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Abstract—This research work is concerned with the eigenvalue 

problem for the integral operators which are obtained by linearization 
of a nonlocal  evolution equation. The purpose of section II.A is to 
describe the nature of the problem and the objective of the project. 
The problem is related to the “stable solution” of the evolution 
equation which is the so-called “instanton” that describe the interface 
between two stable phases. The analysis of the instanton and its 
asymptotic behavior are described in section II.C by imposing the 
Green function and making use of a probability kernel. As a result , a 
classical Theorem which is important for an instanton is proved. 
Section III devoted to a study of the integral operators related to 
interface dynamics which concern the analysis of the Cauchy 
problem for the evolution equation with initial data close to different 
phases and different regions of space. 
 

Keywords— Evolution, Green function, instanton,  integral 
operators.  

I. INTRODUCTION 
HE eigenvalue problem for an integral operator A on the 
space CSym (3) of symmetric, bounded function on the real 

line 3 with sup norm, has attracted a great deal of attention in 
the field of engineering science since such an operator A is 
related to problems of interface dynamics. Suppose that the 
kernel of A has the form A(x ,y)= p(x)J(x ,y),with p(x) a 
symmetric, strictly, regular bounded function and J(x,y)a 
regular, nonnegative function of the variable  y, x with 
compact support in the interval [-1,1] and integral equal to 1. 
Under certain conditions on P and J, motivated by 
applications to interface dynamics, its aims to estimate the 
bound for the isolated positive maximal eigenvalue λ with 
positive eigenvector of the integral operator A on CSym (3). For 
stability questions it is important to determine the part of the 
spectrum outside the unit ball. This is not simple in this 
present context because  p(x) occurs in two possibilities: one 
possibility is greater than one and the other possibility is less 
than one. It is possible to investigate the problem only when 
the eigenvalue λ is >1, while the rest of the spectrum is strictly 
inside the unit ball. This kind of problem has been studied by 
some other authors such as [1]-[2].The results will hopefully 
provide for many physical applications.   
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II. EVOLUTION EQUATION 
A.  Nature of the Problem 
This paper is concerned with the problem which arises from 

the analysis of the evolution equation in ( ;[ 1,1]) :symC −3   

tanh( )t
t t

m m J m h
t

β β∂
= − + ∗ +

∂
                    (1)  

where 1, 0, th mβ > ≥  is a real-valued function on 3 for 

each ,t ∈ ∗3  is the convolution product defined by: 

( )( ) ( , ) ( )J m x J x y m y dy∗ = ∫
3

                 (2) 

                     
for each m ∈ ( ;[ 1,1])symC −3 . The operators 

A: ( ;[ 1,1])symC −3 → ( ;[ 1,1])symC −3 can be
considered. Which are related to the linearization of the right 
hand side of (1), namely given  

( ;[ 1,1])symm C∈ −3 , 

2( )
cosh { ( )}mp x

J m x
β

β
=

∗
                          (3) 

 
is set and defined Am, as the function of m with kernel J(x, y) 
by 

Am(x, y) = pm(x) J(x, y).                              (4) 

Then (when h = 0), the operator Lm= Am–1 is the linearization 
around m of the right hand side of (1). The operators Am  for 
each m ∈ Csym( 3; [–1, 1] ) can be studied. Let  Cb (3) be the 
space of all bounded real-valued functions on 3. Solutions m 
of (1) in Cb(X) with sup norm ?? m ??∞ < 1 can be observed 
and that are differentiable with respect to time t. The Cauchy 
problem in this setup is well-posed with a unique global 
solution because the right hand side of (1) is uniformly 
Lipschitz because the set {m ∈Cb(3): ?? m ??∞ < 1}is Left 
invariant, since tanh z < 1 for all  z. Equation (1) arises in the 
study of spin systems with Glauber dynamic and Kac 
interactions where it is derived in a continuum limit, [3]; m is 
then interpreted as a magnetization density and β−1 as the 
product of the absolute temperature and the Boltzmann 
constant. The analysis of Gibbs measures with Kac 
interactions, that started in the late sixties [4]- [5] is by now a 
well established theory. It proves the validity, in equilibrium 
Statistical Mechanics setting, of the Van der Waals theory by 
showing that its typical phase diagram is exhibited by systems 
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with Kac interactions, in a suitable scaling limit. The critical 
temperature corresponds to β = 1, according to our 
normalization condition on the interaction, so that {β > 1} is 
the phase transition region. For each value of β > 1 there are 
two pure thermodynamic phases with magnetization 
respectively equal to :m mβ β±  being the positive standard of 
the equation  

( )ββ βmm tanh=                                (5)  
                                                                                                                                             
B.  Objective and Motivation 
The main objective of this paper is to investigate spectral 

property of integral operators in problem of interface 
dynamics. Interface dynamics concerns the analysis of the 
Cauchy problem for (1) with initial data close to different 
phases in different regions of space. This problem has been 
extensively studied in the last ten years with special attention 
to the multi-dimensional case where it has been proved that on 
a suitable space time scaling limit the evolution is ruled by a 
motion by mean curvature, [6]. In one dimension, when  
h > 0 there are traveling fronts describing the growth of the 
stable phase at the expense of the metastable one, [7]. When  
 h = 0 there are stationary solutions with two coexisting 
phases: they are all identical, modulo translations and 
reflection, [5], to “the instanton” ( )m x , which is a C∞, 
strictly increasing, antisymmetric function which identically 
verifies 

( ) tanh ( ( ))m x J m xβ= ∗                        (6) 

where ( )m x  is the stationary pattern that connects the minus 
and plus phases, as 

lim ( )
x

m x mβ→±∞
= ±                                 (7) 

and it has therefore the interpretation of a “diffuse interface”. 
However, since the derivative ( )m x′  of ( )m x  vanishes 
exponentially fast as ? x ?→ ∞, [3], then loosely speaking, the 
fraction of space not occupied by pure phase is vanishingly 
small. In this sense, that can be made precisely by introducing 
scaling, the interface is sharp and the transition from one 
phase to the other one is “instantaneous”. That is why ( m or, 
more properly m′ ) is called the instanton. 

As proved in [1], the interface described by the instanton is 
“stable” and any initial datum “close to an instanton” is 
attracted and eventually converges to some translate of the 
instanton. In the present context, (1) in a neighborhoods of 
functions m of the form 

( ) ( | |), 0m x m xξ ξ ξ= − >                         (8) 
 

is studied. By linearization leads to the operator Am with either 
m = mξ or m close to it (and ξ large).This is a first motivation 
for studying Am. In the analysis of the operator Am, with m = 
mξ + h is interested or closed to such a function. The existence 
of these attractive one dimensional unstable manifolds reflects 
the presence of an isolated, simple, maximal eigenvalue λm > 1 

for Am and of a spectral gap, with the rest of the spectrum 
strictly in the unit ball. In this paper, these can be established 
and other properties of the operators Am which are the building 
ingredients for the applications to interface dynamics. 
 

C.  Asymptotic Behavior of the Instanton     
In this section, the asymptotic behavior of the instanton 
( )m x  as x→ ∞ is studied. The instanton ( )m x  is an 

antisymmetric, continuous increasing function of x∈3 that 
solves (6). In Proposition 2.2 of [3] it is proved that there 
exists c > 0 and η > 0 such that for all x > 0, 

( ) xm x m ce η
β

−− ≤                              (9) 

and in proposition 2.1 of [6] it is also proved that 0m′ >  and 
m′  is an eigenvector of mA  with eigenvalue 1. Namely 

m pJ m′ ′= ∗                                  (10) 

where the shorthand notation 
2( ) ( ) [1 ( ) ]mp x p x m xβ≡ = −                (11) 

is used. Equation (10) is obtained by differentiating with 
respect to x the instanton equation (6). After integration by 
parts the convolution on the right hand side of (10) is deduced 
that m′  is a bounded continuous function and by further 
differentiations that all the derivatives of m  share such a 
property. Since 

lim ( )
x

p x p∞→∞
= (say) 2[1 ] 1mββ= − <      (12) 

the obvious conjecture is that the asymptotic behavior of 
( )m x′  as x → + ∞ is ruled by the equation 

.v p J v∞= ∗                                       (13) 

Looking for a solution of (13) of the form 

( ) xv x e α−=                                       (14) 
α  must be solved      

(0, ) 1yp J y e dyα−
∞ =∫                           (15) 

When the domain of an integral is not specified then it will be 
taken the whole 3. Now, basic results for instanton can be 
given as follows: 
 

Proposition 1 . 
There is a strictly positive, decreasing C1 function αp, p 

∈ (0,1), such that ± αp are the only solutions of the equation 
(0, ) 1,yp J y e dyλ λ− = ∈∫ 3  .      (16)  

2, (1 )p p mβα α β
∞ ∞= = −  is written and introduced the 

following kernel K(x, y) = ( )( , ) y xp x y e α− −
∞ . This kernel can 

be considered as the asymptotic expression for x and y large of 
the transition probability P(x, y) given by 
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P(x, y) = 
( )( , ) , ,
( )m

m yA x y x y
m x

′
∈

′
3 .              (17) 

The following is an important result for the instanton. 
 

Theorem 1. 
There are M > 0 and δ∈(0,α) positive such  that 
lim ( ) ,x

x
e m x Mα

→+∞
′ = lim ( ( ) ) 0x x

x
e e m x Mδ α

→+∞
′ − = .     (18) 

An analogous statement holds for x→ ∞− ,as ( )m x  is 
antisymmetric (and ( )m x′  symmetric). Without loss of 
generality, it is restricted to x >  0.To prove Theorem 1 some 
useful facts have been developed which will be needed in the 
proof of the Theorem 1. So the theorem will be proved later.            
 

D.  The Green Function Gs(x, y) 
First, the following convention is introduced. Given a 

positive integer s the following equation in C(3)  is 
considered.  

( ) ( ) ( ) for

( ) ( ) for .

v x p x J v x x s

v x m x x s

= ∗ ≥⎧
⎪
⎨
⎪ ′= <⎩

               (19) 

It can be seen that m′  solves (18) and it is the only 
solution. It can also be proved that for s large enough there is 
a Green function GS(x, y) [9] for (19). An expression 
for ( )m x′ , x s> , in terms of GS ( , )⋅ ⋅  can be obtained and 
of ( )m y′ , 1s y s− ≤ < ,  and that will eventually lead to 
the proof of Theorem 1. An identity is satisfied by ( )m′ ⋅ . 
 
Proposition 2. 
For any x > s, the following identity holds: 

( )m x′
1

( , ) ( )
s

Ss
G x y m y dy

−
′= ∫                                    (20)  

Where 

 Gs(x, y) = ( )

1
( , )n

s
n

R x y
∞

=
∑                                                (21) 

and, setting x = y0 and y = yn , n>1  
( )

0 1 1 1 1
1

( , ) ... ( ) ( , )
n

n
s n i i i ns s

i

R y y dy p y J y y dy
∞ ∞

− − −
=

= ∏∫ ∫  

Proposition 3. 
If  x > s  and  y  ∈ [ s – 1, s) then 

( ) ( )( , ) ( , ) [1 ( )] ( , )x y x y
s s se g x y G x y e s g x yα α ε− − − −≤ ≤ +   

                                                                                    (22)         
where 

( ) ss ce ηε −=                                (23)         
with  c  a suitable, positive constant. 
 

E.  Estimates on gs(x, y) 
In this section, the function gs(x, y) can be estimated. 

Proposition 4. 
  
               For x > s and  y < s, 
gs(x, y) = g0(x – s, y – s),                                                      (24)         
and for all  x  > 0, 

0

01
( , )g x y dy

−∫  = 1.                                                           (25)          

 
Proposition 5. 
There are  δ1 > 0  and a probability density  ρ (y),  for  y ∈ [–
1, 0],  such that 

( ) ( ) ( ) ( )∫
−

∞→∞→
−=

0

1
00 ,lim,,lim 1 dyyyxgeyyxg x

NN
ρρ δ =0   

                                (26)                  
 

F.  Properties of Instanton 
Now, Theorem 1 can be restated and proved. 
 

Theorem 1. 
There are M > 0 and δ ∈ (0, α) such that   

( ) ( )( ) 0lim ,  lim =−′=′
∞→∞→

MxmeeMxme xx

x

x

x

αδα  

 
Proof: Let x > s and 

 Is(x) = 
0 ( )

1 0
( , ) ( ) .s yg x s y e m s y dyα +

−
′− +∫            (27) 

If s + y= y is put then it follows from the translation 
invariance property that 

 Is(x)  = 
1 0

( , ) ( )
s y

s
g x s y s e m y dyα

−
′− −∫             (28) 

                    ( ) ( )∫
−

′=
s

s

x
s dyymeyxg

1

, α  

But from (22), it is known that 
( )( , ) ( , )x y

s sg x y e G x yα −≤                      (29)    
and 

( )

( , ) ( , )
1 ( )

x y

s s
e G x y g x y

s

α

ε

−

≤
+

.                  (30) 

From (28), (29) and  (20), 

 Is(x)  
1

( , ) ( ) ( )
s x x

ss
e G x y m y dy e m xα α

−
′ ′≤ =∫ . 

From (28), (30) and (20), 

1
( ) ( , ) ( ) ( )

1 ( ) 1 ( )

x xs

s ss

e eI x G x y m y dy m x
s s

α α

ε ε−
′ ′≥ =

+ +∫
is obtained. Thus, 

( ) ( ) ( )(1 ( )).x
s sI x e m x I x sα ε′≤ ≤ +              (31) 

Let 
0* ( )

1
( ) ( )s y

sI y e m s y dyαρ +

−
′⎡ ⎤= +⎣ ⎦∫ .            (32) 

Then from (27) and (32), 
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*( )s sI x I−  

[ ]
0 ( )

01
( , ) ( ) ( )s yg x s y y e m s y dyαρ +

−
′⎡ ⎤≤ − − +⎣ ⎦∫  

[ ]
0

01
sup ( ) ( , ) ( )z

z s
e m z g x s y y dyα ρ

−≤
′≤ − −∫ . 

Hence by (26), there exists c > 0 and δ1 > 0 such that 

*( )s sI x I−  1 ( ) sup ( )x s z

z s
ce e m zδ α− −

≤
′≤ .               (33) 

This shows that 
* lim ( ).s sx

I I x
→+∞

=                                      (34) 

Let 
lim inf ( ) ,x

x
M e m xα

→+∞
′= lim sup ( ).x

x
M e m xδ

→+∞
′=  

                                                                        (35) 
Thus from  (31), (34)  and (35), 

* * (1 ( ))s sI M M I sε≤ ≤ ≤ +                      (36)  
 is obtained. This yield, 

* * *(1 ( )) ( )s s sM M I s I s Iε ε− ≤ + − = .             (37) 
But, by (31) and (32), for s > s0 large enough, 

0

0*
01

( ) (1 ( )) ( )s sI y s I s y dyρ ε
−

≤ + +∫             (38) 

and  hence (37) become 

0

0

01
( ) ( ) (1 ( )) ( )sM M s y s I s y dyε ρ ε

−
− ≤ + +∫  

                                                                                    (39) 
for  s > s0  and  s0 large enough 

ε(s) = ce–ηs                              (40) 
for  c > 0, η > 0,                                                                                                                      
and, by (31) and (36), 

( ) ( ) ( )ysmeysI ys

sss
+′≤+ +

+∞→+∞→

α sup lim sup lim
0

  

                                      ( )( )01
0

sIs ε+≤ ∗                           (41) 

is obtained. Using (40) and (41),it is seen that the right hand 
side of (39) vanishes when s → +∞  and hence M M− . 

This shows that lim sup ( )x

s
e m xα

→+∞
′  exists. 

Therefore there exists M > 0 so that 
lim ( )x

s
e m xα

→+∞
′  = M. 

Thus the first limit in the theorem (as well as (18)) is proved. 
The proof of the second one is similar. Indeed both M and 

( )xe m xα ′  are in the interval with extremes min *{ ( ), }s sI x I  

and (1 + ε(s)) max *{ ( ), }s sI x I .  

Then by (33) there is 0c >  such that all s large enough and 
all x > s, 

( )xM e m xα ′−  * *( ) ( ) ( )s s s sI x I s I x Iε ⎡ ⎤≤ − + +⎣ ⎦  

   ( )( )x s sc e eδ η− − −≤ + . 

If s is chosen such that (x – s)d1 = ηs, 
( ) 2x sM e m x ceα η−′− ≤ . 

If   δ = 1

1

η δ
η δ+

 , then 

( )( ) 2x xM e m x ceα δ−′− ≤ . 

Thus, Theorem 1 is proved.  
The following Theorems are Corollaries of Theorem 1. 
 

Theorem 2. 
Let a = Mα–1 and 0 < δ9 < δ with δ as in Theorem 1. Then 

( )lim [ ( ) ( )] 0x x

x
e m x m aeα δ α

β
′+ −

→+∞
− − = .          (42) 

Proof: Since, from (7) ( )m x mβ→  as  x → +∞, it follows 

that 

( ) ( )
x

m m x m y dyβ

∞
′− = ∫ . 

Then, recalling that M = αa, 
( ) [ ( ) ( )]x xe m x m aeα δ α

β
′+ −− −   

( ) [ ( ) ]x y

x
e a e m y dyα δ αα

∞′+ − ′= −∫         (43)  

( ) ( )y y

x
e Me m y dyα δ α∞ ′+ − ′≤ −∫  

 
( ) ( )y y y

x
e e M e m y dyδ δ δ α∞ ′− ′= −∫ . 

 Now, if x → +∞, then y → +∞ so that   
( ) 0y ye M e m yδ α ′− → . 

By Theorem 1. Hence the left hand side of (43) vanishes as   
x → +∞.  Thus the Theorem is proved.  
 

Theorem 3. 
Let  δ > 0  be  as  in   Theorem  1. Then 

lim ( ) 0y x

x
e e m x Mδ α α

→+∞
′′− + = .                 (44) 

Proof: By differentiating (10) which is stated as  
( ) ( )m p x J m x′ ′= ∗  where  p(x) = β (1– m (x)2]  (see  

(11)) 
 

( ) 2 ( ) ( ) ( ) ( ) ( )m x m x m x J m x p x J m xβ′′ ′ ′ ′ ′= − ∗ + ∗        (45) 
                  

where  J9(x, y) = 
x

∂
∂

J(x, y). 

By Theorem 1,  
    ( )lim [ 2 ( ) ( ) ( )] 0x

x
e m x m x J m xα δ β+

→+∞
′ ′− ∗ = .       (46) 

is obtained. So that   

( ) ( ) ( ) ( ) ( )[ ]∫ ′′−′′ −−

+∞→
dyymeeyxJxpxmee yxyxx

x

αααδ ,lim

0=                                                                             (47)                   
Thus, 
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( )( ) ( , ) ( )x y x ye p x J x y e e m y M dyδ α α− −′ ′⎡ ⎤−⎣ ⎦∫  

1 ( )

1
( ) ( , ) ( ( ) )

x y x y y

x
p x J x y e e e e m y M dyα δ δ α+ − −

−
′ ′≤ −∫  

so by Theorem 2,    [ ( ) ]y ye e m y Mδ α ′ −   =  0   
as  x → +∞.This yield   

( )lim ( ) ( , ) ( )x y x y

x
e p x J x y e e m y dyδ α α− −

→+∞
′ ′∫  

( )lim ( ) ( , )x y x

x
e p x J x y e Mdyδ α− −

→+∞
′= ∫ . 

Thus from (47) 
( )lim ( ) ( ) ( , ) 0x x y x

x
e e m x p x J x y e Mdyδ α α− −

→+∞
′′ ′− =∫ . 

                                                                        (48) 
Again from (15), 

( )( , ) y xJ x y e dyα− −′∫  = ( )( , ) y xJ x y e dyαα − −− ∫       (49) 

                      = 
p
α

∞

−
 

(recall that  α  = αp∞ ) is obtained. Then (49) becomes 

( )lim ( ) 0x x

x

p xe e m x M
p

δ α α
→+∞

∞

′′ + =               (50) 

   Thus,                                                                                                                                                                                                                     

2

( ) 11 ( ) ( )
1

p x m m x m m x
p m β β

β∞

⎡ ⎤ ⎡ ⎤− = + −⎣ ⎦ ⎣ ⎦−
 

is obtained. Since 0 < δ < α, it  follows  from  Theorem 2  that 
lim ( ) 0x

x
e m m xδ

β→+∞
⎡ ⎤+ =⎣ ⎦ . 

Then, by (50),  
lim ( ) 0x x

x
e e m x Mδ α α

→+∞
′′ + =  

is got. This completes the proof of the Theorem.From 
Theorem 1, 2 and 3, the following Theorem is obtained. 
 

Theorem 4. 
If  m m=   is an instanton. Then  there are  α  and  a  

positive  0α α>   and  0c >   such that for all  x  > 0, 

( ) ( ) ( ) xx eaxmaemxm αα
β α −− −′+−−  

        ( ) xx ceeaxm 02 ααα −− ≤+′′+                     (51)   

          

III. OPERATORS ON BOUNDED DOMAINS 
In this section, the problem in bounded domains with 

Neumann conditions can be considered. The operator Am on 
Csym(3) can be isomorphically regarded as an operator on 
C(3+), by setting 

*m mA f A f+ =                                  (52)  
 where   f * ∈ Csym(3) is defined for each  
 f ∈C(3+) by 

f *(x) = f (? x ?).                                (53)   

mA+   is still an integral operator and its kernel is 

( , )mA x y+  = Am(x, y) + Am(x, – y) , x, y ∈ 3+.         (54)          
This can be interpreted as a reflecting boundary condition 

called the Neumann condition at 0 and the original problem 
for Am on Csym(3) is actually the problem on the half line with 
Neumann conditions at 0. By adding another reflecting at  
 A  > 1, a new operator  ,mA A   on  

C([0, A]) can be defined  by  setting  the reflection rule 

( )R xA  = 
| |           for  1

( ) for 1 
x x

x x
− ≤ ≤⎧

⎨ − − ≤ ≤ +⎩

A
A A A A

 .        (55)                 

 Now, for  x  and  y  in  [0, A], 

,
: ( )

( , ) ( , )m m
z R z y

A x y A x z
=

= ∑
A

A                      (56)               

is defined. Then ,mA A  (in fact ( ),A ⋅ A ) is the operator on  

C[0, A]  with  kernel  , ( , )mA x yA . The case A = +∞ is included 

by setting R+∞(x) = ? x ?, then  Am,+∞ = mA+ . It can be worked 

in finite volume and by proving estimates uniform in  A, the 

original case in the limit  A → +∞. This is not only a technical 
device, but in fact the analysis in the bounded domains has its 
own interest. When m is taken close to a double instanton, the 
analysis in C([0, A]) with Neumann conditions corresponds to 
two double instantons, one across 0 and the other one across  
A. The spectral properties in this case reflect the interaction 

between these two structures. When  A  is finite, the classical 
Perron-Frobenius theorem is obtained. It can be stated the 
Perron-Frobenius Theorem with several other properties of the 
maximal eigenvalue ,mλ A and the corresponding left and right 

eigenvectors ,mu A  and ,mv A  . It is not yet supposing that  m  is 
close to a double instanton, which statements refer to general  
m ∈ Csym ([0, A]), but the results are not uniform in A.Now, the 
following Perron - Frobenius Theorem can be stated. 
 

Theorem 5. 
Let  l > 1  and  m ∈C([0, l], [–1 , 1]).  Then there are  ,mλ A  

> 0, ,mu A  and  ,mv A   in  C[0, l], ,mu A   and ,mv A  strictly 
positive, such that  

, , , , , , , ,,m m m m m m m mA v v u A uλ λ∗ = ∗ =A A A A A A A A    (57) 
   
(um,l and vm,l  are  left  and  right  eignevectors  with  
eigenvalue λ m,l ) and for any [0, ]x ∈ A . 

( ) ( ) ( ).   ,, xuxpxv lmmlm =                     (58)                 
Any other point of the spectrum is strictly inside the ball of 

radius λm,l. Recall that  
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( ) ( ){ }xmJ
xpm  cosh

 2 ∗
=

β
β

  .             

Since the theorem is too general it cannot say much about 
the localization of the spectrum and the dependence on A of  λ 

m,A , vm,A  and  um,A , for that more assumptions on  m  is needed. 
To complete, the proof of Theorem is needed that a Markov 
chain whose transition probability is conjugated to Am,A (x, y). 
 

A.  Auxiliary  Markov  Chains 
In Theorem 5, it is mentioned that λm,A and vm,A  are strictly 

positive. Hence the function 

Q m,A (x, y) = Am,A (x, y) ,

, ,

( )
( )

m

m m

v y
v xλ
A

A A

, x, y ∈ [0,  A}       (59) 

is well-posed and its defines a transition probability on [0, A] 

conjugated to the operator ,mA A  : the spectrum of ,mA A  is 

obtained from that of ,mQ A  after multiplication by ,mλ A . In 
particular the spectral gap in Theorem 5 is related to the 
mixing properties of the Markov chain with transition 
probability  ,mQ A  .If  m  is an instanton, m m=  , then 

1mλ =  and mv m′= , i.e. mA m′= , obtained  by 
differentiating the instanton equation (6).The analogue of (28) 
defines the basic transition probability: 

P(x,y) =
( )( , )
( )m

m yA x y
m x

′
=

′
, x,y in 3.                (60) 

In the problem with a (reflected) instanton at  ξ, i.e. (ξ – x), 
and Neumann conditions, i.e. reflection at  0  and A, A > 2ξ, 
ξ > 1, an important role will be played by the transition 
probability: 
 

Qξ,A(x, y) = 
( )

( , )
R z y

P x zξ ξ
=

− −∑
A

,  x and y in [0, A ] .  (61) 

 

The above three Markov chains can be seen as describing 
similar, discrete time, jump processes of a particle on the line 
3.  
 

B. Bounds for Eigen-vectors 
The following proposition provides the local bounds for 

eigenvectors  for the  operator Am,A . 
 
Proposition6: There  is  b > 1 so that for any  
⏐x – y⏐  < 1 

 b–1 < ,

,

( )
( )

m

m

v x
v y

A

A

 <  b.                             (62) 

 

IV. CONCLUSION 
The evolution equation in the space of symmetric bounded 

function is given by  
 

                     tanh( )t
t t

m m J m h
t

β β∂
= − + ∗ +

∂
 

 

with β> 1, h≥0 and 

                      ( )( ) ( , ) ( )J m x J x y m y dy∗ = ∫
3

 

This project is devoted to a study of the eigenvalue problem 
for the integral operator A m related to the given evolution 
equation. It is noted that spectral properties of the operator A m 
are obtained by showing the existence of a simple positively 
of the corresponding eigenvector. The analysis of the 
instanton and of its asymptotic behavior has been discussed. 
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