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Probe selection for pathway-specific microarray
probe design minimizing melting temperature

variance
Fabian Horn and Reinhard Guthke

Abstract—In molecular biology, microarray technology is widely
and successfully utilized to efficiently measure gene activity. If
working with less studied organisms, methods to design custom-made
microarray probes are available. One design criterion is to select
probes with minimal melting temperature variances thus ensuring
similar hybridization properties. If the microarray application focuses
on the investigation of metabolic pathways, it is not necessary to
cover the whole genome. It is more efficient to cover each metabolic
pathway with a limited number of genes. Firstly, an approach is
presented which minimizes the overall melting temperature variance
of selected probes for all genes of interest. Secondly, the approach
is extended to include the additional constraints of covering all
pathways with a limited number of genes while minimizing the
overall variance. The new optimization problem is solved by a
bottom-up programming approach which reduces the complexity to
make it computationally feasible. The new method is exemplary
applied for the selection of microarray probes in order to cover all
fungal secondary metabolite gene clusters for Aspergillus terreus.

Keywords—bottom-up approach, gene clusters, melting tempera-
ture, metabolic pathway, microarray probe design, probe selection

I. INTRODUCTION

M ICROARRAYS are a widely used technology to mea-
sure the composition of the transcriptome in an or-

ganism. Its applications range from gene expression profiling,
over functional gene annotations, to medical diagnosis. With
the help of standardized experimental protocols, microar-
rays detect gene activity reliably. In molecular biology, this
technology is prominent for transcriptome analysis because
it is fast and cost-efficient. In order to fully facilitate and
interpret large amounts of data, the transcriptome data may
be integrated with extra information from other technologies.
For instance, full genomic metabolic network reconstructions
are becoming more and more available and high efforts are
currently made to integrate high-throughput data into these
metabolic models [1]. Besides assisting the interpretation of
the underlying transcriptomic data, the integration helps to
reduce the complexity of metabolic networks [2].

Many prefabricated commercial and academic microarray
technology platforms are available for commonly used species.
If the research is focused on less studied model organisms, it is
possible to design and spot oligonucleotides for custom-made
technical solutions.
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Fig. 1. Workflow of microarray probe design The workflow can be
subdivided into four tasks. After the generation of the probe candidates, they
are evaluated if they fulfill all applied probe design criteria. Afterwards, probes
closer to an optimum are chosen and prepared for the final probe design. The
presented approach deals with the probe selection step.

Generally, a microarray probe design task can be divided
into four tasks (see figure 1). New sequences for probe
candidates are generated with the help of available tools like
ArrrayOligoSelector, Picky, or OligoWiz (reviewed in [3]).
Furthermore, the probe candidates are evaluated whether they
fulfill additional probe design criteria. In this step, specific
requirements of the experimental protocol can be applied.
Only probes that pass all design criteria are further processed.
If more probes than the desired number of probe candidates
per gene are available, probes closer to a given optimum are
selected subsequently. In a last step, the selected probes are
finalized, i.e. they are randomly positioned in a microarray
grid.

The main design objective is the reduction of systematic
errors in order to obtain highly specific and sensitive probes.
It is highly desirable that all probes show a similar physico-
chemical behavior in the binding process. This ensures that
the measured signal intensity derives from changes in the gene
activity and not from different binding properties. Therefore,
probes should have a high uniformity regarding their melting
temperatures. The melting temperatures of the probe sequences
can be calculated with the nearest-neighbor model which takes
into account the base-stacking energies of certain nucleotide
combinations [4]. The nearest-neighbor model is implemented
in the freely available tool MELTING [5].
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Typically, the production of custom-made microarrays is
financially constrained which makes it necessary to confine
the number of oligonucleotides which should be synthesized
and eventually spotted onto the array. If more candidates than
the desired number of probes per gene are available, an optimal
subset of valid probe candidates has to be chosen. The probes
are usually scored according to certain probe design criteria,
e.g. uniqueness scores [6], non-overlapping sequences [7], or
the positioning towards the 3’-end of the transcript [8], [9].
Different probe design criteria can also be combined using a
weighting function [10], [11].

One particular utilization of microarrays is to instantly
and reliably check if genetic modifications or environmental
influences have a significant influence on gene expression.
For instance, after gene knock-out experiments it is tested if
certain metabolic pathways are extensively regulated. Due to
budget limits and simplicity, metabolic pathways only need
to be covered with a limited number of marker genes. The
increased degree of freedom of choosing the representative
marker genes generates a new optimization problem which
is addressed in this paper. Even though our showcase is the
coverage of metabolic pathways, the same approach can be
extended to other applications, like gene-regulatory pathways
or fungal gene clusters.

In this paper, we present a probe selection method which
i) covers a set of metabolic pathways with a given number
of genes and where simultaneously ii) only probes for these
genes are selected which minimize the melting temperature
variance.

II. METHODS

The presented approach deals with the question of select-
ing optimal probesets from a given set of validated probes,
meaning that each probe candidate passed all probe design
criteria and the corresponding melting temperature for each
probe candidate has been pre-calculated using MELTING [5].

In the first section, a probe selection approach is presented
which chooses probe candidates for each gene by minimizing
the overall variance of the probe melting temperatures.

In the second section, the probe selection criterion is ex-
tended to cover metabolic pathways with a limited number of
marker genes. An efficient bottom-up programming approach
is presented to solve this problem.

A. Selection of probes with uniform melting temperature

Problem 1 Given a set of genes G and a set of validated
probe candidates C. For each g ∈ G there exists an associated
subset of probe candidates Cg ⊂ C. Each gene g should be
covered with a probeset PS which contains a given number
of k probe candidates ci ∈ Cg while all selected probe
candidates ci ⊆ C have a minimal variance in the melting
temperature Tm.

To illustrate the problem, the following example is given:

Input
Gene1: Probe 1a (53.0 ◦C), Probe 1b (53.5 ◦C), Probe 1c

(55.0 ◦C), . . .
Gene2: Probe 2a (54.8 ◦C), Probe 2b (55.2 ◦C), Probe 2c
(57.0 ◦C), . . .
. . .
Output (number of probes per gene k: 2)
Tm: 54.5 ◦C
minimal variance: 2.3
Gene1: Probe 1b, Probe 1c
Gene2: Probe 2a, Probe 2b
. . .

Definition 1 In this paper, the term internal variance DPS

is defined as the mean absolute deviation of the melting
temperatures and a certain reference melting temperature Tm:

DPS =

k∑
i=1

|T ci
m − Tm|
k

where k is the size a candidate probeset PS and T ci
m is the

melting temperature of probe candidate ci ∈ PS.

Definition 2 A probeset PS is called gap-free if it contains
all possible probe candidates which fall within the melting
temperature interval which is spanned by the maximum and
minimum melting temperature.

∀ci ∈ PS : min
ci∈PS

T ci
m ≤ T ci

m ≤ max
ci∈PS

T ci
m ∧

¬∃cj /∈ PS : min
ci∈PS

T ci
m ≤ T cj

m ≤ max
ci∈PS

T ci
m

.

Problem 1 can be solved by determining the probeset with
the lowest internal variance for each possible reference melting
temperature. Due to the fact that not every possible reference
melting temperature can be considered, we look for melting
temperature intervals. Therefore, the following propositions
address the question of identifying the optimal probesets for
melting temperature intervals.

Proposition 1 Probe candidates can be ordered by their melt-
ing temperature. Probesets which are gap-free with respect to
the melting temperature range minimize the internal variance
DPS . Probesets containing gaps will always be suboptimal
for any given reference melting temperature Tm because a
gap-free probeset with lower internal variance can be found.

Proof (outline): A gap-free probeset spans a narrower
melting temperature interval [minci∈PS T ci

m ,maxci∈PS T ci
m ]

than a probeset PS with gaps. These interval borders
are used to calculate the internal variance DPS with the
formula given in definition 1. For any given reference
melting temperature Tm, there exists a narrower melting
temperature interval where either a higher minci∈PS T ci

m

or lower maxci∈PS T ci
m lead to a lower internal variance DPS .

As an example, let us consider figure 2. Probes are ordered
according to their melting temperatures Tm. Three probesets
consisting of four probes are built. Boxes are drawn for each
probeset if the corresponding probe is part of the probeset.
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Fig. 2. Comparison of the internal variance of gap-free probesets (PS1,
PS3) and a probeset with gaps (PS2).

Exemplary, probeset 1 consists of probe 1 (47 ◦C), probe 2
(48 ◦C), probe 3 (50 ◦C), and probe 4 (51 ◦C). Probeset 1
and probeset 3 are gap-free, meaning that all probes span a
continuous melting temperature range. Probeset 2 contains a
gap because the interval does not contain probe 4 (51 ◦C).
Probesets 1 and 3 have a lower internal variance than probeset
2 because one of them is more compact regarding any specified
reference melting temperature.

Consequently, only ordered probesets that span a continuous
gap-free melting temperature interval are considered. This
makes it easier to illustrated the problem. In figures 3 and
4, probes are displayed in the order of their corresponding
melting temperature. Because only gap-free probesets are
considered, the probesets can be visualized with boxes that
cover a certain Tm range. These boxes can be shaded to
indicate the optimal melting temperature interval for which
the particular probeset has the lowest internal variance.

Proposition 2 The mean of the melting temperatures of the
two outermost probes of two adjoining melting temperature
intervals determines the border between the optimal melting
temperature intervals of the corresponding probesets.

Proof (outline): Without loss of generality:
k∑

i=1

|T ci
m − Tm|
k

≤

k+1∑
i=2

|T ci
m − Tm|
k

|T c1
m − Tm| ≤ |T ck+1

m − Tm|
(T c1

m − Tm)2 ≤ (T ck+1
m − Tm)2

Tm ≤ T c1
m + T

ck+1
m

2

Proposition 3 Probesets which flank the overall melting tem-
perature range are optimal for the bordering intervals.

Proof (outline): With the help of proposition 2, the border
between the optimal melting temperature intervals of the first
(last) interval and its successive (preceding) probeset can be
determined. Since no other previous (next) probeset exists,
the first (last) probeset is optimal for the overall flanking

Fig. 3. Determination of the optimal melting temperature intervals
where the probeset has the lowest internal variance. The borders between
the optimal intervals are determined by the mean of the two outermost probes
which are not shared by two adjoining probesets. Exemplary, probes 1 and
5 are the two outermost probes of probesets 1 and 3. Their mean melting
temperature (50 ◦C) determines the border between the optimal intervals of
these probesets.

Fig. 4. Transformation of the optimality information into a gene-centric
data structure.

interval.

For example, probesets 1, 3, and 4 consist of four probes in
figure 3. Neighboring probesets share all but the two outermost
probes. Precisely, probesets 1 and 3 do not share probes 1
(47 ◦C) and 5 (53 ◦C) and probeset 3 and 4 do not share
probes 2 (48 ◦C) and 6 (57 ◦C). These probes determine the
border of the optimal intervals between the two probesets. The
mean of the melting temperature of the two outermost probes
constrains the optimal temperature interval. In this example,
the mean melting temperature between probe 1 and probe 5 is
50 ◦C and between probe 2 and probe 6 it is 52.5 ◦C. Because
there is no previous or next probeset available in figure 3, the
optimality interval of the flanking probesets can be extended to
the minimum or maximum of the overall melting temperature
range. The optimal intervals of the flanking probesets are
extended to the overall limits of the melting temperature.

The propositions above make it possible to determine which
probeset is optimal for certain melting temperature ranges. It
is favorable to build a data structure that holds each optimal
melting temperature interval and the corresponding probeset
for each gene. In the lower part of figure 4, the information
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Fig. 5. Finding the optimal probeset combination with minimal internal
melting temperature variance.

for the gene is merged into one data structure. Eventually, for
each gene the optimal probeset and its internal variance of
each melting temperature interval is known.

The data structure can be used to find the melting tem-
perature with the lowest internal variance (see figure 5). The
interval limits of the covered genes determine the solution
space for the optimization problem. The emerging Tm-ranges
only depend on the actual composition of the probesets. In
the example of figure 5, the interval limits of 40 ◦C and
60 ◦C originate from the data structures of gene 1 and gene 2,
respectively. In order to find the minimal internal variance, the
variances are calculated for each melting temperature interval
of interest. The resulting variances are minimal because the
underlying probesets are optimal. In a final step, the overall
minimum is selected and the corresponding probesets, which
cover all included genes, are backtracked. In the example, the
optimal solution is the interval between Tm 40 ◦C and 60 ◦C
which has an internal variance of 0.7. Consequently, gene 1
is covered with probeset 1.2 whereas gene 2 is covered with
probeset 2.1 in the optimal solution.

The algorithm above solves the problem that for each gene a
certain number of probe candidates is selected which minimize
the overall melting temperature variance.

B. Selection of optimized marker genes and their correspond-
ing probes

Problem 2 Given a set of pathways P and a set of associated
genes Gp for each pathway p ∈ P . Given a set Cg of validated
probe candidates for each gene g ∈ Gp. For each pathway
p ∈ P , find a subset of genes gi ⊆ Gp of size n that are
covered by k probe candidates ci ⊆ Cg which minimize the
overall variance in the melting temperature Tm.

As an example, each metabolic pathway should be covered
by three genes which itself are covered by five different probes.
The overall probe selection should be optimized regarding the
melting temperature uniformity.

Generally, the selection of genes is not independent of the
selection of probes. If different genes are selected, then a dif-
ferent set of probesets is optimized. Besides naive approaches
(see discussion), the problem can be solved with a three-step
bottom-up programming approach.

Fig. 6. Determination of optimal genesets (GS) for each pathway.

In a first step, the optimal probeset for each melting tem-
perature range is calculated for every combination of genes in
every single pathway (subsequently called genesets). Given
that Gp genes are assigned to a pathway pj and n genes
should be selected, there are

(
Gp

n

)
genesets for this pathway.

The optimal probesets for each geneset can be calculated by
the method established in section II-A (see figure 5). For each
interval, the corresponding probesets are saved and the internal
variance regarding these ranges are recalculated. Because each
probeset is guaranteed to be optimal for the corresponding
gene and temperature interval, the resulting selection for the
geneset is also optimal.

In the second step, the best genesets are chosen for each
pathway (see figure 6). For each geneset (GS), optimal probe-
sets (PS) for each melting temperature interval are known from
the procedure described in section II-A. For each emerging
range, the minimal internal variance for each geneset is calcu-
lated. For this task, not every probeset needs to be tested again
because the optimal probesets are already known. The geneset
with the lowest internal variance regarding the corresponding
melting temperature interval is subsequently chosen to cover
the pathway. Eventually, for each pathway and each possible
melting temperature the optimal geneset and its corresponding
optimal probesets are known.

In a last step, it is possible to traverse this resulting
information for the melting temperature range that on average
contains the lowest internal variance over all pathways (similar
to figure 5). This melting temperature interval can be used
to backtrack the corresponding optimal genesets and their
respective probeset.

III. RESULTS AND DISCUSSION

We applied the presented method to select probe candidates
for all predicted gene clusters of secondary metabolite path-
ways of Aspergillus terreus. In this context, a gene cluster is a
group of genes which are closely located on the chromosome
and generally encode one secondary metabolite pathway [12].
The secondary metabolite clusters were predicted based on
their genomic content using the tool SMURF [13]. For probe
generation and evaluation, we applied the method formerly
presented [8]. In total, 81 gene clusters are covered with three
different genes each. To obtain reliable results, each gene
is covered with five different probes. Up to 15 genes were
associated with each pathway. Additionally, five regulatory
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Fig. 7. Minimal internal variance of probe selection as a function of the
melting temperature for the gene cluster coverage for A. terreus.

genes and seven house-keeping genes were added as control
probesets to the microarray probe design.

For this application, the presented novel method selected
the optimal probesets very efficiently (2 minutes using a
currently standard CPU (2x2.33GHz) and 4GB RAM). The
results of the optimization are visualized in figure 7 where the
relationship between variances and the corresponding melting
temperature intervals is shown. The graph shows that there
are many melting temperature ranges which yield a low
internal variance. Generally, the melting temperature should be
selected as low as possible in order to ensure that hybridization
takes place at low temperatures [14]. Hence, the result can be
used to find a good compromise between high Tm uniformity
and a low melting temperature.

In our application, an additional requirement was to include
“key genes”. They encode for key enzymes of secondary
metabolite pathways and are well studied. It was straightfor-
ward to extend the method to take these genes into account
during the selection process. Only genesets containing these
genes are considered for further processing.

The proposed method is designed to find a fixed number of
optimal probe candidates for a given number of genes for each
pathway while minimizing the variance of the melting temper-
ature. This optimization problem could also be addressed with
naive approaches. One suboptimal approach is to determine
the probeset selection for all genes at once - regardless of the
pathway coverage. In a subsequent step, pathways are covered
with those genes that show the lowest variance for the global
optimization. However, this method is not optimal because the
relationship between gene selection and probe selection is not
considered.

Another possibility to get the optimal solution is to generate
all possible geneset combinations and use the approach from

section II-A. Afterwards, the minimal internal variance is
known for each possible combination of genesets and the
combination with the lowest variance is finally chosen. Even
for a small number of pathways and associated genes, this
approach is not computationally feasible. For this naive ap-
proach, the number of possible combinations is

∏
p∈P

(
Gp

n

)
,

where p is the index for possible pathways within P , Gp

is the number of available genes for this pathway, and n is
the number of genes that cover each pathway. Our bottom-
up approach presented in section II-B only needs

∑
p∈P

(
Gp

n

)

combinations for the calculation of the optimal probeset and
their corresponding melting temperature ranges. The complex-
ity of the optimization problem is significantly decreased using
the bottom-up programming approach because it does not
calculate all possible probeset combinations.

Generally, there are many probe candidates which have the
same predicted melting temperature. The presented method
above does not explicitly account for the fact that several
combinations of different probe candidates can span the
same melting temperature range. Nevertheless, the optimality
criterion is valid regarding the melting temperature interval
examined. In the last backtracking step, the method allows
to specifically select all probe candidate combinations for the
selected range. If several probesets offer an optimal solution,
additional selection criteria can be applied. For instance, the
probeset which is located closest to the 3’-end of the transcript
may be preferred.

In the presented application, the method was limited to
secondary metabolite pathways, even though, the concept can
be generalized to any classification of genes, e.g. regulatory
pathways or diseases-associations.

IV. CONCLUSION

We established a novel efficient method for microarray
probe selection. Due to limited financial resources, the objec-
tive is to cover metabolic pathways with a limited number
of genes and a limited number of probes per gene. The
optimization considers the constraints regarding the number
of probes while simultaneously minimizing the melting tem-
perature variance of all selected probes. The problem is solved
with a bottom-up programming approach which effectively
reduces the complexity of the optimization problem and makes
it computationally feasible. The resulting set of selected probe
candidates is optimal regarding a certain melting tempera-
ture interval for which the variance of the set is minimal.
The selected probes have the advantage of similar physico-
chemical properties which guarantee highly reliable signal
intensities. An exemplary application of the probe selection
is presented for the coverage of all fungal gene clusters
involved in the secondary metabolism of Aspergillus terreus.
The method was implemented using Perl. It is available at
www.sysbio.hki-jena.de/software/.
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