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Abstract—In this work Artificial Intelligence (AI) techniques 
like Fuzzy logic, Genetic Algorithms and Particle Swarm 
Optimization have been used to improve the performance of the 
Automatic Generation Control (AGC) system. Instead of applying 
Genetic Algorithms and Particle swarm optimization independently 
for optimizing the parameters of the conventional AGC with PI 
controller, an intelligent tuned Fuzzy logic controller (acting as the 
secondary controller in the AGC system) has been designed. The 
controller gives an improved dynamic performance for both 
hydrothermal and thermal-thermal power systems under a variety of 
operating conditions. 

Keywords—Artificial intelligence, Automatic generation control, 
Fuzzy control, Genetic Algorithm, Particle swarm optimization, 
Power systems.  

I.  INTRODUCTION

  modern power system network consists of a number of 
utilities interconnected together and power is exchanged 

between utilities over tie line by which they are 
interconnected. An electrical power system must be 
maintained at a desired operating level characterized by 
nominal frequency, voltage profile and load flow conditions. 
It is kept in its nominal state by close control of real and 
reactive powers generated by the controllable sources in the 
system. Due to the inherent characteristics of changing loads, 
the operating point of power system may change very much 
during a daily cycle. The generation changes must be made to 
match the load perturbation at the nominal conditions, if the 
normal state is to be maintained [1].  

The mismatch in the real power balance affects primarily 
the system frequency but leaves the bus voltage magnitude 
essentially unaffected. In a power system, it is desirable to 
achieve better frequency constancy than obtained by the speed 
governing system alone. This requires that each area should 
take care of its own load changes, such that schedule tie power 
can be maintained. The problem of controlling the real power 
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output of electric generators in this way is termed as 
Automatic Generation Control (AGC). AGC is summarily 
defined as: “The regulation of the power output of electric 
generators within a prescribed area in response to changes in 
system frequency and/or tie line loading, or the relation of 
these two with each other, so as to maintain the schedule 
system frequency and/or the established interchange with 
other areas within predetermined limits” [2]. 

The operating point of the power system changes in a daily 
cycle due to the inherent nature of the changing load. This 
poses the difficulty in optimizing the conventional controller 
gains. Thus it may fail to provide the best dynamic response. 
The growth in size and complexity of electric power systems 
along with increase in power demand has necessitated the use 
of intelligent systems that combine knowledge, techniques and 
methodologies from various sources for the real-time control 
of power systems [1-7]. In practice different conventional 
control strategies are being used for AGC. Yet, the limitations 
of conventional PI and PID controllers are: slow and lack of 
efficiency and poor handling of system nonlinearities. 
Artificial Intelligence techniques like Fuzzy Logic, Artificial 
Neural networks, Genetic Algorithms (GA) and Particle 
Swarm Optimization (PSO) can be applied for automatic 
generation control, which can overcome the limitations of 
conventional controls as PID control [8-10]. Table-I gives the 
different aspects/applications in a controller design that can be 
effectively handled by various AI techniques. In addition, we 
can use the AI techniques in combination (e.g. PSO tuned 
Fuzzy controller or GA tuned Fuzzy controller) to take 
advantages of more than one technique in a single controller. 

Section II gives the basic principles of GA and PSO for 
parameter tuning applications and also introduces the concept 
of ‘Combined Intelligence’. Section III gives the selection of 
tunable parameters in a Fuzzy controller and the basis of 
parameter tuning. Section IV gives the simulation model and 
the comparison of results for both hydrothermal and thermal-
thermal two area power systems. The relative performance of 
GA tuning and PSO tuning have been compared. The last 
section gives the concluding remarks. 

TABLE I
APPLICATION OF VARIOUS INTELLIGENT SYSTEMS

Application Fuzzy 
systems 

ANNs GA PSO 

Optimization problems          
** **

Predictions      
**

Control Applications    **    

Design of a Robust Controller for AGC
with Combined Intelligence Techniques
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II.  APPLICATION OF COMBINED INTELLIGENCE
TECHNIQUES

The genetic algorithm (GA) and particle swarm 
optimization (PSO) are the two very effective methods for 
problems related to optimization of non-linear objective 
functions [11-13]. Both of these algorithms search from many 
points in the search space at once and yet continually narrow 
the focus of the search to the areas of the observed best 
performance. These algorithms can be applied to solve a 
variety of optimization problems that are not well-suited for 
standard optimization algorithms, including problems in 
which the objective function is discontinuous, non-
differentiable, stochastic, or highly nonlinear [13]. 

The genetic algorithm is a global search technique for 
solving optimization problems, which is essentially based on 
the theory of natural selection, the process that drives 
biological evolution. The flowchart in Fig.1 explains the 
process in brief. 
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DONE
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Fig. 1 Flow chart of genetic algorithm

Particle swarm optimization (PSO) is a population based 
stochastic optimization technique inspired by social behavior 
of bird flocking or fish schooling. The system is initialized 
with a population of random solutions and searches for optima 
by updating generations. In PSO, the potential solutions, 
called particles, fly through the problem space by following 
the current optimum particles. In PSO technique, each 
individual adjusts its flying according to its own flying 
experience and its companion’s flying experience. Each 
particle keeps track of its coordinates in the problem space 
which are associated with the best solution (fitness) it has 
achieved so far. This value is called ‘pbest’. Another "best" 

value that is tracked by the particle swarm optimizer is the 
best value, obtained so far by any particle in the population. 
This best value is a global best and called ‘gbest’. The 
flowchart given in Fig. 2 explains the process. 

Fig. 2 Flow chart of particle swarm optimization 

The following equations give the present velocity and 
position vectors: 

v[]  =  v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() 
* (gbest[] - present[])                            (1) 

present[]  =  persent[] + v[]                        (2)  
Where, v[] = particle velocity, 
persent[] = current particle (solution), 
rand () = random number between (0,1),  
c1, c2 are learning factors, usually c1 = c2 = 2 
and pbest[] and gbest[] are defined as discussed earlier.  

Artificial Intelligence Techniques like Fuzzy logic, Genetic 
Algorithms and Particle Swarm Optimization have been used 
to improve the performance of the Automatic Generation 
Control system [1-2]. Instead of applying Genetic Algorithms 
and Particle swarm optimization independently for optimizing 
the parameters of the Automatic Generation Control (AGC) 
system and   Fuzzy logic controller (acting as the secondary 
controller in the AGC system), we can use the those 
techniques in combination (e.g. PSO tuned Fuzzy controller or 
GA tuned Fuzzy controller) to tap in the advantages of both 
the Artificial Intelligence techniques [12]. The main 
objectives of the work thus are: 
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(a) To consider interconnected hydrothermal system and 
Thermal-thermal systems in which the fuzzy logic 
controller (FLC) is used. 

(b) To examine tunable parameters of the FLC in order to get 
optimal dynamic response of the systems considered 
above.

(c) To optimize the tunable parameters with Artificial 
intelligence techniques such as GA and PSO.  

(d) To evaluate the dynamic responses of the two systems 
with optimized FLC considering load disturbances and to 
compare them with those obtained with the conventional 
PI and Fuzzy controllers.

III.  INTELLIGENT TUNING OF FUZZY LOGIC CONTROLLER

Fuzzy logic controller (FLC) can be described by five 
different functional blocks, namely fuzzification, rule-base,
data-base, inference engine, and de-fuzzification [14]. Since
the inputs and the outputs of a fuzzy controller must be real 
numbers in order to match the sensors’ and the actuators’ 
requirements, fuzzification of input variables and de-
fuzzification of output variables are necessary. The purpose of 
fuzzification is to transform the real sensor data into fuzzy 
linguistic terms so that further fuzzy inferences can be 
performed according to the rule-base.  Commonly used set of 
fuzzy terms are shown in Fig. 3. 

NB              NM NS ZE       PS      PM PB

G-G 0

Fig. 3 membership functions of fuzzy terms 

A.  Scaling Factor Tuning 
In order to simplify the notation, the fuzzy linguistic terms 

in the premise of the rules in the rule-base are sometimes 
defined within the range of [0, 1]. As a result, it is necessary 
to normalize the actual variations of the sensor inputs into the 

interval of [0, 1]. The input scaling factors, G E and G CE , are
determined by the experts or designers so that the universe of 
discourse of the input variables are mapped into the unity 
interval as shown in Fig. 4. 

NB              NM NS ZO       PS      PM PB

10-1

G x

Fig. 4 Normalized linguistic terms 

It can be easily seen that an input scaling factor of G 1  and a 
normalized set of linguistic terms are equivalent to a set of 

linguistic terms with the universe of discourse between 

11

1,1
GG .    

Now, the scaling factors G E  and G CE  are altered during the 

tuning process and become 
1
EG   and

1
CEG   such that: 

1
EG = EK x G E                     (3)  

And
1
CEG = CEK x G CE                  (4)

Where, KE and KCE the scaling factors.

Therefore, the fuzzy controller can be represented as shown in 
the Fig. 5. 
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Fig. 5 Tuning parameters for input scaling factors 

The input scaling factors are the coefficients between the 
universe of discourse of the input variables and the unity 
interval, in which are supposedly constant if the range of input 
variations, are approximately known. For an auto-tuning or 
learning controller design, most of the parameters are not 
known and the tuning of a set of parameters according to a 
learning scheme, such as the genetic algorithm, may be able to 
improve the system performance and derive a better 
controller.

B.  Membership Function Width Tuning 
The performance of the Fuzzy Logic controller depends on 

a designed knowledge base in which membership functions 
and fuzzy control rules are defined [14].  Consider a fuzzy 
variable with fuzzy sub sets like (NL, ZE, PL) which are 
formed by their membership functions. Once the shape and 
width and center position of the membership functions are 
chosen, they cannot be altered in the control process. As we 
change the membership function width, the output of the 
controller also varies. We can see in the Fig. 6 that the centers 
of the membership functions remain unaltered but the widths 
are altered and thus the membership function width is 
identified as one of the tunable parameters. 
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Fig. 6 Membership function width variation 

IV.  ILLUSTRATIVE SYSTEM EXAMPLES AND RESULTS

Investigations have been carried out on an interconnected 
hydro-thermal and thermal-thermal power systems. Off-line 
simulation model has been developed using MATLAB® [15].
Fig. 7 shows the small perturbation transfer function model of 
a two-area hydrothermal system with the system data. Fig. 8 
gives the structure of the Fuzzy logic controller, shown as 
‘Subsystem’ and ‘Subsystem1’ in the main model of Fig. 7. 
The additional system data has been given in the appendix. 

In case of thermal-thermal system, the two thermal areas 
have the same parameters as that of the thermal area of the 
given hydrothermal system. The dynamic responses were 
obtained through simulation. Tuning of the proposed FLC has 
been done using both GA and PSO algorithms. Tables II and 
III give the optimized values of scaling factors using GA and 
PSO. Subsequently, the responses of the resultant intelligent 
controllers have been compared; the following notations have 
been used in the plots of the system responses: 

delf1 = change in frequency of Area-1. 
delf2 = change in frequency of Area-2. 
delP12 = change in tie line power. 
gat = GA tuned;  
psot = PSO tuned. 

TABLE II
OPTIMIZED VALUES OF SCALING FACTORS USING GA

 System Investigated x y 
Hydro thermal system 1 1 Controller 

parameters 
not Optimized 

Thermal-thermal 
System 

1 1 

Hydro thermal system 4.222 10.200 Controller 
Parameters 
Optimized by  GA 

Thermal-thermal 
System 

4.231 5.000 
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Fig. 7 MATLAB® model of the interconnected hydrothermal system 
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Fig. 8 Fuzzy controller within the ‘Subsystem’ 

TABLE III
OPTIMIZED VALUES OF SCALING FACTORS USING PSO

A.  Hydro Thermal System 
The optimized controllers namely PSO tuned FLC and GA 

tuned FLC controllers have been tried out for AGC of a two 
area hydro-thermal system and thermal-thermal system. Figs. 
9-12 show comparison of dynamic responses between 
modified FLC, PSO tuned FLC and GA tuned FLC 
considering 1% step perturbation in thermal area as well as in 
the hydro area, for a sampling period of 2 sec and with R=2.4 
in thermal area and 4.8 in hydro area. Analyses of these 
responses clearly reveal that GA tuned FLC provides better 
dynamic responses compared to the other two. Presence of 
FLC in both areas guarantees zero steady state error; but GA 
tuned FLC provides less peak overshoot and the settling time 
is also less irrespective of the location of the perturbation in 
either area or in both the areas.

50 100 150 200 250 300 350 400 450 500

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

TIME (S)

D
E

L 
F1

FREQUENCY RESPONSE IN AREA 1

delf1
delf1gat
delf1psot

Fig. 9 Frequency response in area 1 

50 100 150 200 250 300 350 400 450

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

TIME (S)

D
E

L 
F2

FREQUENCY RESPONSE IN AREA 2

delf2
delf2gat
delf2psot

Fig. 10 Frequency response in area 2
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Fig. 12 Error response 

 System Investigated x y 

Hydro thermal system 1 1 Controller 
parameters  
not Optimized Thermal-thermal System 1 1 

Hydro thermal system 4.286 5.000 Controller 
Parameters  
Optimized by  
PSO

Thermal-thermal System 4.312 4.522 
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B.  Thermal-Thermal System 
The optimized controllers namely PSO tuned FLC and GA 

tuned FLC have been examined for AGC of a two area 
thermal-thermal system. Figs. 13-15 show comparison of 
dynamic responses considering 1% step perturbation in both 
the areas for a sampling period of 2 seconds with R=2.4 in 
thermal area and 4.8 in hydro area. It was observed again that 
the GA tuned FLC gives better dynamic responses. Further, it 
was also observed that GA tuned FLC provides less peak 
overshoot and smaller value of settling time irrespective of the 
location of the perturbation in the control area. The measure 
of the performance is finally indicated by the error response 
(i.e. integral of square of errors abbreviated as ‘ise’) as shown 
in Fig. 15. 

The robustness of the controller is also tested by studying 
its performance for different area capacities in both hydro and 
thermal interconnected systems, while the disturbances were 
considered in both the areas. Simulation results reveal that the 
intelligent tuned controller adjusts well to these variations in 
the system operating conditions, which are expected in the 
real world situation.  

Summary of the useful observations from the observed results 
can be stated as under: 
(i) The effect of tunable parameters of Fuzzy controllers (in 

both the areas of a two area interconnected system) was 
studied in detail and the combined intelligence 
techniques were used for parameter tuning. By combined 
intelligence here we mean the GA tuned Fuzzy controller 
and PSO tuned Fuzzy controller. The tunable parameters 
were: Membership function width and the Scaling factor. 

(ii) The dynamic performance of a Fuzzy controller is better 
than a conventional PI controller in terms of ensuring a 
zero steady-state error in frequency and tie line power 
flow deviation. This is further enhanced by the parameter 
tuning by combined intelligence techniques. 

(iii) Out of the two tunable parameters of the Fuzzy logic 
controller, the scaling factor tuning proves to be more 
effective for obtaining the best dynamic response. 

(iv) Between the two tuning algorithms, GA tuning gives 
better performance compared to the PSO tuning. It was 
also observed that the GA  optimized Fuzzy Logic 
Controller (where the parameter tuned is scaling factor) 
gives the best dynamic response even in case where load 
changes occur in both areas of a thermal-thermal and 
hydrothermal interconnected systems. 

(v) As the generating capacity of an area increases, the peak 
deviation (of frequency and tie flow) and the amplitude 
of oscillation increases and settling time almost remains 
constant or decreases slightly. 

(vi) As the capacity of the area increases, the speed 
regulation parameter ‘R’ of the hydro area (in case of a 
hydro-thermal system) needs to be increased to maintain 
system stability. 

(vii) The optimally tuned Fuzzy Logic Controller is well 
suited even for the situations where the change in area 
capacity effect comes into picture. 
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Fig. 13 Frequency response in area 1 
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V.  CONCLUSIONS

Artificial Intelligence Techniques have been used either in 
designing of the new controllers (such as ANN or Fuzzy 
controllers) or for the tuning of the existing controllers (e.g. 
GA tuned or PSO tuned PI controllers) to improve the 
performance of the Automatic Generation Control systems. In 
the present work an innovative method of using both the 
above techniques simultaneously, termed as ‘Combined 
intelligence technique’, has been tried out. After the designing 
a Fuzzy controller, and ensuring that it performs better than a 
conventional PI controller; it has been tuned through GA and 
PSO to improve its dynamic performance further. This 
implementation proves to be successful for both thermal-
thermal system and hydrothermal systems.  

APPENDIX
NOMINAL PARAMETERS OF HYDROTHERMAL SYSTEM INVESTIGATED

f = 60 Hz D1 = D2 = 8.33*10-3 p.u. MW/ Hz 

Tg = 0.08 sec R1 = R2 = 2.4 Hz/p.u. MW 

Tr = 10.0 sec Tt = 0.3 sec 

H1 = H2 = 5 sec Kp = 1.0 

Pr1 = Pr2 = 2000 MW Kd = 4.0 

Ptie, max = 200 MW Ki = 5.0 

Kr = 0.5 Tw = 1.0 sec 

** In case of thermal-thermal system, the two thermal areas are assumed to 
have the same parameters (unless specified otherwise). 
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