
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

205

Abstract—When programming in languages such as C, Java, etc.,

it is difficult to reconstruct the programmer's ideas only from the
program code. This occurs mainly because, much of the programmer's
ideas behind the implementation are not recorded in the code during
implementation. For example, physical aspects of computation such as
spatial structures, activities, and meaning of variables are not required
as instructions to the computer and are often excluded. This makes the
future reconstruction of the original ideas difficult. AIDA, which is a
multimedia programming language based on the cyberFilm model, can
solve these problems allowing to describe ideas behind programs
using advanced annotation methods as a natural extension to
programming. In this paper, a development environment that
implements the AIDA language is presented with a focus on the
annotation methods. In particular, an actual scientific numerical
computation code is created and the effects of the annotation methods
are analyzed.

Keywords—cyberFilm, development environment, knowledge
engineering, multimedia programming language

I. INTRODUCTION

N traditional text-based programming languages such as C,
Java and the like, computation is described by only a

sequence of commands. The objective of these commands are to
command the computer, not to explain about the program to
programmers.

When programmers try to understand the program, they often
rely on document. Therefore, programmers should create and
maintain high-quality documents. To maintain its quality,
suitable modification of the document is required according to
change of the program. But in reality, this activity is not
performed appropriately [1]. As a result, programmers must
eventually understand the program by reading its code [2]. One
of the ways of making programs readable and understandable is
by using identifier names and comments [3]. But, if these names
and comments are not appropriate, the programmers will be
confused easily. Furthermore, it is often useful to understand
and visualize the structural construction of the environment
related to the actual phenomenon. Without this knowledge, not
only much labor is spent, but also misunderstanding occurs. To
explain such feature, identifier names and comments should be
written in detail and understandable.

Nobuhiko Hishinuma is with the Computer Science and Engineering

Department, University of Aizu (e-mail: m5141201@u-aizu.ac.jp).
Jun Igari is with the Computer Science and Engineering Department,

University of Aizu (e-mail: m5141202@u-aizu.ac.jp).
Rentaro Yoshioka is with the Computer Science and Engineering

Department, University of Aizu (e-mail: rentaro@u-aizu.ac.jp).

But if structure of computation is spatial and complex, it is so

difficult to describe the structure by only text. Images can be
useful in describing such features, but the reliability of
document is low.

Even if a programmer has sufficient background knowledge
of the computation, still it is a hard task to map the line of code
of its implementation with one's understanding. This difficulty
occurs since he spatial and temporal aspects of physical
phenomena are not coded into the instructions of a
programming language. Example of such aspects includes
structure, flow of computation and meaning of variables.
Suppose, for example, there is computation about particle
collision. Some programmers know the particles perform either
fission, scatter, or capture upon collision. But, if there are no
such direct explanations in words in the implemented program,
the programmers need to analyze the program line by line. It is
difficult to understand the programmer's ideas only from
implemented code [1]. Therefore, as much knowledge related to
the environment, objective of the computation, and the
implementation strategies should be recorded along with the
program.Even if a programmer knows the computation well, the
programmer can be easily confused by unrelated codes. In many
cases, there are such codes in a program just to make it work.
For example, input operations are not so important to
understand the computation itself. But, these codes often take
up rather great part of programs. Therefore, programmers spend
energy to distinguish main computation from supportive codes.
To focus on only main computation, a mark to distinguish them
will be required.In the past, various programming approaches
such as object-, aspect-, component- oriented programming
have been provided. But, they are methods to just coordinate
program or reduce waste. To address these problems, not only
that, but the program should be able to record high-level
knowledge. But traditional programming languages and
methods based on them cannot have the knowledge in the
program, because their specification is just to write sequential
commands in only text.To solve these problems, the Animations
and Images for Development of Algorithms (AIDA) language
and Active Knowledge Studio (AKS) have been developed. The
AIDA language is a multimedia programming language based
on cyberFilm method. The cyberFilm method is a format to
represents computation using multimedia components (icons,
animations and extended-texts) [6]–[8]. A computation usually
has various features such as structure, flow, data, and interface.
The AIDA language consists of four different languages and
they represent these features: the Language of Algorithmic

Nobuhiko Hishinuma, Jun Igari, and Rentaro Yoshioka

A Method to Annotate Programs with High-Level
Knowledge of Computation

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

206

Dynamics (LAD), the Language of Algorithmic Commands
(LAC), the Language of Algorithmic Interface (LAF) and the
Language of Algorithmic Text (LAT). The LAD represents the
structure and flow of computation. The LAC represents the
activity of computation by variables and formulas. The LAF
represents the operation related to input/output data. The LAT
represents all the previously described features all together in a
condensed form. AKS is a development environment to
implement program in the AIDA language, and provides five
views to edit and browse programs in the four languages and
execute the program: the Skeleton View for LAD, the Formula
View for LAC, the IO View for LAF, the Integrated View for
LAT and the Run View to transform the AIDA language
program into other languages such as C, Java, FORTRAN and
execute the program.The AIDA language can not only
implement the computation like other languages, but also allows
to attach annotations about the programmer's ideas. AKS
supports this effectively by taking advantage of multiple views.
The AIDA language and AKS is not only to computation, but
also to model and document them. Using the AIDA language on
AKS, programmers can extract programmer's ideas from
implemented programs in such a way as browsing documents. In
this paper, the AIDA language is applied to an example
computation which is to solve the Boltzmann equation by the
Monte Carlo method [4], [5], and comparing it with FORTRAN
(a traditional text-based programming language). Through this
comparison, the effectiveness in understanding computation
ideas of the AIDA language and AKS are analyzed and
represented.This paper consists of follows. In section 2,
overview of the target computation is explained. In section 3,
the Integrated View and its effectiveness is explained by
representing examples applied to the example computation and
comparing with FORTRAN program. In section 4, the functions
of other views (Skeleton, Formula, IO and Run view) are
explained, and the availability of AKS as a development
environment is represented. Conclusion and future work are
shown in section 5.

II. TARGET COMPUTATION

A. Over View

The example computation we consider is the computation to
solve the Boltzmann equation by the Monte Carlo method. The
purpose of this computation is to obtain effective increase of
neutrons by solving Boltzmann equation with Monte Carlo
approach. In addition, some control data and statistics data are
also computed in this computation. In this section, the
computation is explained with the flow shown in Fig. 1.

This computation says the Boltzmann equation, but the
expression of the Boltzmann equation is not appeared. The
Boltzmann equation is known as integrodifferential equation
with considering elementary steps such as streaming, collision,
fission, scatter, and capture of neutron particles. But, in the
computation to solve by Monte Carlo method, the equation is
not required because each particle are traced and calculated
stochastically.

Fig. 1 Flow of Computation

This computation simulates particles transportation in space
with range of x-axis (the length of y-axis and z-axis is infinity).
The particles move and collide in this space randomly. First, the
particle position after random-walking is determined, and the
position is checked if particle is within the range of this space. If
the particle is not in the range, the particle is judged as leaked
particle, and the random-walking is terminated. If the particle is
in the range, the particle collision is computed.

The colliding particle performs a reaction from three types of
reaction:
1) Fission: the colliding particle splits into some particles and

changes the moving direction.
2) Scatter: the colliding particle changes the moving

direction.
3) Capture: the colliding particle is captured by other particle.

If the particle is captured, the random-walking is terminated.
If fission or scatter is selected, the random-walking is continued
until the particle goes to out of range or captured. After the
random-walking, particles position which are neutrons emitted
in this generation are determined for next generation, and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

207

effective increase rate is recorded. Then, the loop of the
generation is carried out the number of times which is decided
before computation. Finally, average and standard deviation of
effective increase rate are computed.

B. Implementation Method

To implement this computation in existing programming
language such as FORTRAN, some information are often added
or transformed. Through the process, some problems to
understand computation are raised. In this section, these
problems are represented and explained.

1. Structure of Computation

The main structure of this computation is spatial structure
which represents moving particles in space with range of x-axis.
Then, almost all flow and activities of the computation shown in
previous section is done based on this structure. In the
FORTRAN program, the information of this structure is
separated into some parts such as variables and formulas of
computation. Fig. 2 represents transformation of the structure to
FORTRAN specification.

Fig. 2 Structure in FORTRAN’s Implementation

The structure which is initially intended by the programmer is
shown in the left of Fig. 2 as an image. This image represents the
structure of moving particles in space with range of x-axis. But
to actualize this structure by the FORTRAN language,
programmers will write program codes such as the right of Fig.
2. In this example, the variables xs(mxnf) and xsn(mxnf) store
the x-position of the mxnf number of particles, and x which also
store x-position of particle is for calculation. The variable xd is
for x-width of range. In the activities, first expression represents
random-move of the particle (rr and xm decided by random
number). The condition which is second command in the
activity represents that this structure has range. The final
activity represents the relationship between xsn(mxnf) and x (i.e.
xsn(mxnf) is to store position for next generation and x is for
calculation).

These transformed parts of information are spread in the
FORTRAN program but they are intimately related to each
other. Therefore, programmers will spend much time and
energy trying to read the program with up and down to
understand the structure. Moreover, to understand the some
activities such as these particles have collision in this space,
programmers will spend more cost to read. The structure of
computation is very important factor to understand program and

objectives of computation, so various programmers try to
understand it before understanding computation. But, these
difficulty and complexity to read program and understand the
structure increase the cost of understanding computation and
sometimes raises misunderstanding.

Fig. 3 Number of Lines par Part

2. Sub Computation for Application

A computation often includes computations which are
unrelated to its objective directly such as input, output,
initialization, and finalization. In many cases, such supportive
computations for main computations are not needed to
understand the computation. But, such sub computation often
takes up various part of program and prohibits programmers
from reading codes. Fig. 3 represents number of lines par part in
the FORTRAN program applied to the example computation. In
this program, over 60 percent of program is used for sub part
and they are intermixed. These unnecessary computations to
understand often confuse programmers when they read and
modify the program.

(a) Original Idea

(b) Implementation Method

Fig. 4 Flow of Particle Collision

3. Optimization for Computation

The one of the most important points of the example
computation is to determine type of reaction when particles are
collided. If the program is implemented according to this
original idea devotedly, it may have conditional branching to
compute a reaction from three types of reaction randomly and
reiterate it such as Fig.4 (a). But, there are some cases that the
implementation disobedient to the flow of original ideas for
optimization. The FORTRAN program is also disobedient to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

208

this flow about particle collision. In this program, particle
collision is computed by follow steps (Fig. 4 (b) shows this
flow):
1) recode number of new particles and each position (zero to n

new particles are generated randomly)
2) reduce weight of the particle
3) terminate the particle if it has low weight

Using features of neutron, this computation has succeeded to
reduce unless part for implementation and quicken processing
speed of simulation. But, at the same time, this computation lost
information about the original idea as particle collision and
three types of reaction. As a result, programmers will have
difficulty to find where the computation is done in the
FORTRAN program. It becomes difficult to understand the
original idea of computations from the FORTRAN program.

III. ANNOTATION METHOD FOR HIGH-LEVEL KNOWLEDGE

To describe programmer's ideas before implementation, the
AIDA language have some annotation methods. In this section,
the annotation methods to describe programmer's ideas are
analyzed and represented through comparing the Integrated
View with FORTRAN.The Integrated View, which is one of the
views for the AIDA language, can represent all the features of
computation in a condensed form, and can edit and browse the
computation optimally. For example, the Integrated View
applied to the example computation is shown in Fig. 4. In the
Integrated View, all computations are represented by icon and
extended text which can represent some particular text such as
mathematical symbols. This Integrated View needs only
one-and-a-half A4 paper compared with that the FORTRAN
program needs four A4 papers. The Integrated View consists of
header and body section.

1. Header Section

Header Section is the top rectangular of Integrated View and
represents all structures and variables of computation.
Structures are represented by structure name, structure icon and
parameters of structure. The type of structure (e.g. 2D-Grid,
3D-Grid and moving particles) is determined by structure icon.
If there are same types of structure in the Integrated View, they
are identified by parameters and name of structure. On the other
hand, variables are declared by structure icon, format icon and
name. Structure icon of variable represents shape of variable
such as scalar, 1-, 2-, 3-D grid, moving particles. Format icon of
variable represents the type of variable such as integer, float,
double float, string. In addition, variables can also have
information of unit and group by icon [11]. For example, the
variable xd of Fig. 2 can have Nanometer (nm) as unit and width
as group using icon.

2. Body Section

Body Section is under the header section and represents flows
and activities of computation. The body section has some
hierarchical sections called scene which are structuralized by
parts of computation. Each scene is represented by scene icon
and terminal section which consists of node icons and formulas.

Fig. 5 Integrated View or The Example Computation

Flow of computation is represented by scene icon and node in
header. For example, the scene Random Walking and Particle
Collision in Fig. 5 are flow for the structure moving particles
and the node icon represents each particle in the structure. But
the temporal scene likes Generation Loop (While Loop) in Fig.
5 represents structure by themselves.

A. Structure of Computation

Even if a programmer has sufficient knowledge of the
computation, it is difficult to relate an implemented code to
physical phenomenon such as spatial structures and activities.
The reason is that such spatial and temporal information is
fragmented and embedded in code with other information.

To solve this problem, the AIDA language provide
environment to describe such structural construction without
fragmentation. For example, programmers can select and
determine structures of computation intuitively compared with
traditional programming languages such as FORTRAN using
the Integrated View. Fig. 6 is example to represent the structures
and variables of the example computation. In this example, the
information related to the structure, which is moving particles in
space with range, is shown in the upper right in Fig. 6. This

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

209

structure has three parameters, w, n and group. w means the
range of space, n means the number of particles, and group
means the number of types of particle. xsn and xs are variables
based on this structure to store the position of particles. On the
other hand, the other section of Fig. 6 shows observer structure
which is related to others such as computations of statistics and
observation.

Fig. 6 Example of Header

Compared with the declaration of structures in the
FORTRAN program (Fig. 2), the information of the structures is
gathered in this section. Therefore, this approach enables users
to understand what types of structure are computed in the
program before reading the body of code. In addition, users can
image and understand spatial structures intuitively by graphical
icons even if they are not specialist of the example computation.
This approach will reduce the cost and misunderstanding in the
process of preparation to understand main computation.

Fig. 7 Types of Sub Computation

B. Sub Computation for Application

As the structure in the Integrated View, flows of computation
can be understood by scene icons before starting to read the
contents of scenes. Activities of computation such as formulas
will be also more easily to understand than FORTRAN, because
the Integrated View can use mathematical symbols such as (e.g.
Σ, π and χρ).

The Integrated View can represent not only implementation
easily, but also can represent explanation of computations
effectively. Scenes can have icons and comments as annotations
to explain the computation. Then, users can display the
annotations by folding scenes for implementation. Using this
function, users can obtain two types of effectiveness.

The one is that users can read program with obtaining the part
of main computation. Parts of computation can be classified into

main computation and sub computation. The main computation
means important part to understand computations. On the other
hand, the sub computation means not important part to
understand it such as input, output, initialization, and
finalization. The main computation is based on the example
computation, so there is just as various types for that as there are
computations. But, we can anticipate types of the sub
computations to some extent. For example, some types of sub
computation are represented in Fig. 7 with icons. These icons
for sub computation are predefined and programmers can apply
unified it to a program. Therefore, programmers can assess the
code is important or not easily.

Fig. 8 represents example to show the different between the
FORTRAN program, unfolded scenes, and folded scenes. The
top section of Fig. 8 (b) and Fig. 8 (c) represent activity of input
operations for variables of observer structure, and another
section represents activity of initialization for variables of
observer structure.

(a) FORTRAN

(b) Folded

(c) Unfolded

Fig. 8 Sub Computation Scenes and Its Explanation Scenes

Compared with the FORTRAN program such as Fig. 8 (a),
the computations are distinguishable on the basis of prepared
icons to explanation. Therefore, users can not only avoid
reading meaningless computation, but also minimize size of
program. Additionally, whenever users want to read or change
such sub computation scene, users can find the point with the
explanation. This approach will reduce the cost for searching
main computation from large program.

About the other effectiveness of annotations is represented in
next sub section.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

210

C. Optimization for Computation

The other effectiveness to use the annotations for scenes is
that users can read and understand both implementation method
and original ideas which are initially intended by programmers.

(a) FORTRAN

(b) Folded

(c) Unfolded

Fig. 9 Scenes for Implementation Method and Original Ideas

Fig. 9 also represents flow and activity of the example
computation, but this scene is compute main computation for
particle collision. This unfolded scene is implemented by
implementation methods such as the FORTRAN program (Fig.
9 (a)). Therefore, there are three scenes to explain computation
to calculate number of particles genesis, computation weight of
particle and termination particle according to its weight in Fig.9
(c). This scene also has annotations which are represented by

Fig. 9 (b). Whereas the scenes of Fig. 9 (c) explain the behavior
of computation, this annotation represents information based on
programmer's original ideas; particle collision and three types of
reaction. As you can see, the Integrated View can assign and
represent computation based on implementation methods as
well as computation according to the ideas. As a result, users
can understand the rationale behind computation instead of
documents. This function can record the programmer's
knowledge and purpose, and propose it to readers without
misunderstanding. This approach will reduce the risk of
misunderstanding the computation and the cost to understand
the computation.

In addition, the deference from the FORTRAN program is
that not only the computation is represented by visual
components, but also some formulas which are not necessarily
to understand or modify computation are hided. For example,
Fig. 10 represents the FORTRAN program and a scene of the
Integrated View about computation to calculate number of
particles genesis. In FORTRAN program, nfi which means
number of particles genesis is computed at first. Then, xsn
which means the positions of generated particles is recorded
(L220 to L222) and nfis which means total number of particles
is uploaded (L224). But, only the computation to calculate
number of particles genesis is appeared in the Integrated View
and the others are hided. Because, even if the way of the
computation for number of particles genesis is changed, the
computation for recording positions and uploading total number
will be needed. As a result, the Integrated View becomes more
compactness than traditional programming languages and
provides strong information encapsulation.

Fig. 10 Extraction of Reconstructive Computation

IV. OTHER METHOD FOR ANNOTATION

Besides the Integrated View, AKS have four views to
understand features of computation and to control the program
more easily. Fig. 11 represents relationship between views of
AKS. These views are synchronized with together, and they can
support to watch and edit the implementation. The Skeleton
View, the Formula View and the IO View represent features of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

211

computation along with the Integrated View. The deference of
these views and the Integrated View, the Integrated View
represents whole features of combination but these views
represent each specialized features. The Run View does not
represent features of combination supported by the AIDA
language but it is also important view for AKS. After
implementation in the AIDA language, it is executed in the Run
View. In this section, description of each view is represented.

1. Skeleton View

The Skeleton View focuses on structures and flows of
computation according to LAD. Detailed information of flow of
the computation can be watched by animations and images as
annotations. For example, Fig. 12 is image of random-walking
scene which can be watched on the Skeleton View. If only the
Integrated View, users may be able to understand only the
overview of structure, but users can understand even the more
detailed action of structure using this view. Additionally, users
can also edit the information in this view.

2. Formula View

The Formula View focuses on formulas and activities of
computation according to LAC. When users want to edit
formulas, this view will be often used. Of cause, basic formula
can be edited in the Integrated View, but there are some
particular formulas such as structured expression in
specification of the LAC.

For example, Fig. 13 represents two types of structured
formula. Fig. 13 (a) represents computation for conditional
branching. This formula means that the expression

ntotwstwsouwsou *+= is computed when nsbbatch = is
true. Fig. 13 (b) represents computation for long or complex
expression and means (1). Using these particular formulas,
programmers can describe expressions more briefly without
temporal variables. The Formula View is prepared to edit such
expression easily because the view is specialized to edit and
watch formulas.

)(
atempr

K
wG

θ
σεα
−

+= (1)

3. IO View

The IO View focuses on input and output between the AIDA
language and any components according to LAF. In this view,
users can select, edit and check input/output files. If
input/output files are selected on the Integrated View, the
information is reflected to this view.

4. Run View

There is the Run View to build and execute the program
written in the AIDA language with AKS. This view generates
program code in other programming language by template
programming [9], [10]. After the program generation, the AIDA
language becomes compile-able program as other languages.
Then, the program can be executed on this view directly. The IO
data can be confirmed on the IO View.

Fig. 11 Relationship of Views

Fig. 12 Image the Flow of Computation

(a) Inline IF Formula

(b) Inline Pattern Formula

Fig. 13 Structured Formulas

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:2, 2012

212

V. CONCLUSION AND FUTURE WORKS

In summary, we have proposed three types of annotation
methods to record programmer's ideas with high-level
knowledge. The first annotation method is to describe the
structural construction of the application environment definition
and icons. As a result, even if programmers do not have prior
knowledge, they can understand the structure easily without
analyzing program code. The second annotation method is to
readily distinguish between main computation and supportive
computation by marking them a predefined classification of tags.
Using this annotation method, programmers can focus on main
computation to analyze easily. The last annotation method is to
explain high-level knowledge such as objectives of computation
and implementation strategies. Through understanding of the
knowledge, programmers can understand the programmer's
original ideas and its relationship with implementation methods.
Previously, a programmer's efficiency and quality of
understanding a program depends mostly on individual ability.
But, these annotation methods enable programmers who
develop the program to suggest the way of understanding the
computation. This approach reduces not only labor of
understanding, but also the risk of misunderstanding.

In addition, a development environment called AKS for the
AIDA language has been implemented to demonstrate these
methods, and the computation to solve the Boltzmann equation
by the Monte Carlo method was modeled and implemented. As
an evaluation, these methods and applications have obtained a
good reputation from the developers using the example
computation. Additionally, through the development of AKS,
various program specification and visualization techniques in
each view were developed.

As future work, the development of AKS is continuing along
with the improvement of the AIDA language. In particular,
more information to understand programmer's ideas such as
about variables, formulas and input/output contents will be
implemented. Other functions, such as searching of annotations,
debugging a program at the level of annotations are also
considered.

ACKNOWLEDGMENT

The sample computation and related FORTRAN program
presented in this paper were provided from Japan Nuclear
Energy Safety Organization (JNES). We appreciate JNES for
their cooperation. Also we thank our laboratory members for
their support in developing AKS.

REFERENCES

[1] T. D. LaToza, G. Venolia and R. DeLine, “Maintaining Mental Models: A
Study of Developer Work Habits”, ICSE, New York, 2006.

[2] T. D. LaToza, D. Garlan, J. D. Herbsleb and B. A. Myers, “Program
Comprehension as Fact Finding”, ESEC-FSE, New York, 2007.

[3] D. Lawrie, C. Morrell, H. Feild and D. Binkley, “What's in a Name? A
Study of Identifiers” In 14th International Conference on Program
Comprehension.

[4] S. A. Dupree, S. K. Fraley, “A Monte Carlo Primer: A Practical Approach
to Radiation Transport”, Kluwer Academic/Plenum Publisher, New York,
2002.

[5] S. A. Dupree, S. K. Fraley, “A Monte Carlo Primer Volume 2: A Practical
Approach to Radiation Transport”, Kluwer Academic/Plenum Publisher,
New York, 2004.

[6] N. Mirenkov, A. Vazhenin, R. Yoshioka, T. Ebihara, T. Hitomi and T.
Mirenkova “Self-Explanatory Components: a New Programming
Paradigm”, International Journal of Software Engineering and
Knowledge Engineering, 11(1), 5-36, 2001.

[7] N. Mirenkov and R. Yoshioka, “Visual Computing Within Environment
of Self-explanatory Components”, Soft Computing Journal 7, 20-32,
2002.

[8] N. Mirenkov and R. Yoshioka, “A Multimedia System to Render and Edit
Self-Explanatory Components”, The Journal of Internet Technologies,
3(1), 1-10, 2002.

[9] Y. Watanobe, N. Mirenkov and R. Yoshioka, “Algorithmic CyberFilm
Language”, FCST '06, Japan-China Joint Workshop, 2006.

[10] T. Ebihara, “A Program Generator from CyberFilm Specifications”,
unpublished, University of Aizu, 2005.

[11] K. Takeshige, “A Language of Embedded Clarity Support”, unpublished,
University of Aizu, 2011.

