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Abstract— The limit load carrying capacity of functionally 
graded materials (FGM) circular plates subjected to an arbitrary 
rotationally symmetric loading has been computed. It is provided that 
the plate material behaves rigid perfectly plastic and obeys either the 
Square or the Tresca yield criterion. To this end the upper and lower 
bound principles of limit analysis are employed to determine the 
exact value for the limiting load. The correctness of the result are 
verified and finally limiting loads for two examples namely; through 
radius and through thickness FGM circular plates with simply 
supported edges are calculated, respectively and moreover, the values 
of critical loading factor are determined. 

Keywords— Circular plate, FGM circular plate, Limit analysis, 
Lower and Upper bound theorems.

I. INTRODUCTION

TUDYING the behavior of structures in the plastic range 
is of great practical importance. Limit analysis theorems, 
as powerful devices, have been mostly applied to the case 

of rigid-plastic materials and led to the design of more 
efficient structures. Traditional elastic design cannot, in 
general, present realistic estimates for the true load carrying 
capacity. As a result, structures that have been manufactured 
according to elastic design principles are relatively heavy and 
expensive. Application of the limit analysis approach results 
in the design of lighter structures than those obtained through 
elastic design. Such structures are frequently utilized, 
especially in aerospace transportation devices. Limit analysis 
is based on lower and upper bound theorems, which results in 
corresponding estimates for the critical value of the load (the 
limit load of the structure). If these two bounds coincide, the 
exact solution of the problem and/or true limit load of the 
structure is obtained. However, it has to be emphasized that 
the exact solution of the described problem should satisfy all 
of the followings: (a) kinematic admissibility of the 
deformation field, (b) static admissibility of the stress field, 
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and (c) satisfaction of the yield criterion, all over the plate.   
Limit analysis theorems, and some of their applications in 

the structural analysis, were first introduced in the 1950’s. 
Among the most fundamental works on this subject, the 
contributions of Prager [1], Horne [2], Mansfield [3], and 
Hodge [4] are remarkable. Some of the most notable works on 
the subject have been reviewed extensively in Save and 
Massonnet [5] and Sobotka [6]. In an attempt to analyse the 
plastic behaviour of plates subjected to some general kind of 
loading, Ghorashi [7] considered constant thickness circular 
plates obeying either the Square or Tresca yield criterion and 
obtained exact solutions for the case of rotationally symmetric 
load. Also Ghorashi et al. [8] considered the variable 
thickness plates which are used extensively. Furthermore, in 
another attempt, Guowei [9] has derived the limit load of 
orthotropic circular plates. But so far there is no reported work 
on the limit analysis of other types of material such as 
functionally graded materials or FGMs. 

In the present paper, the load carrying capacity of FGM 
circular plates under arbitrary rotational symmetric loadings 
has been considered. In this way, the simple supported 
circular plate is considered to be through radius FGM as well 
as through thickness FGM. The upper and lower bound 
theorems of limit analysis are utilized and the critical loading 
factor is computed. Ultimately the outcome of the paper is 
illustrated through several case studies. 

II. DESCRIPTION OF FGMS PROPERTIES

Advances in material synthesis technologies have spurred 
the development of a new class of materials, called 
functionally graded materials (FGMs), with promising 
applications in aerospace, transportation, energy, electronics 
and biomedical engineering [10-12]. In applications involving 
severe thermal gradients (e.g. thermal protection systems), 
FGMs exploit the heat, oxidation and corrosion resistance 
typical of ceramics, and the strength, ductility and toughness 
typical of metals. In a typical FGM, the volume fractions of 
the constituents are varied gradually over a macro scale 
geometrical dimension such as coating thickness. Within an 
FGM, the different phases have different functions to suit the 
needs of the material. The material gradients induced by the 
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spatial variations of the material properties make FGMs 
behave differently from common homogeneous, isotropic 
materials and traditional composites. Plastic limit analysis of 
these kinds of FGM plates should be updated based on the 
yield properties of the plates.  

 In our analysis, for a simply supported FGM plate it is 
assumed that the compositional variation of ceramic and metal 
phases can be approximated by an idealized power-law 
equation as Eq. (1) for the through radius FGM  

1

nrV
R

(1)

and as Eq. (2) for through thickness FGM plates: 

1
2 nzV
t

(2)

Here, 1V  represents the volume fraction of the ceramic 
phase, z is the location measured from the mid surface, t is the 
total thickness of the FGM layer, r  is the radial coordinate, R
is the radius of the plate and n is the power exponent (see Fig. 
(1)). Note that, at any location, 1 2 1V V , where 2V  is the 
volume fraction of the metal phase. In our model, the 
composition is pure ceramic at the support edge (for through 
radius FGM) and at the surfaces (for through thickness FGM) 
while it is pure metal at the centre (for through radius FGM) 
and at the mid surface (for through thickness FGM). When n
= 1, the composition changes linearly through the thickness or 
radius, while 1/ 2n  or 2 corresponds to the quadratic or 
parabolic distribution. Since we need to specify a likely range 
of the unknown variable in the inverse analysis, it is assumed 
that n ranges from 1/3 to 3. Any value outside this range is not 
usually desired since such an FGM would contain too much of 
one phase. (For example when n = 1/3 or 3, one phase has 
75% of the total volume.)  

In the case of through thickness, when the lower surface is 
metal and upper surface is ceramic and the Eq. (2) should be 

modified and can be expressible as
1

nzV
t

, but the similar 

analysis should be done. 
 In the current analysis, the so-called “modified rule of 

mixtures” described in [13-16] is adopted. If the composite is 
treated as isotropic, its uni-axial stress and strain can be 
decomposed into: 

1 1 2 2 1 1 2 2f fV V and V V (3)
Where 1 2, and 1 2,  are the stresses and strains of the 

ceramic and metal under uni-axial stress and strain conditions, 
respectively. The normalized ratio of the stress to strain 
transfer is then defined by a parameter q to describe the ratio 
of stress-to-strain transfer. 

1 2

1 2

, 0q q (4)

Combining Eqs. (3) and (4) and setting f
f

f

E , one may 

obtain the following expression for the effective modulus 
[17]:  

1 1
2 2 2 1 2 2

2 2

1 / 1f
q E q EE V E V E V V
q E q E

(5)

For applications involving plastic deformation of 
ceramic/metal (brittle/ductile) composites, it is assumed that 
the composite yields once the metal constituent yields. With 
these assumptions, the yield stress, Y , of the composite may 
be obtained as follows [17]: 

2 1
2 0 2 2

1 2

1Y
q E EV V V
q E E

(6)

where 1 2,E E  are Young’s module of the constituent 

phases, and 0  denotes the yield stress of the metal (phase 2). 
The above equation indicates that the yield stress of the 
composite depends on the yield stress of the metal, the volume 
fraction of the metal, Young’s module of the constituent 
phases, and the parameter q.

III. PROBLEM STATEMENT

Fig. (1) shows a FGM circular plate of radius R and 
thickness t which is subjected to an arbitrary rotationally 
symmetric loading ( )f r  per unit area. Primarily, it is 
assumed that the FGM properties of the plate in its 
undeformed shape are a function of radius only, then another  
problem is considered where the FGM properties of the plate 
is a function of thickness only. Rewriting the loading function 
as ( )f r , where  is called the load factor, the main purpose 
of this paper is to obtain the critical value of , i.e. cr , which 
generates the collapse mechanism in the plate. 

Fig (1). FGM plate with rotationally symmetric loading 

 In general, the collapse mechanism consists of a few sets of 
yield lines along which the plate becomes fully plastic through 
the thickness. The formation of the collapse mechanism is 
usually considered as the last stage of load carrying function. 
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Therefore, having evaluated cr , the load carrying capacity of 
the plate can be expressed as ( )cr f r . As is customary in 
limit analysis, it is assumed that all defections are negligibly 
small until the collapse mechanism is fully formed. To be 
compatible, the material is supposed to be a rigid-perfectly 
plastic one. This assumption implies that the sequence of 
formation of the yield lines prior to collapse is not significant 
for the results. Furthermore, it is assumed that the material 
obeys either the Square or the Tresca yield criterion, as 
illustrated in Fig. 2. In this figure, rm m  and um  stand for 

the radial, tangential, and ultimate (fully plastic) bending 
moments per unit length, respectively. It is well known that 
the ultimate bending moment per unit length for a plate with 
constant thickness t  and yield stress y is:

2

2

21
4

t

u y
t

ym zdz t (7)

Fig (2). Square (continuous) and Tresca (dashed) yield 
diagrams 

For the case of a through radius FGM, according to Eq. (6) 
it has been shown that, the yield bending stress can be defined 
as [19], 

n

y a b
r
R (8)

Hence, the ultimate bending moment per unit length can be 
defined as: 

2
2

2

1( ) ( )
4

t

u y y
t

m r zdz r t (9)

Clearly, for a variable thickness plate, ( )u rm  would no 
longer yield a constant value. As a result, if the yield criterion 
is expressed in terms of the bending moments per unit length, 
the yield diagram clearly would change for differing points of 
the plate. This representation is depicted in Fig. (2). 
According to Eq. (9) the formulation is as the same as the 
formulation of the isotropic homogeneous circular plates with 
variable thickness [8]. 

On the other hand for the case of through thickness FGM, it 

has been shown that [19]: 
2

m

y a b
z
t (10)

So one can find the ultimate bending moment per unit 
length as: 

*
2

2

( )
t

u y
t

m z zdz m (11)

Where m  is constant and is independent of z. Therefore, 
the same formulation as for the case of isotropic homogeneous 
material can be used. 

IV. CRITICAL LOAD FACTOR FOR THROUGH RADIUS SIMPLY 
SUPPORTED FGM PLATES 

For a simply supported plate under transverse loading, it 
may be observed that stress states lie on the line AB in Fig. 
(2), for which the two yield criteria are identical. Hence, the 
analysis would result in the same outcome if either criterion 
applied. According to Koiter's rule [1], the deformation field 
and hence the collapse mechanism should be compatible with 
the assumed yield criterion. It may be easily verified that the 
frustum collapse mechanism is compatible with the segment 
AB of the two yield criteria shown in Fig. (2). Hence, it can be 
assumed that the frustum collapse mechanism would be 
generated in the plate. Fig. (3) illustrates the geometric 
parameters of the frustum shaped collapse mechanism. It 
should be noted that this mechanism can be regarded as a 
generalization of the simple conical one (with 0fr ).

Fig (3). The frustum collapse mechanics 

A. Upper Bound Solution 
Under presented configuration for the plate collapse in Fig. 

(3), if the central part of the plate with radius fr , has a 

constant deflection of
0w , then when rf changes from zero to 

R, then we have; 
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*
0 (1 )fr

w w
R

(12)

in which *w  is the deflection of the plate center when we 
have a central hinge and R  is the radius of the plate. The total 
internal (dissipative) work may now be written as follows: 

* *

2 ( ) 2 ( )
f

R

i f u f ur

w wW r m r m r dr
R R

(13)

where, the first term on the right-hand side is due to the 
work at the internal circular hinge Q. It has been calculated by 
the multiplication of the ultimate bending moment per unit 
length, length of the circular hinge at Q, and the angle of 
rotation at this point, *w

R
. The second term represents the 

internal work of the conical part of the mechanism and has 
been calculated in a similar way. 

For the external work done by the applied loading, one 
obtains, 

2

0 0
( ) ( )

R

eW f r w r rdr d (14)

where ( )w r  represents the defection function of the plate. 
Eq. (14), for a frustum collapse mechanism shown in Fig. (3), 
can be rewritten as: 

*
00

2 ( ) ( ) (1 )f

f

r R

e r

rW f r w rdr f r w rdr
R

(15)

or by using Eq. (12) 

*

0
2 ( )(1 ) ( )(1 )f

f

r Rf
e r

r rW w rf r dr f r rdr
R R (16)

As a result of the implementation of the virtual work 
principle and the upper bound theorem of limit analysis, upper 
bound estimation for the critical load factor, i.e. u , may be 
obtained by equating the internal work, 

Eq. (13) to the external work, Eq. (16). The final result is: 

0

1 ( ) ( )

( )(1 ) ( )(1 )

f

f

f

R

f u f ur
u

r Rf

r

r m r m r dr
R

r rrf r dr f r rdr
R R

(17)

B. lower bound solution 
In order to apply the lower bound theorem, the equation of 

equilibrium of the plate should be considered. Furthermore, a 
compatible stress field which does not violate the assumed 
yield criterion should be introduced. The equation of 
equilibrium for a circular plate with rotationally symmetric 
geometry, loading, and boundary conditions is as follows [1]: 

0
( )

r

rrm m f d (18)

where  is a dummy variable of integration. Integration of 
Eq. (18) gives: 

2 1
20 0 0

1( ) ( )
r r r

r
Cm r m d f d dr

r r r (19)

where, 2r  is another dummy variable of integration, and 1C
is an integration constant. The finiteness of the results at the 
plate center states that C1 should vanish. For simply supported 
boundary conditions, the frustum shaped collapse mechanism 
and either of the two yield criteria shown in Fig. (2). A 
discontinuous distribution for m  will result in as: 

               

          0
u f

f

m r r r R
m

unknown r r
(20)

Since, in the region 
fr r R  radial yield lines are 

generated, m is equal to um r  but nothing can be said 

about the values of m  inside the circle 
fr r , except that 

they should satisfy the yield criterion under consideration. 
Using Eqs. (19) and (20) for fr r , one obtains: 

2

20 0 0

1 f

f

r r r r

r r
m r m d m d f d dr

r r (21)

In the first integral, m  is unknown. In order to evaluate 
this integral, one may evaluate Eq. (21) at 

fr r :

2

20 0 0

1 f f

f

r r r r

u f r
f f

m r m d m d f d dr
r r (22)

Therefore,
2

20 0 0

f fr r r

f u fm d r m r f d dr (23)

Substation of Eq. (23) into Eq. (21) results in: 
2

2

20 0

20 0

1

          

f

f

r r r

r f u f r

r r

m r r m r f d dr m d
r

f d dr
r

(24)

Finally, since the plate is simply supported, the radial 
bending moment at the plate edge is zero, i.e. 

0rm r R (25)
Utilizing Eqs. (20), (24) and (25), one obtains: 

2

2

20 0

20 0

10

          

f

f

r r R

f u f r

R r

r m r f d dr m d
R

f d dr
R

(26)

Therefore, the following lower bound answer for the critical 
load factor, i.e. l , may be obtained: 

0

( )
f

f

R

f u f ur
l R r

r

r m r m r dr

f d dr
(27)

Considering the special case of the conical collapse 
mechanism with 0fr , Eq. (27) reduces to the one reported 

in Ref. [7]. 
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It should be noted that Eq. (27) has been obtained through 
the application of the plate equation of equilibrium, Eq. (18). 
However, it can be considered as a complete lower bound 
solution only if the yield criterion is satisfied and the collapse 
mechanism with a rigid inner disk is valid. A necessary 
condition for satisfaction of the yield criterion, which ensures 
that Eq. (27) is a lower bound solution, is that the integral of 
m  over the inner circular disk of the plate should not exceed 
the plate load carrying capacity in this region. Hence, using 
Eq. (23), 

2

20 0 0

f fr r r

f u f ur m r f d dr m d (28)

If the inner circular disk is rigid (corresponding to a 
frustum collapse mechanism) then condition given in Eq. (28) 
with strict inequality sign would be satisfied. It thus presents a 
necessary condition for the rigidity of the inner circular disk. 

V. CRITICAL LOAD FACTOR FOR THROUGH THICKNESS SIMPLY 
SUPPORTED FGM PLATES 

Since for a through thickness FGM plate, um is constant at 
each point, it behaves similar to a homogeneous isotropic 
plate. Thus, for a simply supported plate, a simple conical 
collapse mechanism, corresponding to the following 
kinematically admissible deformation field, can be assumed: 

0 (1 )rW W
R

(29)

Where W r  is the plate deflection at radius r , and 0W  is 

the deflection at the centre of the plate. It then follows that 

rm and the tangential curvature k  are both positive 
throughout the plate. Therefore according to Koiter’s rule, the 
compatible stress states, lie on AB in Fig. 2. Since the two 
criteria are coincident in this region, the same results for the 
critical load factor would be obtained and corresponding 
results of Ref. [18] are applicable to the present problem, 
hence: 

1

10 0

u
cr R r

Rm

f d dr (30)

A.  Solution scheme and case studies 

In this section, critical loading factor is investigated for the 
following loading function: 

2

( ) r rf r a b c
R R

(31)

This loading function is expressed in a general form and it 
incorporates different type of loadings i.e., uniformly 
distributed with b=c=0, linearly varying loadings (c=0) as 

well as parabolic loading. 
The material property for each phase is considered as 

shown in Table 1 and 4.5q GPa [19]. 

Table 1 
 Material properties of Ti and TiB [19] 

Materials Young’s modulus 
(GPa)

Yield stress
(MPa)

Ti 107 450 
TiB 375 ____ 
Based on the values listed in Table and yielding model 

represented by Eq. (6), we can conclude that: 
1450 13.365Y V (32)

B.  simply supported through radius FGM circular plate 

It is evident from Eq. (8) that um  is a function of radius 
and is in the form of: 

n

u
rm A B
R

(33)

Considering Eqs. (17), (27), (31) and (33) we obtain the 
exact critical loading factor for a simply supported through 
radius FGM circular plate obeying square or Tresca yielding 
function as below: 

2

5 3 2 2

60

1 10 5 3 10 5 3

n
f

f

l u
f f f

r
R A B An R Bnr

R

n a b c R r aR bRr cr
(34)

3
23

5 3 2 2

20 3 2

10 5 3 10 5 3

f

l u
f f f

rR A B B
R

a b c R r aR bRr cr

(35)

The result given in Eq. (34) is derived for n=1, 2 whereas 
in Eq. (35) n=1/2.  Since we have obtained the analytical form 
of the solution, as it is seen there is no need to use material 
properties shown in Table 1 to compute numerical value. 

C.  simply supported through thickness FGM circular plate 

Considering Eqs. (11) and (31) we are able to obtain the 
exact value for the critical loading factor of a simply 
supported through thickness FGM circular plate obeying 
square or Tresca yield function as:  

2

60
10 5 3

u
cr

m
a b c R (36)

D.  Verification 
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For a homogeneous isotropic material, it is obvious that 
yield stress is constant, therefore, according to Eq. (33) we 
have: 

21 , 0
4 YA t B (37)

Considering Eqs. (17), (27) and (37) and assuming that a 
constant uniform pressure p  is applied on the plate, we 
conclude that: 

2

2 3

3 ;
2 (1 )

fY
cr

rt
pR R

(38)

The above result is the same as shown in Eq. (25) in [8]. 
 Since the formula derived for a through thickness simply 

supported FGM circular plate is the same for a homogeneous 
plate, it is not necessary to verify Eq. (30). 

VI. CONCLUSIONS

Limit analysis of simply supported circular FGM plates 
with constant thickness subjected to an arbitrary rotational 
symmetric loading has been discussed using upper and lower 
bound principles. In this way, general equations for the critical 
load factor considering the Square and Tresca yield criteria 
have been obtained. For the simply supported through radius 
or through thickness FGM circular plates, it was shown that 
the results obtained for either of yield criterion are the same. 
For a parabolic type of loading the exact solution is derived 
for simply supported FGM plates.  
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