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Abstract—We report the results of an lattice Boltzmann 

simulation of magnetohydrodynamic damping of sidewall convection 
in a rectangular enclosure filled with a porous medium. In particular 
we investigate the suppression of convection when a steady magnetic 
field is applied in the vertical direction. The left and right vertical 
walls of the cavity are kept at constant but different temperatures 
while both the top and bottom horizontal walls are insulated. The 
effects of the controlling parameters involved in the heat transfer and 
hydrodynamic characteristics are studied in detail. The heat and mass 
transfer mechanisms and the flow characteristics inside the enclosure 
depended strongly on the strength of the magnetic field and Darcy 
number. The average Nusselt number decreases with rising values of 
the Hartmann number while this increases with increasing values of 
the Darcy number. 
 

Keywords—Lattice Boltzmann method , Natural convection , 
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I. INTRODUCTION 

HE problem of natural convection in a cavity has been a 
major topic for research studies due to its frequent 

occurrence in industrial and technological applications. This 
includes crystal growth, electronic cooling, oil extraction, 
solar collectors, etc. Some of recent studies considered hydro 
magnetic flows and heat transfer in much different porous and 
non porous geometry, for example, Oreper and Szekely 1983; 
Vajravelu and Hadjinicolaou 1998; Al-Nimr and Hader 1999; 
Chamkha 2002 and Borjini et al. 2006 [1]-[5]. 
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To the best of our awareness, the first study of this problem is 
due to Alchar et al. [6] who considered the stability of a 
conducting fluid saturating a porous medium with the 
attendance of a uniform magnetic field using the Brinkman 
model. However, some comments on the MHD convection in 
a porous medium have been done very recently by Nield [7]. 
Also a very recent paper by Barletta et al. [8] has studied the 
mixed convection with heated effect in a vertical porous 
annulus with the radially varying magnetic field. Natural 
convection of an electrically conducting fluid in a rectangular 
enclosure in the presence of a magnetic field is studied 
numerically by Rudraiah et al [9]. They pointed out that the 
average Nusselt number decreases with an increase in the 
Hartmann number and the Nusselt number approaches unity 
for a strong magnetic field. Recently Robillard et al [10] 
investigated numerically as well as analytically the effect of an 
electromagnetic field on the free convection in a vertical 
rectangular porous cavity saturated with an electrically 
conducting binary mixture. They conclude that under the 
condition of constant fluxes of heat and mass imposed at the 
long side walls of the layer, the flow is parallel in the core of 
the cavity and turns through 180o in regions close to the end 
boundaries. This flow structure is not affected by the 
imposition of a magnetic field. Pangrle et al [11] performed an 
experimental research of magnetic resonance imaging an 
incompressible, laminar fluid flow in porous tube and shell 
systems flow. They used porous tube module in closed end 
mode for Reynolds number of 100 to 200 based on the tube 
radius to study the flow behavior and heat transfer. Other 
experimental studies dealing with MHD flows in porous 
media were reported by McWhirter et al [12] and Kuzhir et al 
[13]. Khanafer and Chamkha [14] studied numerically 
hydromagnetic natural convection heat transfer in an inclined 
square enclosure filled with a fluid-saturated porous medium 
with heat generation. Their results specify that the effects of 
magnetic field and the porous medium are found to reduce the 
heat transfer and fluid circulation within the cavity. However, 
there are few studies on the natural convection of a conducting 
fluid saturating a porous medium in the presence of a 
magnetic field in an enclosure. 

Free Convection in a MHD Porous Cavity with 
using Lattice Boltzmann Method 

H.A. Ashorynejad, M. Farhadi, K.Sedighi,and A.Hasanpour 

T



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:1, 2011

53

The LBM is a new method for simulating fluid flow and 
modeling physics in fluids [15]-[17].This method has also 
been successfully applied to flow in porous media and MHD 
flow.  The works done by LBM in porous media and MHD 
flow are separated from each other and no combination of 
them such as MHD flow in a cavity filled by porous medium 
is solved by LBM approach. Therefore in this section a briefly 
of past studies of these two fields (solved by LBM), are 
reviewed. 

A most commonly approach to apply LBM to porous flow 
(with magnetic field or without it) is to model the fluid at the 
Reprehensive Elementary Volume (REV) scale [18]. This is 
accomplished by including an additional term to the standard 
Lattice Boltzmann Equation (LBE) to account for the presence 
of a porous medium. For instance, Dardis and McCloskey [19] 
proposed a lattice Boltzmann model by introducing a term 
describing the no-slip boundary condition. Spaid and Phelan 
proposed a model based on the Brinkman equation for single-
component flow in porous media [20]. However, although the 
Brinkman model has been widely used to describe flows in 
porous media, some limitations still exist in this model. As 
pointed by Vafai and Kim [21], without a convective term, 
there is no mechanism for the development of the flow field, 
and this will lead to a physically flawed and unrealistic 
condition. The nonlinear inertial term is not included in the 
Brinkman model either, and thus, is suitable for low-speed 
flows only. In this paper, we consider linear and nonlinear 
matrix drag components as well as the inertial and viscous 
forces by using Brinkman- Forchheimer model [18]-[22]. In 
this model, the inertial force is included based on a recently 
developed technique [22], and the equilibrium distribution 
function is modified to account for the porosity of the 
medium. The model is applicable for a medium with both a 
constant and a variable porosity, and can be used to transient 
flows. Through the Chapmann-Enskog expansion, the 
generalized Navier-Stokes equations for flow in porous media 
can be derived from the model in the incompressible limit. 
The first magneto-hydrodynamic Lattice Gas Automata 
(LGA) was developed by Montgomery and Doolen [23] 
shortly after the Frisch, Hasslacher, and Pomeau (FHP) gas. 
Their model is an extension of the original FHP gas. It 
includes additional degrees of freedom of the particles for the 
vector potential, which has only one component in two 
dimensions and satisfies a passive scalar equation similar to 
the temperature. Therefore, the model is confined to two 
dimensions. Additionally, the model does not include the 
Lorentz force, which must be appended factitiously as an  
external force that needs some space averages when 
simulating. In general, these lattice Boltzmann MHD models 
fall into two categories: the multi-speed (MS) approach and 
multi-distribution-function (MDF) approach. The MS 
approach is a uncomplicated extension of the lattice 
Boltzmann models [24]-[26] presented by Martinez, Chen and 
Matthaeus in which a tensor (i.e., two-indexed) particle 
representation and a bi-directional streaming mechanism are 
used. For each one of these particles, there are two vectors 
attached, representing the momentum and magnetic field. 

These MS models introduce some additional discrete 
velocities and the equilibrium distributions usually include 
higher order velocity terms. However, this model is confined 
to low-Reynolds because the values of the transport 
coefficients at the stability threshold are finite and its 
extension to three dimensions would require a large amount of 
computational memory. Such limitations severely restrict the 
MDF model's applications. However, the limitations of the 
MS approach can be partly overcome by the MDF approach 
[27]. In the MDF model presented by Dellar [28], the Lorentz 
force can be introduced as a point-wise force, the induction 
equation is also solved using an LBGK equation by 
introducing an independent distribution function. MDF models 
can improve the numerical stability. The accuracy of the MDF 
models has been verified by several benchmark studies [29] –
[30]. Despite the benefit of the MDF models, there are still 
some limitations. For instance, in order to get the correct 
macroscopic equation from the MDF models, it must be 
assumed that the Mach number of the flow is small and the 
density varies slowly. 

The main and particular objective of the present numerical 
investigation is to solve the hydro magnetic natural convection 
in a rectangular porous cavity by lattice Boltzmann method. 
The mathematical formulations for porous media are based on 
the Brinkman- Forchheimer equation model [22] and for 
consideration the magnetic effect use the MDF model [28]. 
Detailed results are presented in the form of the streamlines 
and isotherms and investigation the Nusslet number in the 
wide range of effective parameters.  
 

II. MATHEMATICAL  MODEL 
Consider the steady two dimensional natural convection 

flow in a rectangular cavity filled with an electrically 
conducting fluid-saturated porous medium of height H and 
width L as shown in Fig. 1. A uniform magnetic field is 
applied in the vertical direction. It is assumed that the left and 
right walls are maintained at a constant temperature Th and Tc 
(Th > Tc). The both top and bottom walls are considered to be 
adiabatic. The physical properties are considered to be 
constant except the density variation in the body force term of 
the momentum equation which is satisfied by the Boussinesq’s 
approximation. The magnetic Reynolds number is assumed to 
be very small so that the induced magnetic field and Hall 
effect are negligible [31].Consequence of small magnetic 
Reynolds number is the uncoupling of the Navier-Stokes 
equations from Maxwell’s equation. In the present 
investigation the porous medium is assumed to be hydro 
dynamically and saturated with a fluid that is in local thermal 
equilibrium (LTE) with the solid matrix. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:1, 2011

54

 
 
 
 
 
 
 
 
 
 
 

Fig 1.  Geometry of the problem and coordinate system 
 

A. LBM in MHD Porous Media 
The Lattice Boltzmann model for incompressible fluid flow 

in porous media includes external force was proposed by 
several groups. In this work we take the form proposed by 
Guao et al [22] and Seta et al [32] which is applicable for a 
medium with both a constant and a variable porosity. The 
main particularity difference between [22] or [32] with the 
model that presented in this paper, is considering the magnetic 
effect by modifying the density distribution function, fi

eq. The 
LBM originates from the lattice-gas automata method, and can 
also be viewed as a special discrete scheme for the Boltzmann 
equation with discrete velocities. In LBM, the fluid is modeled 
by a single-particle distribution function (DF). The evolution 
of the DF is governed by a lattice Boltzmann equation: [22] 

For the D2Q9 model, the discrete velocities are defined by: 
 

 
Here, c and tδ  are the lattice spacing and the lattice time step, 
respectively. The equilibrium function for the density 
distribution function (fi

eq) for the D2Q9 model in presence of 
porous media and considering the MHD effect is given by: 

 

Where � is the porosity of the medium and B is the magnetic 
field and ωi is weighting factor and cs is the speed of sound 

and defined by 
3

s

c
c = [22]. The equilibrium distribution 

function (fi
eq) shown in Eq. (4) has porosity � and B

r
 to 

include the effects of porous medium and MHD effect. The 
weighting factors are: 

Similarly to density equilibrium function (fi
eq), for calculating 

the magnetic field, a magnetic equilibrium function (hi
eq) has 

been introduced: [28]  

For solving the velocity and magnetic field the bellow 
equation must be considered [29]: 

Where λi is the weighting factor of magnetic field and defined 
in fifth direction by: 
 

Likewise the equilibrium distribution functions for the thermal  
energy distribution gi

eq can be written as: [35] 
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Where υ is the viscosity of the fluid, K is the permeability; G 
is the acceleration due to gravity, Da is the Darcy number, and  
H is the characteristic length. The total body force ( F

r
) 

encompasses the viscous diffusion and the inertia due to the 
presence of a porous medium, and an external force. It is 
proved that the most suitable choice for the forcing term Fi 
(see (1)) to obtain correct equations of hydrodynamics is 
taking: [34] 

The forcing term Fi shown in Eq. (14) defines the fluid 
velocity u

r
 as: 

 

 
As shown in  (11), F

r
contains the velocity ur . Equation (14) 

is a nonlinear equation for the velocity ur . By using a 
temporal velocity vr , one can solve this nonlinear problem as 
follows [22]:  

 
The fluid density and temperature and magnetic field are 
defined as: 

 
Through the Chapman-Enskog procedure, in the limit of small 
Mach number, Eq. (1) recovers the continuity equation: 

 
Equation (2) describes the evolution of the thermal energy and 
leads to the energy equation: [35] 

 
Whereα  is the thermal diffusivity which is defined as[35]: 

 
Moreover Equations (6) and (7) describes the progress of the 
magnetic field and leads to the:[29]  

 
And η is the magnetic resistivity which is defined as:   

 
III. CODE VALIDATION 

The present study validated by performing simulation for 
the analysis of natural convection in rectangular cavity filled 
with porous medium in the absence of a magnetic field which 
is reported by Seta [33] and Nithiarasu [36]. Table I clearly 
shows good agreement of the average Nusselt number 
between present study and the works done by Seta [33] and 
Nithiarasu [36]. Also in Fig 2, the current results are compared 
with the outcomes of Rudraiah et al [9]. Rudraiah et al [9] 
numerically investigated the effect of a horizontal magnetic 
field on natural-convection flow inside a rectangular enclosure 
without porous medium. These effects provide credence to the 
accuracies of the present numerical solutions. 

 
IV. RESULTS AND DISCUSSIONS 

Numerical computations in the present study were carried 
out for Pr=0.7. The effect of magnetic field on the buoyancy-
driven convection of an electrically conducting fluid in a 
porous medium cavity with constant porosity parameter is 
investigated by LBM approach. 

 
TABLE I 

COMPARISON OF THE PRESENT RESULTS WITH PREVIOUS STUDY 
 

Da Ra ε Present 
study Seta[33] Nithiarasu 
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104 

0.4 1.408 1.339 1.408 

0.6 1.543 3.55 3.55 

0.9 1.685 1.659 1.64 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Average Nusselt number versus at Gr = 2×104 under various 

strengths of the harizontal magnetic field.. 
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The present computation will be focused on the parameters 

having the following ranges:The Darcy number from Da= 10-4 
to 10-1, the porosity from ε=0.4 to 0.8. 

Uniform grid is employed in the present study. The 
buoyancy force is naturally more effective for higher Rayleigh 
numbers. The Lorentz force reduces velocities and suppresses 
the convection. In general fluid circulation is strongly 
dependent on the Hartmann number as shown in Fig.3. 

 Figs.3 illustrates the effect of Hartmann number (Ha), on 
the streamlines (on the left) and isotherms (on the right) . To 
highlight on the effect of Ha, the thermal Rayleigh number is 
kept constant Ra = 105, Pr = 0.7, Da = 10-2 and ε = 0.6 
 

 
 

 
 

Fig.3  shows the very strong clockwise cell is observed as 
well as the streamlines are very crowded near the vertical 
walls in the absence of magnetic field.  As the magnetic field 
is imposed Ha = 25, the flow strength slightly reduces and the 
streamlines penetrates slightly to the cavity core.As the 
Hartmann number increases, the flow strength is damped more 
and the streamlines penetrate more towards the cavity center. 
The isotherm lines is paralleled with side wall at the Ha=50. 
The effect of magnetic field and porosity on the velocity 
profile for different values of the Hartmann number and Darcy 
number at mid-section of the cavity is depicted in Fig. 4. The 
presence of a magnetic field within the cavity results in a 
force, opposite to the flow direction, which tends to resist the 
flow. This is clearly noticed from the vertical velocity profiles 
at the center of the cavity. 

The results of diverse values of Da on velocity distribution 
have been illustrated in Fig.4 b. The results show with 
decreasing the Da, velocity reaches to steady distribution. As 
well Fig .5 illustrates that with increasing the Hartman number 
the pattern flow changing same. In general for a constant value 
of the Rayleigh number, the average Nusselt number decreases 
with increasing values of the Ha. 

 
V. CONCLUSION 

In this paper, natural convection in a porous cavity in the 
presence of the vertical magnetic field is studied numerically. 
The lattice Boltzmann method is employed for the solution of 
the present problem. The streamlines and the isotherms for 
various parametric conditions are presented and discussed. It is 
found that the heat transfer is strongly dependent on the 
strength of the Darcy number and the magnetic field. The effect 
of the magnetic field is found to reduce the heat transfer and 
fluid circulation within the cavity. In general, for fixed value of 
Rayleigh number, the average Nusselt number decreases with 
rising values of the Hartmann number.  

 
 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 

 
 

 
 

 
 

Ha=0 

 

 
 

Ha=25 

 

 
 

Ha=50 

 
Fig. 3 Streamlines (on the left), isotherm lines (on the right) for 
the vertical magnetic field with Ra = 104 , Da = 10-2  and ε = 0.6 

  
(a) (b) 

Figure 4. Vertical velocity profiles at mid-plane of the cavity for Ra=104 ,ε= 0.6 
and  a)Ha=25 b)Da = 10-2 

 

 
Fig. 5  Local Nusselt number for Ra=10 4 ,ε=0.6 and 

Da=10-2 
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