and also define the notion of ’behavior equivalence”
of the agents. System computations and their properties are
introduced in section 4.

Il. EFFECTORIC CAPABILITY OF AN AGENT

We assume that our system consists of m > 2 agents, and
we denote the set of possible local states of agent i by Q?,
with Q* N Q7 = () for i # j. An agent’s local states represent
its task domain situations, and correspond to the same concept
as that of an agent ’s external state in [2] or an environment
state in [11] for a single agent system. For each agent 4, we
denote the union of the sets of local states of the other agents
in the system by Q¢ = U, Q7. We will refer to an agent’s
actions as its internal actions, and assume that the alphabet A
of internal actions contains the null action e.

For agent i, we replace the "effectory function” do with the
relations R C Q' x Q, a € A, with R = {(s,s)[s € Q* }.
R! is the transition relation of internal action a for agent i.
(s,t) € R! if and only if agent < may perform internal action
a in local state s with the resulting effect a transition to local
state ¢.

We model the interactions among the agents by using exter-
nal actions which correspond to Lamport’s interface actions

1920

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

[4]. An agent initiates an external action at one of its local
states with respect to another agent in the system which then
executes it at one of its own local states with the resulting
effect a transition to another local state. For example, in a
candy machine system where the agents are the user, the candy
machine, and the candy bar container, ”get coin” is an external
action of the candy machine with the user as the possible
initiator, and "release a candy bar” is an external action of the
candy bar container with the candy machine as the possible
initiator. Similarly to Lamport’s interface actions [4], an agent
may change its local state as a result of an external action
initiation. We denote by £ the alphabet of external actions
such that AN & = 0.

For external action e € &, the transition relation S! C
Q. X QL. x Q' x Q specifies how the other agents in the
system may affect agent i using external action e, and Si- C
Q' x Q' x Q1. x Q. specifies how agent i may affect the
other agents in the system using external action e. (w, v, s, t)
€ S! if and only if in state w € Q¢ an agent in the system
may initiate external action e with respect to agent ¢ and move
to local state v, and if it does it, agent ¢« may execute it in
local state s € Q' with the resulting effect the transition to
local state ¢ € Q. Similarly, (s,t,v,w) € Si- if and only
if in local state s € Q¢ agent 5 may initiate external action
e with respect to another agent in the system and move to
local state ¢, and if it does it, that agent may execute it in
local state v € Q7 with the resulting effect the transition to
local state w € Q. For example, suppose that our candy
machine system gives us a candy bar (but no change) if and
only if the amount of money (nickels and dimes) deposited
into the machine is 20 cents. If we identify the local states of
the user with the value of the coin that it has selected from its
pocket, and use the pairs (n, d) (where n and d are respectively
the number of nickels and the number of dimes received so
far by the candy machine) to represent its local states, then
the transition relation that corresponds to the candy machine’s
external action “get coin” is specified as follows:

(5,0,(0,0),(1,0)), (5,0,(1,0), (2,0)),
(57 07 (27 0)7 (37 O))7 (57 07 (37 0)7 (47 0))7
(57 0’ (0> 1)7 (17 1))7 (57 07 (17 1)7 (27 1))7
(10,0, (0,0), (0,1)). (10,0, (1,0), (1, 1)),
(10,0, (2,0, (2, 1)), (10,0, (0, 1), (0, 2)).

After the user has deposited a coin into the candy machine,
it moves to the local state 0 (no coin has been selected from
its pocket) and after the candy machine has received a coin
(from the user), it moves to the local state that corresponds to
the increment of that coin counter by 1. The external action
“release a candy bar” of the candy bar container (with the
candy machine as the initiator) is specified as follows:

((4,0), (0,0),0,0), ((2,1), (0,0),0,0), ((0,2), (0,0),0,0),
and for n > 1,

((4,0), (0,0), n, n = 1), ((2,1), (0,0), n, n 1),

((07 2)1 (07 0)1 n, n— 1)

The candy machine resets its nickels and dimes counters to
zero after it has initiated the “release a candy bar” external

action, and when there is no candy bar into the candy bar
container, it does nothing when it is ordered (by the candy
machine) to release a candy bar; otherwise, it decrements the
candy bar counter by 1.

Note that if agent ¢ interacts only with agent ;5 using external
action e and is the only agent that does it as in the case of the
user, the candy machine, and the external action “get coin,”
then S7 = Si-.

The effectoric capability of agent ¢ is specified by the
following model O that we refer to as object System [7, 8,
9.

Oi = (Ql! Qf}nvl {Rg' a € A}’ {S(I)' S S }’ {Sti)-’
e €Y.

Note that there is a minor difference between this specifi-
cation of an object system and the one introduced in [7, 8, 9].
In [7, 8, 9], an agent does not change state after the initiation
of an external action.

An agent’s external action (respectively its environment’s
external action) corresponds to an input action (respectively
output action) of I/O automata [6], [10] that are used to
model the behavior of a single agent that interacts with its
environment. Object systems can be viewed as a generalization
of 1/0 automata in the sense that they allow us to specify
interactions between two or more agents instead of just one
agent and its environment as do 1/O automata.

I11. AGENTS’ PERCEPTIONS OF THE WORLD AND
BEHAVIOR EQUIVALENCE

The action function [2] or policy [11] that an agent uses to
solve a problem or to perform a task is based on its sensory
limitations [2] (or perception of its task domain situations)
and in [2], a system designer is supposed to know an agent’s
perception of its task domain situations in order to design
these action functions. However, as we have stated in the
introduction, this information is not always available to the
system designer. In this section, we propose an algorithm to
derive an agent’s perception of its task domain situations that
is based on Milner’s [3] “observation equivalence.” Intuitively,
two local states of an agent are said to be “observation
equivalent” if for an observer, their differences are irrelevant
to the ways the agent performs its internal actions or interacts
with the other agents at those states. In other words, the agent
can only initiate the same external actions of the other agents
(with identical effects) in both states, and the effects of the
execution of internal and external actions from those states
are identical in what it can later do.

Given an object system O = (Q%, Q.,, {R!, a € A}, {S,
e €&}, {Si-, e € £}), we define the decreasing sequence of
equivalence relations ~; ,,, over Q%, (m > 1) as follows:

o ~io=Q'x Q"

e Vm>1,5~iyt iff

1) Va € A, if Ju € Q" such that (s,u) € R, then
Ju' € Q° such that v’ ~; 1 w and (t,u') € RE
2) Va € A, if Ju € Q such that (t,u) € R!, then
Ju' € QF such that v’ ~;im—1 uand (s,u’) € R},
3) Ve € & w,v € Qi if Ju € Q° such that
(w,v,s,u) € S, then Ju’ € Q¥ such that u’ ~; 1,1
wand (w,v,t,u’) € St

1921

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

4 Ye € & w,v € Qb if Ju € Q° such that
(w,v,t,u) € Si, then Ju' € Q¥ such that u’ ~; 1
uand (w,v,s,u') € St

5) Ve € & w,v € Q. if Ju € Q' such that
(s,u,w,v) € Si-, then I/ € Q' such that
w ~im—1 uand (t,u', w,v) € S¢-

6) Ve € & w,v € Q. if Ju € Q' such that
(t,u,w,v) € Si-, then 3u’ € Q° such that
u ~im—1 uand (s,u’,w,v) € S¢-

Since e € A, it follows from condition 1 or 2, that if s ~;j i ¢
then Vj < k, S ~ij t.

Local states s, ¢ are observation equivalent, denoted by s ~; ¢
iff
vYm 2 O, S ~im t

The proof that the relation ~; is well-defined and is an
equivalence relation on @Q° is similar to that provided in [3].
The equivalence class of local state s € Q" is denoted by s and
the set of all equivalence classes by @Q?. This set corresponds to
agent i’s perception of its task domain situations. An algorithm
to determine the relation ~; follows.

Algorithm to Determine the "Observation Equivalence”
Relation
Step 1:
step 2:

Set A% =Q' x Q' and j to 1.
Determine A! C A!_, such that (s,t) € Al iff

e Va € A, if Ju € Q' such that (s,u) € R,
then Ju’ € Q' such that (u,u’) € A! ;| and
(t,v') € RL '

e Va € A, if Ju € Q° such that (t,u) € R,
then Ju’ € Q' such that (u,u’) € Al ;| and
(s,u’) € RE

o« Ve € & w,v € QL if Ju € QF such that
(w,v,s,u) € S then Fu’' € @ such that
(u,u') € Al and (w,v,t,u') € S}

o« Ve € & w,v € QL if Ju € QF such that
(w,v,t,u) € S, then Ju’ € Q° such that
(u,u’) € Aj_; and (w, v, s,u’) € S}

o Ve € &, wy,v € QL if Ju € QF such that
(s,u,w,v) € S-, then Ju' € Q! such that
(u,u') € Aj_; and (t,u',w,v) € Si-

o« Ve € &, w v € Qi if Ju € Q' such that

(t,u, w,v) € Si-, then Ju’ € @Q° such that

(u,u') € A}:—l and (s,u/, w,v) € Si-
if A=Al |, set A’ to Af and stop; otherwise
increment j by 1 and go to Step 2.

Step 3:

By using this algorithm on the local states of the
above candy machine, we obtain the following equivalence
classes: {(0,0)}, {(1,0)}, {(2,0),(0,1)}, {(3,0), (1,1), and
{(4,0),(2,1),(0,2)}.

Proposition 1: The equivalence classes are stable with re-
spect to the relations Ri, a € A, Si, e € £, and Si-, e € £
in the sense that:

o Yac A ands, t € Q% if(s,t) € RithenVs' € 5,3t c ¥

such that (s',t') € RE.
. Veeg and s, t € QY if (w, v, s t)eSiforsomew,ve
L thenVs' €5 3t et such that (w,v,s’,t') € Si.
e Ve € £ and s, t € Qi (,t,ww) € Si- for
some w,v € Q! ., then Vs’ € 5,3t' € t such that

env’

(s, ', w,v) € Si-.

This proposition follows immediately from the definition of
the “observation equivalence” relation. An immediate conse-
quence is that the relations R, a € A, S! e € &, and S’
e € £ can be extended to the relatlons Ri, C Qi x Qi S

(Zanv X Qenv X QZ X Ql and SZ C QZ X QI X Qenv X Qenv
respectively as follows:

(5,t) € R?, iff Vs’ €5 3t €t suchthat (s',t) € R:
(w '073,5) € St, iff Vs € 53 € t such that
(w,v,s,t') € Si and

(8,t,w, ’U) € Si.- iff Vs € 5 3t € t such that
(s, ¥, w,v) € Si-.

(3,1) € Ri, iff at any local state s’ € 3, there is an
execution of internal action « that terminates in some local
state in ¢, and all executions of « at a local state in 5 that
terminate in some local state in ¢ are indistinguishable.
(w,v,5,t) € S, iff an agent in the environment may
initiate external action e (with respect to agent ¢) at local state
w and move to local state v and if it does it, agent ¢ may
execute it in a local state s’ € s with the resulting effect the
transition to a local state ¢’ ¢ . Moreover, all such executions
of e at a local state in 5 that terminate in some local state in
t are indistinguishable.

(5,t,w,v) € S'e- iffin some local state s’ € 5, agent i may
initiate external action e (with respect to another agent in the
system) and move to a local state ¢’ € ¢, and if it does it, that
agent may execute it in local state w with the resulting effect
the transition to local states ». Moreover, all such initiations
of external action e at a local state in s’ € 5 with a move to
a local state ¢ € ¢ are indistinguishable.

It follows from the above proposition that from object
system O = (@', Qi,,, {R., a € A}, {S, e € £ }, {Si-,
e € £}), we can derive the object system Of = (Q, Q...
{R%,, a € A}, {S%, e € &}, {S%c-, e € £}) with the same
behavior as O and at most the same number of local states
as O'. We therefore have the following definition of “behavior

equivalence” of object systems:

Definition 2 (Behavior Equivalence): Object systems O!
and O? are behavior equivalent if and only if there exists a
bijection f : Q1 — Q2 such that:

e Vae A 5 teQl, (5,1 €R, |ff((3), f(F)) € R2.
.VeGEstEQl ElwveQenv t. (w,v,5,t) € S, iff
HU) U Eanv il (U} ’U f() (3)6526' _

. Veeé’ 5 teqQ?l, vaeQenv t (5,t,w,v) € Ste-

iff Juw’ U € Qenv (()7 (E)vw 7’0/) € SQG"

It follows from the above definition that object systems
O' and O? have the same behavior if and only if the object
systems @1 and Q2 are isomorphic.

1922

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

IV. SYSTEM COMPUTATIONS

In a single agent system, the ability of the agent to solve
a problem or to perform a task is completely determined by
its action and effectory functions. However, in a system with
two or more agents, we must also take into consideration
the interactions among the agents in the system: a problem
is solved or a task is performed by the coordinated efforts
of the agents in the system. These coordinated efforts of the
agents in a system are modelled with system computations
that we formally define along with the concept of “system
computations equivalence” for an agent ¢ in this section.

System computations are defined with respect to some initial
local state qg for each agent ¢, and are used to determine
what can or cannot be achieved by the agents in the system
when each one starts its computation at its initial local state.
A computation of agent ¢ is a sequence of events on agent
i that starts in initial local state gi. An event is either the
execution of an internal action (internal event), the initiation of
an external action (send event), or the execution of an external
action initiated by another agent in the system (receive event).
These events on agent 4 (i-events) may be specified as relations
on agent 4’s local states as follows:

1) s Y ¢ iff (s,0) € R

S(isue,j : /

2) s G%ed) y iff s e @ and for some w,v € @,
(s,t,w,v) € Si-

3) s "Dy ife for some o € @, and v € Q7
(', v,s,t) €S

Note that if (s,t,w,v) € Si- for some w,v € Q%,,,, then
Vs € 53 € Q st (s',¢',w,v) € Si-. Therefore, we can
talk about an external action being initiated from a local state
equivalence class, instead of a local state. Event 2 states that
agent i initiates external action e of agent j in the local state
equivalence class z and moves to local state ¢. Event 3 states
that in local state s, agent i executes external action e initiated
by agent j in local state equivalence class u with the resulting
effect the transition to local state ¢. Note that the send event
S(i,a,e,j) corresponds to the receive event R(j,u,e,) and
must occur in a system computation before it.

As in [1] and [4], we define a system computation
to be an interleaving sequence of events on component
agents such that the sequence of events on each com-
ponent agent is a computation of that agent, and ev-
ery receive event is preceded by the corresponding send
event. For example, suppose that our system consists of
two agents 1 and 2 and that e}S(1,14,e,2)elelel and
e3ee3 R(2,u,e,1)ee? are computations on agents 1 and 2
respectively. Then the following are possible computations
of the system: e} S(1, 1, e, 2)edelel; ebederS(1, 1, e, 2)eled;
e5e2S(1,a,e,2)e3elR(2,1, e, 1)eiel. The first one consists
of just the events on agent 1 and since there is no receive
event without the corresponding send event in it, it is a system
computation. But eje2e? R(2, 4, e, 1)ele? is not a system com-
putation because it contains a receive event without the corre-
sponding send event. Note also that if e}S(1, 4, e, 2)e3 is not a

computation on agent 1, then ele2e2S(1, 1, e, 2)es is not a sys-
tem computation. We will denote by x? the sequence of events
on agent ¢ in the sequence of events on component agents
x. For example, if z = e}e2S(1, 4, e, 2)eles R(2, 4, e, 1)eiel
then ! = el S(1, 4, e, 2)elel and 22 = e2e3R(2,u, e, 1)e2.
We now have the following definition of a system computation.

Definition 3: A sequence of events = on component agents
is a system computation if:
o for each i > 1, 2% is a computation of agent .
« for every receive event R(j,1,e,i) of xz, there is the
corresponding send event S(i, @, e, §) that occured earlier
in z.

In order to define the concept of system computation equiv-
alence for an agent 4, we observe that the computation z?
of agent 7 in the system computation xz starts at the initial
local state g} and terminates in some local state ¢, with
n > 0. We denote by T%(z) the set of local states of agent
i where it can terminate after the execution of z*. Intuitively,
system computations x and y are equivalent for agent i (i-
equivalent) if and only if the computations 2* and ¢ of agent
¢ can only terminate in local states of agent ¢ such that it
cannot distinguish one from the other; and this is the case
when they belong to the same local state equivalence class or
are “observation equivalent”. We therefore have the following
definition of ”system computations equivalence” for an agent.

Definition 4: System computations = and y are equivalent
for agent i (denoted by = =; v) iff

o Vs € T4x),3s' € T%(y) suchthat s ~; s

o Vt € Ti(y),3t' € T(x) suchthat ¢ ~; ¢’

It is easily shown that the relation =; is an equivalence
relation on system computations.

If « and y are sequences of events on component agents,
then we denote by xy the concatenation of x and y, and the
fact that = is a prefix of y is denoted by z <X y. z is a
proper prefix of y is denoted by =z < y. Note that system
computations are prefix-closed. That means, if y is a system
computation and x =<y, then x is a system computation.
The following properties of system computations are easy to
derive.

Theorem 5 (Computation Extensions): 1) If x is a sys-
tem computation and y is a sequence of events on
component agents such that xy is a system computation,
then we have the following:

a) If there is no receive i-event in v, then x4’ is a
system computation and =y’ =; zy.

b) If every receive i-event in y has its corresponding
send event in x, then a3’ is a system computation
and zy’ =; zy.

2) If z is a system computation and ¢ is a sequence of i-
event such that zy* is a system computation, then V7 #
i, oyt =; .

3) If z and z are system computations such that x =; z
and 4 is a sequence of i-events not containing a receive

1923

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

event, then zy’ and zy® are system computations, and
Tyt =; 2y

V. CONCLUSION

We have proposed a formal framework for the specification
of the behavior of a system of agents, as well as those of the
constituting agents. In this framework, the effectoric capability
of an agent is specified by using the single agent model of
Genesereth and Nilsson to which we have added the possibility
of interactions among the agents. The interactions among the
agents are modelled by using Lamport’s interface actions, and
an agent’s perception of its task domain situations is derived
from its effectoric capability by using an algorithm based on
Milner’s observation equivalence. The coordinated efforts of
the agents in a system are modelled using system computa-
tions, and we have also provided the formal definitions of the
concepts of behavior equivalence of two agents and that of
system computations equivalence for an agent. One possible
application of this formal framework is the knowledge-based
analysis of a system of agents if we assume that an agent’s
partition of its task domain situations corresponds to its local
knowledge and that some goals of the interactions among the
agents are to learn about this local knowledge and/or to provide
information about it..

REFERENCES

[1] K.M. Chandy and J. Misra. How processes learn. Distributed Computing
1(1), pp. 40-52. Springer-Verlag, 1986.

[2] M.R. Genesereth and N.J. Nilsson. Logical Foundations of Artificial
Intelligence. Morgan Kaufmann, Palo Alto, CA, 1987.

[3] M. Hennesy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the ACM 32(1), pp. 137-161. 1985.

[4] L. Lamport. A simple approach to specifying concurrent systems.
Communications of the ACM 32(1), pp. 32-45. 1989.

[5] B.van Linder, W. van der Hoek, and J.J. Ch. Meyer. Formalising abilities
and opportunities of agents. Fundamenta Informatica, 34, (1,2), pp. 53-
101, 1998.

[6] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI
Quaterly 2(3), pp. 219-246. 1989.

[7]1 G. Ndjatou. Minimizing agent specifications using a logic of knowledge
and actions. Journal of Logic and Computation, vol. 11, No. 2, pp.
337-354, Oxford University Press, 2001.

[8] G. Ndjatou. Modelling Objects, Knowledge and Learning in Distributed

Object-Based Systems. Ph.D thesis, Dept. of Computer Science, CUNY

Graduate School, New York, NY, Feb. 93. Also appeared as Technical

Report NO TR-93-04-02, CUNY Graduate School, New York, NY, April

93.

G. Ndjatou. Modelling objects and distributed object-based systems. In

proceedings of the 10th Israeli Symposium on Al and Computer Vision,
pp. 39-49, Ramat Gan, Israel, December 1993.
[10] N. Reingold, D.W. Wang and L.D. Zuck. Games I/O automata play. Con-
cur '92, Lecture Notes in Computer Science, vol. 630, W.R Cleaveland,
ed. pp. 325-339. Springer-verlag, 1992.

[11] G. Weiss, ed., Multiagent Systems, A Modern Approach to Distributed
Artificial Intelligence. The MIT Press, 1999.

[9

—

1924

