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I-Vague Groups
Zelalem Teshome Wale

Abstract—The notions of I-vague groups with membership and
non-membership functions taking values in an involutary dually
residuated lattice ordered semigroup are introduced which generalize
the notions with truth values in a Boolean algebra as well as those
usual vague sets whose membership and non-membership functions
taking values in the unit interval [0, 1]. Moreover, various operations
and properties are established.
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I. INTRODUCTION

THE notion of fuzzy groups defined by A. Rosenfeld[13]

is the first application of fuzzy set theory in Algebra.

Since then a number of works have been done in the area of

fuzzy algebra.

M. Demirci[5] studied vague groups. R. Biswas[2] defined

the notion of vague groups analogous to the idea of Rosenfeld

[13]. H. Khan, M. Ahmad and R. Biswas[8] studied vague

groups and made some characterizations. N. Ramakrishna[10]

studied vague groups and vague weights.

The vague sets of W. L. Gau and D. J. Buehrer[6] and

Atanassov’s[1] intuitionistic fuzzy sets are mathematically

equivalent objects[3]. In this paper we prefer the terminology

of vague sets as the algebraic study intiated by Biswas[2]

follows the terminology of vague sets.

K. L. N. Swamy[14], [15], [16] introduced the concept

of dually residuated lattice ordered semigroup(in short DRL-

semigroup) which is a common abstraction of Boolean al-

gebras and lattice ordered groups. The subclass of DRL-

semigroups which are bounded and involutary(i.e having 0

as least, 1 as greatest and satisfying 1-(1-x) = x) which is

categorically equivalent to the class of MV-algebras of C. C.

Chang[4] and well studied offer a natural generalization of the

closed unit interval [0, 1] of real numbers as well as Boolean

algebras. Thus, the study of vague sets (tA, fA) with values

in an involutary DRL-semigroup promises a unified study of

real valued vague sets and also those Boolean valued vague

sets[11].

In his thesis T. Zelalem[19] studied the concept of I-vague

sets. In this paper using the definition of I-vague sets, we de-

fined and studied I-vague groups where I is an involutary DRL-

semigroup. In this paper we shall recall some basic results in

[14], [15], [19] without proof. Moreover, notation, terminology

and results of [19] are used in this paper. Throughout this

paper, we shall denote the identity element of a group (G, .)

by e and the order of an element x of G by O(x). Moreover,

for x ∈ G, < x > denotes the cyclic group generated by x.
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II. PRELIMINARIES

Definition 2.1: [14] A system A = (A, +,≤,−) is called

a dually residuated lattice ordered semigroup(in short DRL-

semigroup) if and only if

i) A = (A, +) is a commutative semigroup with zero”0”;

ii) A = (A, ≤) is a lattice such that

a + (b ∪ c) = (a + b) ∪ (a + c) and a + (b ∩ c) =
(a + b) ∩ (a + c) for all a, b, c ∈ A;

iii) Given a, b ∈ A, there exists a least x in A such that

b+x ≥ a, and we denote this x by a - b (for a given a, b this

x is uniquely determined);

iv) (a-b) ∪ 0 + b ≤ a ∪ b for all a, b ∈ A;

v) a - a ≥ 0 for all a ∈ A.

Theorem 2.2: [14] Any DRL-semigroup is a distributive

lattice.

Definition 2.3: [19] A DRL-semigroup A is said to be

involutary if there is an element 1(6= 0)(0 is the identity w.r.t.

+) such that

(i) a + (1 − a) = 1 + 1;

(ii) 1 − (1 − a) = a for all a ∈ A.

Theorem 2.4: [15] In a DRL-semigroup with 1, 1 is

unique.

Theorem 2.5: [15] If a DRL-semigroup contains a least

element x, then x = 0. Dually, if a DRL-semigroup with 1

contains a largest element α, then α = 1.

Throughout this paper let I = (I, +,−,∨,∧, 0, 1) be a dually

residuated lattice ordered semigroup satisfying 1−(1−a) = a
for all a ∈ I.

Lemma 2.6: [19] Let 1 be the largest element of I. Then

for a, b ∈ I

(i) a + (1- a) = 1 .

(ii) 1 - a = 1 - b ⇐⇒ a = b.

(iii)1 - (a ∪ b ) = (1- a) ∩ (1- b).

Lemma 2.7: [19] Let I be complete. If aα ∈ I for every

α ∈ ∆, then

(i) 1 −
∨

α∈∆

aα =
∧

α∈∆

(1 − aα).

(ii) 1 −
∧

α∈∆

aα =
∨

α∈∆

(1 − aα).

Definition 2.8: [19] An I-vague set A of a non-empty

set G is a pair (tA, fA) where tA : G → I and fA : G → I
with tA(x) ≤ 1 − fA(x) for all x ∈ G.

Definition 2.9: [19] The interval [tA(x), 1 − fA(x)] is

called the I-vague value of x ∈ G and is denoted by VA(x).
Definition 2.10: [19] Let B1 = [a1, b1] and B2 =

[a2, b2] be two I-vague values. We say B1 ≥ B2 if and only

if a1 ≥ a2 and b1 ≥ b2.
Definition 2.11: [19] An I-vague set A = (tA, fA) of

G is said to be contained in an I-vague set B = (tB , fB)
of G written as A ⊆ B if and only if tA(x) ≤ tB(x) and

fA(x) ≥ fB(x) for all x ∈ G. A is said to be equal to B

written as A = B if and only if A ⊆ B and B ⊆ A.
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Definition 2.12: [19] An I-vague set A of G with

VA(x) = VA(y) for all x, y ∈ G is called a constant I-vague

set of G.

Definition 2.13: [19] Let A be an I-vague set of a non

empty set G. Let A(α, β) = {x ∈ G : VA(x) ≥ [α, β]} where

α, β ∈ I and α ≤ β. Then A(α, β) is called the (α, β) cut

of the I-vague set A.

Definition 2.14: [19] Let S ⊆G. The characteristic

function of S denoted as χ
S

= (tχ
S
, fχ

S
), which takes

values in I is defined as follows:

tχ
S
(x) =

{

1 if x ∈ S ;

0 otherwise

and

fχ
S
(x) =

{

0 if x ∈ S ;

1 otherwise.

χ
S

is called the I-vague characteristic set of S in I. Thus

Vχ
S
(x) =

{

[1, 1] if x ∈ S ;

[0, 0] otherwise.

Definition 2.15: [19] Let A = (tA, fA) and B =
(tB , fB) be I-vague sets of a set G.

(i) Their union A ∪ B is defined as A ∪ B = (tA∪B , fA∪B)
where tA∪B(x) = tA(x) ∨ tB(x) and

fA∪B(x) = fA(x) ∧ fB(x) for each x ∈ G.

(ii) Their intersection A ∩ B is defined as A ∩ B =
(tA∩B , fA∩B) where tA∩B(x) = tA(x) ∧ tB(x) and

fA∩B(x) = fA(x) ∨ fB(x) for each x ∈ G.

Definition 2.16: [19] Let B1 = [a1, b1] and B2 =
[a2, b2] be I-vague values. Then

(i) isup{B1, B2} = [sup{a1, a2}, sup{b1, b2}].
(ii) iinf{B1, B2} = [inf{a1, a2}, inf{b1, b2}].

Lemma 2.17: [19] Let A and B be I-vague sets of a set

G. Then A ∪ B and A ∩ B are also I-vague sets of G.

Let x ∈ G. From the definition of A∪B and A∩B we have

(i) VA∪B(x) = isup{VA(x), VB(x)};
(ii) VA∩B(x) = iinf{VA(x), VB(x)}.

Definition 2.18: [19] Let I be complete and {Ai: i ∈ △}
be a non empty family of I-vague sets of G where Ai =

(tAi
, fAi

). Then

(i)
⋂

i∈△

Ai = (
∧

i∈△

tAi
,

∨

i∈△

fAi
)

(ii)
⋃

i∈△

Ai = (
∨

i∈△

tAi
,

∧

i∈△

fAi
)

Lemma 2.19: [19] Let I be complete. If {Ai: i ∈ △}
is a non empty family of I-vague sets of G, then

⋂

i∈△

Ai and

⋃

i∈△

Ai are I-vague sets of G.

Definition 2.20: [19] Let I be complete and

{Ai = (tAi
, fAi

) : i ∈ △} be a non empty family of I vague

sets of G. Then for each x ∈ G,

(i) isup{VAi
(x) : i ∈ △} = [

∨

i∈△

tAi
(x),

∨

i∈△

(1 − fAi
)(x)].

(ii) iinf{VAi
(x) : i ∈ △} = [

∧

i∈△

tAi
(x),

∧

i∈△

(1 − fAi
)(x)].

III. I-VAGUE GROUPS

Definition 3.1: Let G be a group. An I-vague set A of a

group G is called an I-vague group of G if

(i) VA(xy) ≥ iinf{VA(x), VA(y)} for all x, y ∈ G and

(ii)VA(x−1) ≥ VA(x) for all x ∈ G.
Lemma 3.2: If A is an I-vague group of a group G, then

VA(x) = VA(x−1) for all x ∈ G.

Proof: Since A is an I-vague group of G, VA(x−1) ≥ VA(x)
for all x ∈ G. VA(x) = VA((x−1)−1) ≥ VA(x−1). Hence the

lemma follows.

Lemma 3.3: If A is an I-vague group of a group G, then

VA(e) ≥ VA(x) for all x ∈ G.

Proof: Let x ∈ G.

VA(e) = VA(xx−1) ≥ iinf{VA(x), VA(x−1)} = VA(x) for

all x ∈ G. Therefore VA(e) ≥ VA(x) for all x ∈ G.

Lemma 3.4: Let m ∈ Z. If A is an I-vague group of a

group G, then VA(xm) ≥ VA(x) for all x ∈ G.

Proof: Let m ∈ Z. We prove that VA(xm) ≥ VA(x) for all

x ∈ G. Since VA(e) ≥ VA(x) for all x ∈ G by lemma 3.3,

the statement is true for m = 0.

First we prove that the lemma is true for positive integers by

induction.

Since VA(x) ≥ VA(x), it is true for m = 1.

Assume it is true for m.

VA(xm+1) = VA(xmx) ≥iinf{VA(xm), VA(x)} = VA(x).
Thus VA(xm+1) ≥ VA(x). Hence the statement is true for

non-negative integers.

Suppose that m is a negative integer.

VA(xm) = VA((x−1)−m) ≥ VA(x−1) = VA(x). We have

VA(xm) ≥ VA(x).
Consequently, VA(xm) ≥ VA(x) for all x ∈ G and for every

integer m. Hence the lemma follows.

Lemma 3.5: A necessary and sufficient condition for an

I-vague set A of a group G to be an I-vague group of G is

that VA(xy−1) ≥ iinf{VA(x), VA(y)} for all x, y ∈ G.

Proof: Let A be an I-vague set of G.

Suppose that VA(xy−1) ≥iinf{VA(x), VA(y)} for all

x, y ∈ G. Let x ∈ G.

Then VA(e) = VA(xx−1) ≥iinf{VA(x), VA(x)} = VA(x).
Thus VA(e) ≥ VA(x) for all x ∈ G.

VA(x−1) = VA(ex−1) ≥ iinf{VA(e), VA(x)} = VA(x).
Thus VA(x−1) ≥ VA(x) for each x ∈ G.

Let x, y ∈ G. Then

VA(xy) = VA(x(y−1)−1) ≥iinf{VA(x), VA(y−1)}
≥iinf{VA(x), VA(y)}. Hence

VA(xy) ≥iinf{VA(x), VA(y)} for each x, y ∈ G, so A is an

I-vague group of G.

Conversely, suppose that A is an I-vague group of G. Let

x, y ∈ G. Then

VA(xy−1) ≥ iinf{VA(x), VA(y−1)} = iinf{VA(x), VA(y)}.
Therefore VA(xy−1) ≥iinf{VA(x), VA(y)} for all x, y ∈ G.

Hence the theorem follows.

Lemma 3.6: Let H be a subgroup of G and

[γ, δ] ≤ [α, β] with α, β, γ, δ ∈ I where α ≤ β and

γ ≤ δ. Then the I-vague set A of G defined by

VA(x) =

{

[α, β] if x ∈ H ;

[γ, δ] otherwise

is an I-vague group of G.

Proof: Let H be a subgroup of G. We prove that the I-vague

set A defined as above is an I-vague group of G.
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Let x, y ∈ G. If xy−1 ∈ H , then VA(xy−1) = [α, β].
Hence VA(xy−1) ≥ iinf{VA(x), VA(y)}.
If xy−1 /∈ H , then either x /∈ H or y /∈ H .

Thus, iinf{VA(x), VA(y)} = [γ, δ]. It follows that

VA(xy−1) ≥ iinf{VA(x), VA(y)}. Hence

VA(xy−1) ≥ iinf{VA(x), VA(y)} for every x, y ∈ G.

Therefore A is an I-vague group of G.

Example: Consider the group (Z, +). Let I be the unit

interval [0, 1] of real numbers. Let a ⊕ b = min {1, a + b}.

With the usual ordering (I,⊕,≤,−) is an involutary DRL-

semigroup.

Define the I-vague set A of G as follows:

VA(x) =







[a1, b1] if x ∈ 4Z;

[a2, b2] if x ∈ 2Z − 4Z;

[a3, b3] otherwise

where [a3, b3] ≤ [a2, b2] ≤ [a1, b1] and ai, bi ∈[0, 1] for i
= 1, 2, 3. Then A is an I-vague group of G.

We prove that VA(xy−1) ≥ iinf{VA(x), VA(y)} for all

x, y ∈G.

(i) If xy−1 ∈ 4Z, then VA(xy−1)
= [a1, b1] ≥ iinf{VA(x), VA(y)}.
(ii) If xy−1 ∈ 2Z − 4Z, then there exist x, y ∈ Z such that

x /∈ 4Z or y /∈ 4Z. This implies iinf{VA(x), VA(y)} ≤
[a2, b2] = VA(xy−1).
(iii) If xy−1 = x − y is odd, then one of them must be odd.

Hence iinf{VA(x), VA(y)} = [a3, b3] ≤ VA(xy−1).
Therefore A is an I-vague group of G.

Lemma 3.7: Let H 6= ∅ and H ⊆ G. The I-vague

characterstic set of H, χ
H

is an I-vague group of G iff H

is a subgroup of G.

Proof: Suppose that H is a subgroup of G. By Lemma 3.6, χ
H

is an I-vague group of G.

Conversely, suppose that χ
H

is an I-vague group of G.

We show that H is a subgroup of G. Let x, y ∈ H. Then

Vχ
H

(xy−1) ≥ iinf{Vχ
H

(x), Vχ
H

(y)} = [1, 1]. Hence

Vχ
H

(xy−1) = [1, 1], so xy−1 ∈ H. Therefore H is a subgroup

of G. Hence the lemma follows.

Lemma 3.8: If A and B are I-vague groups of a group

G, then A ∩ B is also an I-vague group of G.

Proof: Let A and B are I-vague groups of G. Then A ∩ B is

an I-vague set of G by lemma 2.17. Now we show that

VA∩B(xy−1) ≥ iinf{VA∩B(x), VA∩B(y)} for each x, y ∈ G.

Let x, y ∈ G. Then

VA∩B(xy−1)= iinf{VA(xy−1), VB(xy−1)}
≥ iinf{iinf{VA(x), VA(y)}, iinf{VB(x), VB(y)}}
= iinf{iinf{VA(x), VB(x)}, iinf {VA(y), VB(y)}}
= iinf{VA∩B(x), VA∩B(y)}.

Thus VA∩B(xy−1) ≥ iinf{VA∩B(x), VA∩B(y)} for every

x, y ∈ G. Therefore A ∩ B is an I-vague group of G.

Lemma 3.9: Let I be complete. If {Ai: i ∈ △} is a non

empty family of I-vague groups of G, then
⋂

i∈△

Ai is an I-

vague group of G.

Proof: Let A =
⋂

i∈△

Ai. Then A is an I-vague set of G by

lemma 2.19.

Now we prove that VA(xy−1) ≥ iinf{VA(x), VA(y)} for

every x, y ∈ G. Let x, y ∈ G. Then

VA(xy−1) = V ⋂

i∈△

Ai
(xy−1)

= iinf{VAi
(xy−1) : i ∈ △}

≥ iinf{iinf{VAi
(x), VAi

(y)} : i ∈ △}
= iinf{iinf{VAi

(x) : i ∈ △}, iinf{VAi
(y) : i ∈ △}}

= iinf{VA(x), VA(y)}.

Hence VA(xy−1) ≥ iinf{VA(x), VA(y)} for every x, y ∈ G.

Therefore
⋂

i∈△

Ai is an I-vague group of G.

Example: Let I = The positive divisors of 30 =

{1, 2, 3, 5, 6, 10, 15, 30} in which

x ∨ y = The least common multiple of x and y.

x ∧ y = The greatest common divisor of x and y.

x′ = 30
x

. Then I = (I,∨,∧,′ , 1, 30) is a Boolean algebra.

Hence it is an involutary DRL-semigroup.

Consider the group G = (Z, +). Then H = (2Z, +) and

K = (3Z, +) are subgroups of G. Define the I-vague groups

A and B of G as follows:

VA(x) =

{

[15, 30] if x ∈ H ;

[5, 10] otherwise

and

VB(x) =

{

[15, 30] if x ∈ K;

[5, 10] otherwise.

Let x = 2 and y = 3. xy = x + y = 5.

VA∪B(xy) = VA∪B(5) = isup{VA(5), VB(5)} = [5, 10].
VA∪B(x) = VA∪B(2) = isup{VA(2), VB(2)} = [15, 30].
VA∪B(y) = VA∪B(3) = isup{VA(3), VB(3)} = [15, 30].
iinf{VA∪B(x), VA∪B(y)} = [15, 30].
But VA∪B(xy) = [5, 10] < [15, 30] =

iinf{VA∪B(x), VA∪B(y)}. Therefore A∪B is not an I-vague

group of G.

The above example shows that the union of two I-vague groups

of G is not an I-vague group of G.

However we have the following.

Lemma 3.10: Let A be an I-vague group of G and B be

a constant I-vague group of G. Then A∪B is an I-vague group

of G.

Proof: Let A be an I-vague group of G and B be a constant

I-vague group of G. Then A∪B is an I-vague set of G by

lemma 2.17.

We prove that A∪B is an I-vague group of G.

Since B is a constant I-vague group of G, VB(x) = VB(y) for

all x, y ∈G. Let x, y ∈ G. Then

VA∪B(xy−1)= isup{VA(xy−1), VB(xy−1) }
≥ isup{iinf{VA(x), VA(y)}, VB(x)}

= iinf{isup{VA(x), VB(x)}, isup{VA(y), VB(x)}}
= iinf{isup{VA(x), VB(x)}, isup{VA(y), VB(y)}}

= iinf{VA∪B(x), VA∪B(y)}.
Thus VA∪B(xy−1) ≥ iinf{VA∪B(x), VA∪B(y)} for all

x, y ∈G. Hence A∪B is an I-vague group of G.

Theorem 3.11: An I-vague set A of a group G is an I-

vague group of G if and only if for all α, β ∈ I with α ≤ β,

the I-vague cut A(α, β) is a subgroup of G whenever it is non

empty.

Proof: Let A be an I-vague set of G.

Suppose that A is an I-vague group of G. We prove that

A(α, β) is a subgroup of G whenever it is non empty.

Let x, y ∈ A(α, β). Then VA(x) ≥ [α, β] and
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VA(y) ≥ [α, β]. Since A is an I-vague group of G,

VA(xy−1) ≥ iinf{VA(x), VA(y)} ≥ [α, β]. Hence xy−1 ∈
A(α, β), so A(α, β) is a subgroup of G.

Conversely, suppose that for all α, β ∈ I with α ≤ β, the non

empty set A(α, β) is a subgroup of G. We prove that A is an

I-vague group of G.

Let x, y ∈ G. Suppose that VA(x) = [α, β] and VA(y) =
[γ, δ]. Then x ∈ A(α, β) and y ∈ A(γ, δ).

Let iinf{VA(x), VA(y)} = [α ∧ γ, β ∧ δ] = [η, ζ]. It

follows that x, y ∈ A(η, ζ). Since A(η, ζ) is a subgroup of

G, xy−1 ∈ A(η, ζ). Thus VA(xy−1) ≥ [η, ζ]. As a result we

have VA(xy−1) ≥ iinf{VA(x), VA(y)}. Therefore A is an

I-vague group of G. Hence the theorem follows.

Theorem 3.12: Let A be an I-vague group of a group G.

If VA(xy−1) = VA(e) for x, y ∈ G, then VA(x) = VA(y).

Proof: Suppose that VA(xy−1) = VA(e) for x, y ∈ G.

VA(x) = VA(xe) = VA(xy−1y) ≥ iinf{VA(xy−1), VA(y)}=

iinf{VA(e), VA(y)} = VA(y). Thus VA(x) ≥ VA(y).
Since VA(xy−1) = VA(yx−1), we have VA(y) ≥ VA(x).
Therefore VA(x) = VA(y). Hence the theorem follows.

The following example shows that the converse of the

preceeding theorem is not true.

Example: Let I be the unit interval [0, 1] of real numbers.

Define a ⊕ b = min {1, a + b}. With the usual ordering

(I,⊕,≤,−) is an involutary DRL-semigroup.

Consider G = (Z, +) and H = (3Z, +). Let A be the I-vague

group of G defined by

VA(x) =

{

[ 12 , 1] if x ∈ H ;

[0, 3
4 ] otherwise.

Let x = 2 and y = 1. VA(x) = VA(y) = [0, 3
4 ] but VA(xy−1) =

VA(2 − 1) = VA(1) = [0, 3
4 ] 6= VA(0).

Theorem 3.13: Let A be an I-vague group of a group G

and x ∈ G. Then VA(yx) = VA(xy) = VA(y) for all y ∈ G
iff VA(x) = VA(e).

Proof: Let A be an I-vague group of a group G and x ∈ G.

Suppose that VA(yx) = VA(xy) = VA(y) for all y ∈ G. Take

y = e. It follows that VA(x) = VA(e).
Conversely, suppose that VA(x) = VA(e).
We prove that VA(yx) = VA(xy) = VA(y) for all y ∈ G.

For any y ∈ G, VA(y) ≤ VA(e) = VA(x).
VA(xy) ≥ iinf{VA(x), VA(y)} = VA(y).
Hence VA(xy) ≥ VA(y).
VA(y) = VA(ey) = VA(x−1xy)

≥ iinf{VA(x−1), VA(xy)}
= iinf{VA(x), VA(xy)}
= iinf{VA(e), VA(xy)}
= VA(xy).

Thus VA(y) ≥ VA(xy). Hence we have VA(xy) = VA(y)
Similarly, VA(yx) = VA(y). Therefore VA(yx) = VA(xy) =
VA(y). Hence the theorem follows.

Lemma 3.14: Let A be an I-vague group of a group G.

Then GVA = {x ∈ G : VA(x) = VA(e)} is a subgroup of G.

Proof: Let A be an I-vague group of G. Since e ∈ GVA,

GVA 6= ∅ and GVA ⊆ G. Let x, y ∈ GVA. We prove that

xy−1 ∈ GVA.

VA(xy−1) ≥ iinf{VA(x), VA(y)} = VA(e). Since VA(e) ≥

VA(xy−1) for all x, y ∈ GVA, VA(xy−1) = VA(e). Thus

xy−1 ∈ GVA. Therefore GVA is a subgroup of G.

Lemma 3.15: Let A be an I-vague group of a group G.

If < x >⊆< y > then VA(y) ≤ VA(x).
Proof: Suppose that < x >⊆< y >. Then x ∈< y >. It

follows that x = ym for some m ∈ Z.

VA(x) = VA(ym) ≥ VA(y). Therefore VA(x) ≥ VA(y).
The following example shows that the converse of lemma 3.15

is not true.

Example: Let I be the unit interval [0, 1] of real numbers. Let

a ⊕ b = min {1, a + b}. With the usual ordering (I,⊕,≤,−)
is an involutary DRL-semigroup. Let G = The klein-4-group

= {e, a, b, c}.

Define the I-vague set A of G by

VA(x) =

{

[ 12 , 1] if x ∈< a > ;

[0, 3
4 ] otherwise.

Then VA(c) = [0, 3
4 ] ≤ [ 12 , 1] = VA(a) but < a > is not a

subset of < c >.

Definition 3.16: Let A be an I-vague group of a group

G. Image of A is defined as ImA = {VA(x) : x ∈ G}.

Since VA(e) ≥ VA(x) for all x ∈ G, VA(e) is the greatest

element of ImA.

Theorem 3.17: Let A be an I-vague group of a group G.

(i) If G is cyclic then ImA has a least element.

(ii) If VA(x) ≤ VA(y) then < x > ⊇< y > and ImA has

a least element then G is cyclic.

Proof: Let A be an I-vague group of G.

(i) Suppose that G is cyclic. Then G = < x > for some x ∈
G. We prove that VA(x) is the least element of ImA.

Let y ∈ G. Then y = xm for some m ∈ Z. VA(y) =
VA(xm) ≥ VA(x). We have VA(x) ≤ VA(y) for every y ∈
G. Thus VA(x) is the least element of image of A. Hence

ImA has a least element.

(ii) Suppose that ImA has a least element say VA(x) for

some x ∈ G. Let y ∈ G. Thus VA(y) ≥ VA(x) for all

y ∈ G. By our condition we have < y >⊆< x >. Since

y ∈< y >, y ∈< x >. Hence G ⊆< x >. Consequently, we

have G = < x >. Therefore G is cyclic.

Lemma 3.18: Let A be an I-vague group of G. Let x, y ∈
G. The two conditions

i) VA(x) = VA(y) ⇒< x >=< y >
ii) VA(x) > VA(y) ⇒< x >⊆< y > are equivalent to

the condition VA(x) ≥ VA(y) ⇒< x >⊆< y >.

Proof: Assume that the two conditions are given.

We prove that VA(x) ≥ VA(y) ⇒< x >⊆< y >.

If VA(x) > VA(y), then < x >⊆< y > by (ii).

If VA(x) = VA(y), then < x >=< y > by (i).

We have < x >⊆< y >.

Conversely, assume that VA(x) ≥ VA(y) ⇒< x >⊆< y >.

(i) Suppose that VA(x) = VA(y).
VA(x) = VA(y) ⇒ VA(x) ≥ VA(y) and VA(y) ≥ VA(x).

⇒ < x >⊆< y > and < y >⊆< x >.

⇒ < x >=< y >.

(ii) VA(x) > VA(y) ⇒ VA(x) ≥ VA(y)
⇒< x >⊆< y > .

Thus VA(x) > VA(y) ⇒< x >⊆< y > . Therefore

(i) and (ii) are equivalent to VA(x) ≥ VA(y) ⇔< x >⊆< y >.
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Theorem 3.19: Let A be an I-vague group of a group G

such that the image set of A is given by ImA = {I0 > I1 >
... > In} and such that

(i) VA(x) = VA(y) ⇒< x >=< y >;

(ii) VA(x) < VA(y) ⇒< x >⊇< y > .
Then G is a cyclic group of prime power order.

Proof: Let A be an I-vague group of a group G. Since ImA

={I0 > I1 > ... > In}, Im A has a least element. By theorem

3.17, G is cyclic. It follows that G ∼= Z or G ∼= Zm for some

m ∈ N . Suppose that G ∼= Z. Consider VA(2) and VA(3).
If VA(2) = VA(3), then < 2 >=< 3 > by (i). But this

is not true since 2 /∈< 3 >. So either VA(2) > VA(3) or

VA(3) > VA(2).
If VA(2) > VA(3), then < 2 >⊆< 3 > by (ii). But this is not

true since 2/∈< 3 >.

If VA(3) > VA(2), then < 3 >⊆< 2 > by (ii). But this is

not true since 3/∈< 2 >. Therefore G is not isomorphic to Z.

Thus G ∼= Zm for some m ∈ N .

Suppose that m is not a prime power. Then there exist prime

numbers p and q such that p 6= q which are factors of m.

Consider VA(p) and VA(q).
Since ImA = {I0 > I1 > ... > In}, either VA(p) ≥ VA(q) or

VA(p) < VA(q). It follows that < p >⊆< q > or

< q >⊆< p >, a contradiction.

Thus our supposition is false. Therefore m is prime power.

Hence the theorem follows.

Theorem 3.20: Let G be a cyclic group of prime power

order then there is an I and an I-vague group A of G such that

for all x, y ∈ G
(i) VA(x) = VA(y) ⇒< x > = < y >;

(ii) VA(x) > VA(y) ⇒< x > ⊆ < y >.

Proof: Suppose that G is a cyclic group of order pn where

p is prime and n ∈ N ∪ {0}. We find an I and an I-vague

group A of G satisfying (i) and (ii).

Step(1) We construct an I and an I-vague set of G.

Let I be the unit interval [0, 1] of real numbers. Define

a ⊕ b = min {1, a + b}
With the usual ordering (I,⊕,≤,−) is an involutary DRL-

semigroup.

Now we construct our I-vague set of G.

Let z ∈ G. Then O(z) = pi where i = 0, 1, 2, ..., n.

Define A=(tA, fA) where tA : G → I and fA : G → I
such that tA(z) = ai, fA(z) = bi where ai, bi ∈[0, 1]

satisfying ai ≤ 1 − bi for i = 0, 1, 2, ..., n. Choose the

intervals I0, I1, ..., In in such a way that I0 > I1 > ... > In

where Ii = [ai, 1 − bi]. Then VA(z) = Ii. Hence A is an

I-vague set of G. We have VA(e) = I0.

Step(2) We show that A is an I-vague group of G.

Let x ∈ G. O(x) = O(x−1) implies VA(x) = VA(x−1).
To show A is an I-vague group of G it remains to prove that

VA(xy) ≥ iinf{VA(x), VA(y)} for every x, y ∈ G.

Let x, y ∈ G. Since G is a cyclic group of order

pn and the order of the subgroup divides the order of the

group, O(< x >) = pj , O(< y >) = pk and

O(< xy >) = pm for some j, k, m ∈ {0, 1, ..., n} say.

Therefore VA(x) = Ij , VA(y) = Ik and VA(xy) = Im.

Moreover, since G is a cyclic group of prime power

order, < x >⊆< y > or < y >⊆< x >.

If < x >⊆< y > then x, y ∈< y >. Hence

< xy >⊆< y >.

If < y >⊆< x > then x, y ∈< x >. Hence

< xy >⊆< x >.

Therefore < xy >⊆< y > or < xy >⊆< x >.

Assume that < xy >⊆< x >. It follows that

O(< xy >) < O(< x >) or O(< xy >) = O(< x >).
If O(< xy >) < O(< x >) then m < j. It follows that

Im > Ij .

Hence VA(xy) = Im ≥ iinf{Ij , Ik}= iinf{VA(x), VA(y)}.

Thus VA(xy) ≥ iinf{VA(x), VA(y)}.

If O(< xy >) = O(< x >) then m = j. Hence Im = Ij .

VA(xy) = Im ≥ iinf{Im, Ik} =iinf{VA(x), VA(y)}.

Thus VA(xy) ≥ iinf{VA(x), VA(y)}.

In both cases VA(xy) ≥ iinf{VA(x), VA(y)} and

VA(x) ≥ VA(x−1) for all x, y ∈ G.

Thus A is an I-vague group of G.

Step(3) We show that A satisfies the conditions (i) and (ii) of

the theorem.

(a) Suppose that VA(x) = VA(y) for x, y ∈ G.

By the definition of A we have O(< x >) = O(< y >).
Since G is a cyclic group of prime power

order, O(< x >) = O(< y >) implies < x >=< y > .

Hence VA(x) = VA(y) ⇒< x > = < y >.

(b) Suppose that VA(x) > VA(y) for x, y ∈ G. Then Ij > Ik.

It follows that j < k.

Hence pj < pk, so O(< x >) < O(< y >).
Since G is a cyclic group of order pn and

O(< x >) < O(< y >), < x >⊆< y >.

Thus VA(x) > VA(y) ⇒< x >⊆< y >.

Therefore A satisfies (i) and (ii).

Hence the theorem follows.
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