
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

240

 

 

  
Abstract—Inner class is a specialized class that defined within a 

regular outer class. It is used in some programming languages such as 
Java to carry out the task which is related to its outer class. The 
functional relatedness between inner class and outer class is always 
the main concern of defining an inner class.  However, excessive use 
of inner class could sabotage the class cohesiveness. In addition, 
excessive inner class leads to the difficulty of software maintenance 
and comprehension. Our research aims at determining the minimum 
threshold for the functional relatedness of inner-outer class.  Such 
minimum threshold is a guideline for removing or relocating the 
excessive inner class. Our research provides a feasible way for 
software developers to define inner classes which are functionally 
related to the outer class.    
 

Keywords—Cohesion, functional relatedness of inner-outer class, 
inner class.  

I. INTRODUCTION 
NNER class is a specialized class that defined within a 
regular outer class [5][6].  It is a feature of some object-

oriented programming languages, such as Java, that is used to 
assist the functionality of outer class. Hence, inner class is 
sometimes referred as helper class of its outer class.  Although 
inner class is a component of outer class, it is different 
functionally from other class components such as attributes 
and methods.  Inner class could be instantiated like a regular 
outer class [6].  Furthermore, inner class has all the features 
that a regular outer class possesses [6]. Inner class can contain 
methods and attributes.  In addition, an inner class can contain 
other inner classes.  

The functional relatedness between inner class and outer 
class is the main concern of defining an inner class. It is 
because the principle of inner class design is to assist its outer 
class. Thus, inner class should be cohesive to its outer class.  
Inner class should be defined to perform similar tasks as its 
outer class does. The functional dissimilarity between inner 
and outer class is always a bad programming practice because 
the former is functionally irrelevant to the outer class.  The 
functional dissimilarity between inner-outer classes suggests 
that there is an excessive use of inner class.  Excessive inner 
classes results in the difficulty of software maintenance and 
comprehension. Excessive inner class lowers the 

 
Sim Hui Tee is with Faculty of Creative Multimedia, Multimedia 

University, Malaysia (e-mail: shtee@mmu.edu.my).  
Rodziah Atan, Abdul Azim Abd Ghani are with Faculty of Computer 

Science and Information Technology, Universiti Putra Malaysia, Malaysia. 

maintainability of software from the perspective of 
analyzability, stability and changeability that is set out by 
Heitlager et al [11]. In addition, excessive inner class adds 
complexity to the software.  Thus, it is favorable to remove or 
relocate the excessive inner class in order to yield high class 
cohesion. A well designed inner-outer class relationship is 
more likely to be fault free and more adaptable [10]. 

Our research aims at determining the minimum threshold 
for the functional relatedness of inner and outer class. The 
proposed minimum threshold in our research is a guideline for 
removing or relocating the excessive inner class.  Our research 
provides a feasible way for software developers to define 
inner classes which are functionally related to the outer class. 

II. RELATED WORKS 
Chidamber and Kemerer proposed Lack of Cohesion in 

Methods (LCOM) to measure the functional relatedness of a 
class component [1][8].  LCOM is based on the number of 
disjoint sets of attributes that are used by the methods [1].  It 
is an inverse cohesion measure. A high value of LCOM 
indicates low cohesion and vice versa [1][9].  High value of 
LCOM is not favorable because it implies that the components 
of a class are not functionally related.  LCOM was proposed 
as a measure for a general class [7], as Chidamber and 
Kemerer did not mention specifically that it can be used for 
inner class.  However, LCOM is incapable of measuring the 
functional relatedness between inner and outer class because it 
is dealing with the common method-attribute connection 
within a single class. 

Briand et al developed RCI that measures the extent to 
which individual methods use attributes or other methods [2].  
RCI value of a class is the ratio of the number of actual 
interaction to that of possible interaction [2][3]. Briand et al 
define interaction as (1) data-data interaction, which is the 
usage between attributes or type declarations; and (2) data-
method interaction, which involves the usage of data by 
methods. However, Briand et al asserts that RCI is not 
applicable to measuring inner class [2]. Furthermore, RCI 
cannot be used to measure the functional relatedness between 
inner and outer class. 

LCOM and RCI measure the cohesion of a class based on 
method-attribute reference.  These metrics do not concern the 
dependence relationships among class components.  Zhou et 
al proposed a Dependence Relationships Based Cohesion 
Metric (DRC) to address the dependence relationships among 

Determining the Minimum Threshold for the 
Functional Relatedness of Inner-Outer Class 

Sim Hui Tee, Rodziah Atan, and Abdul Azim Abd Ghani 

I 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

241

 

 

class components [4].  DRC defines the cohesion of a class as 
the average of dependence degrees of all methods and 
attributes [4]. Similar to LCOM and RCI, DRC is not 
applicable to measuring the functional relatedness between 
inner and outer class. 

Previous works focus on the functional relatedness among 
class components. None of the works investigate the 
functional relatedness between inner and outer class.  Previous 
works shed light primarily on method-attribute usage and 
dependency within a regular class.  Our research fills the 
research gap by proposing a method to determine the 
minimum threshold for the functional relatedness between 
inner and outer classes.  Such minimum threshold will 
eliminate the excessive inner class and hence enhance the 
cohesion of class.    

III. EXCESSIVE INNER CLASSES 
Inner classes are nested within outer class.  Fig. 1 illustrates 

the basic structure of inner class. 
 

 
Fig. 1 Basic structure of inner class 

 
In Fig. 1, class A is an outer class which contains an inner 

class named B.  Fig. 1 represents the most basic structure of 
inner class. However, inner class may contain attributes, 
methods, constructors and further inner classes, as shown in 
Fig. 2. 

 

 
Fig. 2 Inner class with its components 

 
In Fig. 2, class A is the root outer class (First level).  Class 

B is the direct inner class of A; whereas class C is the indirect 
inner class of A.  In class B, there are attributes x and y, 
constructor, method run ( ) and class C.  Class C represents an 
inner class that contained by class B.  Class B is the direct 
outer class of class C.  On the same vein, class C may contain 
further inner classes. 

There is a possibility of excessive inner classes that defined 
in a root outer class when the depth of inner class increases. 
The phenomena of excessive inner class imply that the 

functional relationship between inner and outer class is 
loosely related.  A loose functional relationship of inner-outer 
class is a sign of low cohesion. Fig. 3 depicts a scenario where 
the phenomenon of excessive inner class occurs. 

 

 
Fig. 3 Excessive inner class 

 
An inner class is a functional subset of its outer class.  It is 

supposed to carry out a specific function for its outer class.  In 
Fig. 3, inner class Room has a method getSize() which returns 
the size of room of a house.  The definition of class Room is 
conceptually appropriate because it is functionally related to 
its outer class House. However, class Room contains an inner 
class Fan, which returns the weight of a fan.  Class Fan is not 
functionally related to its outer class Room because it does not 
perform a task which is related to the class Room. Thus, the 
phenomenon of excessive inner class occurs at class Fan. It 
should be removed from the program for the sake of class 
cohesiveness. 

There are some cases where an excessive inner class should 
be relocated instead of being removed from the program. 
Relocation of inner class should be considered when an 
excessive inner class is found functionally related to other part 
of program within the scope of root outer class.  Fig. 4 depicts 
an example of an excessive inner class that needs relocation. 

 

 
Fig. 4 Excessive inner class that needs relocation 

 
In Fig. 4, class Objects is the root outer class which 

contains two direct inner classes, which are Furniture and 
Book.  Class Book contains an inner class Chair.  However, 
class Chair is not supposed to perform a Book-specific task.  
Hence, it should be relocated to class Furniture, as shown in 
Fig. 5. 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

242

 

 

 
Fig. 5 Relocation of excessive inner class 

 
Relocation of class Chair to class Furniture implies that the 

former performs a Furniture-specific task. After relocation of 
class Chair, the phenomenon of excessive inner class has been 
eliminated. 

IV. DETERMINING THE MINIMUM THRESHOLD FOR THE 
FUNCTIONAL RELATEDNESS OF INNER-OUTER CLASS 

We propose a new method to determine the minimum 
threshold for the functional relatedness of inner-outer class.  
The method-attribute and method-method reference between 
inner class and its direct outer class are the factors that 
determine the functional relationship between inner-outer 
classes.  Total number of methods and attributes are counted, 
for inner and its direct outer class.  The minimum threshold 
for the functional relatedness of inner-outer class is defined as 
below: 

 
R is a set of inner class components that reference to its 

direct outer class components. Reference of outer class 
components implies that an inner class is functionally using or 
connecting to its outer class.  C is a set of components of the 
direct outer class.  C encompasses methods and attributes of 
the direct outer class.  Greater ratio of R to C implies greater 
functional relatedness between an inner class and its direct 
outer class.  When the set R is an empty set, the R to C ratio is 
0, which implies that there is no component of inner class 
references to the component of its outer class.  In the event 
that R is an empty set, the inner class should be removed or 
relocated because the inner class is not functionally related to 
its direct outer class.   

Fig. 6 illustrates an inner class B which contains a method 
called BMethod( ). 

 

 
Fig. 6 Reference of inner class to outer class 

 
 In Fig. 6, class A is the direct outer class of inner class B.  

Class A contains two attributes (x, y) and a method called 
AMethod( ).  Class B contains a method BMethod( ) that 
references to attribute x and invokes AMethod( ).  Hence, there 
are two references between the inner and outer class.  Based 
on Fig. 6, Table I shows a record of the R to C ratio.   

 
TABLE I 

R TO C RATIO BETWEEN CLASS B AND CLASS A 
R C R/C 
2 3 0.667 

 
The R to C ratio of inner class B and its direct outer class A 

is 0.667, which passes the minimum threshold value (>0).  
The obtained value means that out of three outer class 
components, the inner class makes two references to its direct 
outer class. The observed reference between inner-outer 
classes suggests that inner class is functionally related to its 
direct outer class in two aspects. 

Fig. 7 illustrates an example where the inner class fails to 
meet the minimum threshold. There is no reference between 
inner and outer classes. 

 

 
Fig. 7 Absence of inner-outer reference 

 
Fig. 7 shows an example of the absence of inner-outer 

reference.  Class C1 has four components (three attributes and 
one method) and an inner class C2.  Inner class C2 contains a 
method named C2Method( ).  A local variable v is declared in 
C2Method( ).  It is apparent that the inner class C2 makes no 
reference to any components of C1.  Based on Fig. 7, Table II 
shows a record of R to C ratio. 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

243

 

 

TABLE II 
R TO C RATIO BETWEEN CLASS C2 AND CLASS C1 

R C R/C 
0 4 0 

 
 The R to C ratio of inner class C2 and its direct outer class 
C1 is 0, which does not pass the minimum threshold value.  
The obtained result implies that out of four outer class 
components, the inner class makes no references to its direct 
outer class.  The absence of reference between inner-outer 
classes suggests that inner class is not functionally related to 
its direct outer class in any aspects. Hence, inner class C2 is 
suggested to be removed.   
 There is possibility of set R containing more element than 
set C.  In such scenario, R to C ratio will be greater than 1.  
There is no upper limit for the ratio. Greater R to C ratio 
implies that the degree of functional relatedness between inner 
and outer class is high. High functional relatedness implies 
high cohesion between inner and outer class. Fig. 8 illustrates 
an example of highly related inner-outer class. 
 

 
Fig. 8 Highly related inner-outer class 

 
 Class COuter contains two components and an inner class 
CInner.  CInner contains a method run( ) that makes four 
references to the components of outer class.  Based on Fig. 8, 
Table III shows a record of R to C ratio. 
 

TABLE III 
R TO C RATIO BETWEEN CLASS CINNER AND CLASS COUTER 

R C R/C 
4 2 2 

 
The R to C ratio of inner class CInner and its direct outer 

class COuter is 2, which passes the minimum threshold value 
(>0).  Observing that set R is greater than set C, it implies that 
the inner class is highly related to its outer class. The obtained 
ratio value means that out of two outer class components, the 
inner class makes four references to its direct outer class. The 
observed reference between inner-outer classes suggests that 
inner class is functionally related to its direct outer class in 
four aspects. 

 
 

V. CONCLUSION AND FUTURE WORKS 
Our research proposes a new method to determine the 

minimum threshold for the functional relatedness of inner-
outer class.  We have shown that greater R to C ratio implies a 
high degree of functional relatedness between inner-outer 
classes.  In addition, we suggest the software practitioners to 
remove the excessive inner classes which fail to meet the 
minimum threshold. 

In future, investigation should be carried out to study a 
mechanism for the relocation of excessive inner classes.  
Relocation of excessive inner classes is more complicated 
than removal of excessive inner classes because it may add 
complexity to software if not carefully planned.  Furthermore, 
future works should focus on the impact of inheritance on the 
functional relatedness of inner-outer class. 

 

REFERENCES   
[1] S.R.Chidamber and C.F.Kemerer.  A metrics suite for object oriented 

design.  In IEEE Transactions on Software Engineering, Vol 20. No 6.  
1994.  Pp476-493Xxxxx 

[2] L.C. Briand, J.W.Daly, and J.Wust.  A unified framework for cohesion 
measurement in object-oriented systems.  In Empirical Software 
Engineering, 3, 1998, pp.65-117. 

[3] Y.Zhou, B.Xu, J.Zhao, and H.Yang.  ICBMC: an improved cohesion 
measure for classes.  In Proceedings of the International Conference on 
Software Maintenance (ICSM’02), 2002. 

[4] Y.Zhou, L.Wen, J.Wang, Y.Chen, H.Lu, and B.Xu.  DRC: a dependence 
relationships based cohesion measure for classes.  In Proceedings of the 
Tenth Asia-Pacific Software Engineering Conference (APSEC’03), 
2003.  Pp1-9.  

[5] H.Schildt.  Java 2: A Beginner’s Guide.  USA: McGraw-Hill/Osborne.   
2003. 

[6] C.S.Horstmann and G.Cornell.  Core Java 2.  USA: Prentice Hall.  2004. 
[7] R.Barker and E.Tempero.  A large-scale empirical comparison of object-

oriented cohesion metrics.  In Proceedings of 14th Asia-Pacific Software 
Engineering Conference (APSEC 2007).  2007.  Pp414-421. 

[8] S.Counsell, S.Swift, A.Tucker.  Object-oriented cohesion as a surrogate 
of software comprehension: an empirical study.  5th IEEE International 
Workshop on Source Code Analysis and Manipulation (SCAM’05).  
2005. 

[9] S.Counsell, E.Mendes, S.Swift.  Comprehension of object-oriented 
software cohesion: the empirical quagmire.  10th International Workshop 
on Program Comprehension (IWPC’02).  2002.  

[10] G.Gui.  Component reusability and cohesion measures in object-oriented 
systems.  In Information and Communication Technologies, 2nd Volume. 
2006.  Pp 2878-2882. 

[11] I.Heitlager, T.Kuipers and J.Visser.  A practical model for measuring 
maintainability.  In Proceedings of Sixth International Conference on the 
Quality of Information and Communications Technology.  2007.  Pp30-
39. 

 
 


