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Abstract—This paper investigates experimental and numerical 

study of the airflow characteristics for vortex, round and square 
ceiling diffusers and its effect on the thermal comfort in a ventilated 
room. Three different thermal comfort criteria namely; Mean Age of 
the Air (MAA), ventilation effectiveness (E), and Effective Draft 
Temperature (EDT) have been used to predict the thermal comfort 
zone inside the room. 

In experimental work, a sub-scale room is set-up to measure the 
temperature field in the room. In numerical analysis, unstructured 
grids have been used to discretize the numerical domain. 
Conservation equations are solved using FLUENT commercial flow 
solver. The code is validated by comparing the numerical results 
obtained from three different turbulence models with the available 
experimental data. The comparison between the various numerical 
models shows that the standard k-ε turbulence model can be used to 
simulate these cases successfully. After validation of the code, effect 
of supply air velocity on the flow and thermal field could be 
investigated and hence the thermal comfort. The results show that the 
pressure coefficient created by the square diffuser is 1.5 times greater 
than that created by the vortex diffuser. The velocity decay 
coefficient is nearly the same for square and round diffusers and is 
2.6 times greater than that for the vortex diffuser.  

 
Keywords—Ceiling diffuser; Thermal Comfort; MAA; EDT; 

Fluent; Turbulence model. 

I.  INTRODUCTION 
OWADAYS, the majority of people spend up to 90% of 
their time indoors. Knowledge and prediction of indoor 

climate conditions are important for optimizing indoor climate 
and thermal comfort, and it is also important for energy 
conservation [1-4]. Indoor air quality and thermal comfort are 
two important aspects of indoor environmental quality that 
receive considerable attention.  

Design conditions of HVAC as specified by ASHRAE [5] 
are temperature, and relative humidity should be held in the 
range of (20-24oC), and 50% to 60%, respectively. Alongside, 
positive air pressure should be maintained, and all air 
exhausted with no recirculation is preferred [6].  

The mean age of air (MAA) is one of the most important 
parameters describing the ventilation efficiency in a space. It 
is defined as the average time for air to travel from a supply 
outlet area to any location in a ventilated room [7-9]. Its 
concept is assumed to be equal zero (100% fresh) at inlet. It is 
obvious that the high values of MAA mean that part of the air 
circulates for a long time inside the room. So, the values of the 
MAA reflect the efficiency of ventilation system. 
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Spitler [10] studied the effect of the inlet velocity on air 
distribution in a full scale unoccupied ventilated room has 
dimensions of 5m long, 3m wide, and 3m high. The supply 
and exhaust outlets are each 0.333m wide and 1.0m high. 
Nielsen [11] described experiments with wall-mounted air 
terminal devices. This study gave expressions for the velocity 
distribution close to the floor. The velocity at the floor was 
influenced by the flow rate to the room, the temperature 
difference and the type of the diffuser. Lobutova et al. [12] 
investigated the large-scale circulations of airflow in room 
with three dimensional particle tracking velocimetry (3D 
PTV). The 3D PTV system consisted of four CMOS cameras, 
two flash lamps, and an image recording and data processing 
system. In such study, velocity time series, probability density 
functions (PDF) of the velocity, and acceleration fluctuations 
had been calculated. Posner et al. [13] compared results from 
relatively simple three-dimensional numerical simulations 
(CFD) with Laser Doppler Anemometry (LDA) and Particle 
Image Velocimetry (PIV) experimental measurements of 
indoor air flows in a one-tenth sub-scale model room. The 
results of the numerical simulations and velocimetry 
measurements showed how the obstructions can greatly 
influence the air flow and contaminant transport in a room.  

Al-Hamed [3] employed a computer program for simulating 
3D room ventilation problems to predict the mean air 
temperatures and air velocities for a number of realistic supply 
air inlet and outlet locations. The k-ε turbulence model was 
considered. The flow field predicted by this model was 
validated by experimental measurements done by other 
investigator. His study showed that the PMV occupancy 
comfort response was more favorable.  

Srebric and Chen [14] used a simplified method to describe 
flow and thermal information from eight various diffusers 
which were nozzle diffuser, slot (linear) diffuser, valve 
diffuser, displacement diffuser, round ceiling diffuser, square 
ceiling diffuser, vortex diffuser, and grille diffuser. The box 
method was suitable for most of the diffusers with an 
appropriate box size. The momentum method was applied well 
for five diffusers. Since the momentum method was simpler 
than the box method, the momentum method should be used, 
whenever it is applicable. 

Zhou and Haghighat [15] developed a simplified method to 
define the boundary conditions at the inlet of the swirl 
diffuser. With this method a round diffuser was divided into 
six triangular sectors with equal air discharge rate, while 
various air throw orientation angles were assigned to each 
sector. Comparisons between smoke airflow visualization and 
CFD predictions demonstrated the effectiveness of the current 
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The results of this analysis are summarized in Table I. 

 
TABLE I 

 UNCERTAINTY OF COMPOUND VARIABLE 
Compound Variable Uncertainty (%) 
Air Density 0.066 
Discharge flow coefficient 2.245 
Ventilation effectiveness 6.88 

 
C. Experimental Procedure 

In the present work, mainly three types of ceiling diffusers 
are involved. These diffusers are namely: vortex (swirl), 
round, and square ceiling diffusers. Each diffuser is installed 
and investigated sequentially. For each diffuser, the various 
inlet air temperatures in range from 18 to 24oC and volume 
flow rates are adjusted to study its effects on the airflow 
characteristics. The range of the studied inlet air velocity is 
from 1 to 4 m/s. 

The model room is prepared and adapted to the conditions 
to the investigated cases. Zero readings of all instruments 
should be settled. The air conditioning unit is switched on so 
that the cold air is to be supplied to the room through the 
supply inlet duct. The air flow rate is then adjusted by means 
of the vortex control gate. 

On achieving the steady state conditions, a number of 
temperatures are carried out subsequently averaged. The 
number of successive measurements depends on the degree of 
steadiness of the temperature. The system is allowed time to 
stabilized after each adjustment. It is considered steady state 
when temperatures agreed within 2% between two consecutive 
readings taken every 5 min. The steady state has been 
observed about 15 min. After achieving the steady state, the 
pressure drop across orifice meter, the room air inlet 
temperature, and T-type thermocouple readings inside the 
room are recorded. These procedures are then repeated 
through succession value of the input flow rate of the supply 
air. 

 
III. NUMERICAL MODEL 

The numerical study is conducted to simulate the airflow in 
a sub-scale room. The steady, viscous, 3D governing 
equations, and the mean age of air transport equation 
representing the flow field are solved. The FLUENT package 
includes FLUENT 6.3.26 [17] and GAMBIT 2.4.6 are used to 
simulate the problem under this consideration. Indoor airflow 
calculations use the Boussinesq approximation for thermal 
buoyancy [18].  The  approximation  takes  air  density  as 
constant  in  the momentum  terms  and considers  the 
buoyancy influence  on air movement  by  the difference  
between  the local air  weight  and  the pressure  gradient.  
With  an eddy-viscosity model,  the  indoor  airflow  is 
described  by  the  following  time-averaged  Navier-Stokes  
equations  for  the  conservation  of mass,  momentum,  
energy,  and species transport equation [19-21].  

 

 Continuity Equation 
 

 ∂Vi
∂xi

=0                                        (4) 
 

where Vi= mean velocity component in xi-direction; xi = 
coordinate (for i =1, 2, 3, xi corresponds to three perpendicular 
axes). 

 Momentum Equation 
 

 డఘ௏೔
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where ρ= air density; Vj = velocity  component  in xj-
direction;  P = pressure; µeff = effective dynamic viscosity; β 
= thermal expansion  coefficient of air; to = temperature  of a  
reference point;  t=  temperature; gi = gravity  acceleration  in  
i-direction. The last term on the right side of the Eq. (2) is the 
buoyancy term. The turbulent influences are lumped into the 
effective viscosity as the sum of the turbulent viscosity µt and 
laminar viscosity µl: 
 

µeff= µt +µl                            (6) 
 

 Energy  Equation 
The energy equation describes the temperature distribution 

throughout the non-isothermal flow domain. This equation is 
derived from the first law of thermodynamics to the elemental 
central volume as following [3]: 

 
ப൫ρC౦୳ౠT൯

ப୶ౠ
ൌ ப

ப୶ౠ
ቆλୣ୤୤ ൬பT

ப୶ౠ
൰ቇ ൅ ST                   (7) 

 
where Cp is the specific heat at constant pressure (J/kg.°C), 
ST is the source term (W/m3), and λeff is the effective thermal 
conductivity (W/m.°C) which can be expressed as, 
 

λୣ୤୤ ൌ λ୪ ൅ λ୲                                (8) 
 

where λl is the laminar thermal conductivity and λt is the 
turbulent thermal conductivity which depends on the local 
flow field. 

 Concentration of species equation 
 

∂ρVjC

∂xj
= ∂
∂xj

൤Γc,eff ൬∂C
∂xj

൰൨ +Sc                        (9) 

 
where C is species  concentration; Γc,eff is effective  turbulent 
diffusion coefficient for  C; SC  is source  term of C. Similar 
method  to  the energy equation  is  used  to determine the 
effective diffusive coefficient for species  concentration  
ΓC,eff ൌ μeff

Sceff
 where  effective  Schmidt number, Sceff,  is equal 

to 1.0. 
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b- Effect of the inlet velocity 
Fig. 8 shows the relationship between the pressure 

coefficient and Reynolds number for the three diffusers. Both 
pressure coefficient and Reynolds number can be calculated 
from Eq. (16) and Eq. (17) respectively.  

 
݌ܥ ൌ ∆௉

భ
మఘ௏మ                                      (16) 

ܴ݁ ൌ ఘ௏ௗ
ఓ

                            (17) 
 

From Fig.8, it is clear that all three tested diffusers have the 
same trend. The highest values of Cp are belonging to the 
square diffuser while the minimum values are belonging to the 
vortex one. 

The dimensionless mean velocity Vm/Vo is plotted with the 
Reynolds number Re as in Fig. 9. From this figure, it is clear 
that the dimensionless mean velocity Vm/Vo increases with 
Reynolds number in case of the round diffuser only. 

 

 
Fig. 8 Pressure coefficient at different Reynolds number for different 

diffusers 
 

 
Fig. 9 Dimensionless mean velocity at different Reynolds numbers 

for different diffusers at same inlet temperature and relative humidity 

Fig. 10 shows the effect of the Reynolds number on the 
dimensionless mean temperature. The room seems as cool in 
case of the vortex diffuser because the cold air jet from the 
vortex diffuser is focused and concentrated on the middle of 
the room. 

 
Fig. 10 Dimensionless mean room temperature at different Reynolds 
numbers for different diffusers at same inlet temperature and relative 

humidity 

Fig. 11 shows the relation between the dimensionless mean 
relative humidity in the room and Reynolds number. As the air 
inlet velocity increases by 1m/s, the mean value of the relative 
humidity in the room increases by about 2%. This can be 
explained referring to Fig. 10 where the vortex diffuser 
demonstrates the highest value of the dimensionless mean 
relative humidity because it has the lowest room temperature 
while the value of the square and the round diffuser is nearly 
same. 

 

 
Fig. 11 Dimensionless mean room relative humidity at different 

Reynolds numbers at same inlet temperature and relative humidity 

Fig. 12 shows the mean effective draft temperature within 
the room at different inlet velocities for the three studied 
diffusers. From this figure, it can be seen that, as the inlet 
velocity increases, the mean value of the effective draft 
temperature decreases and vice verse. The vortex diffuser 
demonstrates the highest values where the round diffuser 
demonstrates the lowest one at Reynolds number over 30,000 
out of the comfort zone. 
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Fig. 12 Mean effective draft temperature in room at different 

Reynolds numbers 

Fig.13 shows the distribution of the mean age of the air in 
the room for the three considered diffusers. From this figure, it 
can be seen that the maximum values of the mean age of the 
air in case of the vortex and round diffuser is nearly the same 
and larger than the square diffuser. This can be attributed to 
the buoyancy force raises the flow upward and it has a great 
effect on the path lines of the air inside the room. The 
stratification of the MAA is well established velocity in case 
of the square diffuser. 

The lower values of the mean age of the air don’t allow the 
air to exchange the heat with the walls. This means that the air 
is extracted from the room with low temperature. Hence, the 
ventilation effectiveness for the square diffuser is small as 
shown in Fig. 14. This in turn results in the highest ventilation 
effectiveness for the round diffuser. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 13 Mean age of the air distribution in sec for (a) vortex, (b) 
round, and (c) square diffuser 

 

 
Fig. 14 Ventilation effectiveness at different Reynolds number at 
same inlet temperature and relative humidity for studied diffusers 

c-  Diffuser velocity decay coefficient  
The performance of the jet created by the diffuser can be 

characterized by a single constant, namely jet velocity decay 
coefficient (K value). The jet velocity decay coefficient can be 
defined as [22]: 

 
௏
௏೚

ൌ ܭ ඥ஺೚
௫

         (18) 
 

The diffuser velocity decay coefficient (K) can be 
determined by plotted the dimensionless velocity versus the 
dimensionless distance (x/√Ao) as shown in Fig. 15 where the 
values of the decay coefficient can be directly determined 
when the curve intersects the dimensionless velocity at the 
unity (i.e. V/Vo =1) as outlined in reference [22]. The values 
of the velocity decay coefficient are tabulated in Table II. 
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