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Abstract—The scientific achievements coming from molecular 

biology depend greatly on the capability of computational 
applications to analyze the laboratorial results. A comprehensive 
analysis of an experiment requires typically the simultaneous study 
of the obtained dataset with data that is available in several distinct 
public databases. Nevertheless, developing a centralized access to 
these distributed databases rises up a set of challenges such as: what 
is the best integration strategy, how to solve nomenclature clashes, 
how to solve database overlapping data and how to deal with huge 
datasets. In this paper we present GeNS, a system that uses a simple 
and yet innovative approach to address several biological data 
integration issues. Compared with existing systems, the main 
advantages of GeNS are related to its maintenance simplicity and to 
its coverage and scalability, in terms of number of supported 
databases and data types. To support our claims we present the 
current use of GeNS in two concrete applications. GeNS currently 
contains more than 140 million of biological relations and it can be 
publicly downloaded or remotely access through SOAP web services. 
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I. INTRODUCTION 
HE integration of heterogeneous data sources has been a 
fundamental problem in database research over the last 

two decades [1-6]. The goal is to achieve better methods to 
combine data residing at different sources, under different 
schemas and with different formats in order to provide the 
user with a unified view of the data. Although simple in 
principle, due to several constrains, this is a very challenging 
task where both the academic and the commercial 
communities have been working and proposing several 
solutions that span a wide range of fields. 

Life sciences are just one of many fields that take advantage 
from the advances in data integration methods [3, 4, 6]. This is 
because the information that describes genes, gene products 
and the biological processes in which they are involved are 
dispersed over several databases [7]. In addition, due to the 
advances in some high throughput techniques, such as gene 
expression, the experimental results obtained in the laboratory 
only are valuable after being matched with data stored in 
public databases [8, 9]. Thus, in order to speed up the 
investigation process, it is very important to have a centralized 
access to distributed databases. 

In this paper, we present GeNS a powerful but easy to use 
platform that allows the integration of any kind of molecular 
data. The main advantage of GeNS resides on its schema that 
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has a general organization that supports the addition of new 
databases and data types without requiring changes in the 
schema. 

II. MOTIVATION AND CHALLENGES 
According to the last release of the Nucleic Acids Research 

there are about 1170 databases in the field of molecular 
biology [7]. Each database corresponds to the output of a 
specific study or community and represents a huge investment 
whose potential have not been fully explored. 

Being able to integrate data from multiple sources is 
important for two reasons. First, because data about one 
biological entity may be dispersed over several databases, for 
instance, for a gene, the nucleotide sequence is stored in 
GenBank [10], the pathway in KEGG Pathway [11] and the 
expression data in ArrayExpress [12]. Obtaining a unified 
view of this data is therefore crucial to understand the role of 
the gene. A second reason consists in the fact that many 
different databases contain redundant or overlapping 
information [13]. This can be detected by directly comparing 
databases. Most of the data stored in these databases is 
publicly available as custom web interfaces, or as text and 
XML files [14]. To get this data one has to access each 
database independently, download and parse the files and 
finally merge all the results in a unified and consistent dataset. 

In the last years, several efforts have been made to simplify 
the process of integrating data from multiple sources. From 
those we have selected three that seemed the most 
representative. The first, BioWarehouse [15], contains data 
from multiple sources including metabolic pathways and 
enzymes. BioWarehouse uses a database schema oriented to 
predefined data types, meaning that the addition of new data 
types implies adding new tables and methods to query them. 
This database was designed to be more oriented to 
prokaryotes than for eukaryotes. 

A different vision has been applied in BioCoRE [16] that 
uses a more flexible approach to integrate data. According to 
the authors the system allows the storage of almost all 
biochemical process. One drawback is the high complexity of 
the proposed model that contains more than 200 classes. 

A third approach has been applied by Biozon that contains 
a simple and abstract schema that supports data based on a 
hierarchical metamodel [17]. Since the schema is general, in 
Biozon each relation from the metamodel is explicitly stored 
in the database. As a consequence the current instance 
contains about 6.5 billion relations, which decrease 
performance. Biozon is publicly available through an intuitive 
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and easy to use web interface but is not possible to download 
the database in order to install a local instance. 

The previous databases present different approaches to 
address the same issue: integrate data from different data 
sources. The limitations found reflect the difficulty to obtain a 
simple but comprehensive schema able to accommodate the 
heterogeneity of the biological domain and maintaining an 
acceptable level of performance. 

III. DATABASE INTEGRATION APPROACHES 
Although it is consensual that the use of biological data 

spread over the web is essential to extract knowledge from 
local datasets, it isn’t always clear what is the best method to 
access the data [4]. In this section we review a set of 
integration techniques organized in three main strategies: 
Mediators, Links and Warehouses. 

In the mediator based integration the data is left on its 
original database being just created a unified view that is 
provided to the user. Using this approach, the mediator engine 
reformulates at run time each requested query into a single or 
multiple queries that are then submitted to the proper 
databases. The results are then aggregated and processed 
creating the final result that is returned to the client. Current 
examples that use this approach are the BioMediator [18] and 
the SEMEDA [19]. 

Link-based integration has been the first and yet the most 
successful approach to data integration. The reason for the 
success of this approach is that it resembles very closely to the 
nature of the web. In the context of molecular biology the 
problem is that an increasing number of sources on the web 
require users to manually browse through several web pages 
and data sources in order to obtain the desired information. In 
addition, since each database has its own interface the user has 
to learn how to search and navigate in every single database. 
Examples of this approach are the Entrez [20] and the 
DiseaseCard [21] databases. 

Finally, warehouse integration consists in physically 
integrate the data from multiple sources into a local database 
and executing all the queries directly on this repository rather 
than on the original ones. In order to use data warehouses, it is 
also required to develop a unified data model that can 
accommodate all the information that is stored in various 
source databases. Additionally, it is necessary to have specific 
applications to fetch the data from the source databases, 
transform them to match the local unified scheme and, finally, 
load them into the data warehouse. After this initial setup 
phase, the warehouse can be used as a single interface to 
answer any of the questions that the source databases can 
handle, as well as those that require the interlink of several 
concepts that are not present in any single database. 

Although each of the discussed approaches has its 
disadvantages we believe that the warehouse approach is more 
adequate to address this problem mainly because [6]: 

• Performance: The warehouse is the only approach 
where the query response time depends only on local 
factors (CPU, memory, disks, database) rather than 

remote servers and network delays. This is especially 
relevant for complex queries that need to be 
decomposed into several sub-queries. 

• Access restrictions: Some data sources do not provide 
query access to their databases (web services, direct 
URL, or alike) and others includes specific 
mechanisms in their interfaces (like session 
management, cookies, etc.) that hinders the use of 
remote access approaches. 

• Availability: Other methodologies cannot assure the 
quality of service due to the total dependency on 
external factors, namely the data availability. This can 
happen because the server is down or because it has 
simply changed the way to access the data. They are 
vulnerable to name clashes and ambiguities. If the 
source database change the way the URL is 
constructed then the database will become unavailable. 
These problems are usually only solved through human 
intervention. 

• Data processing: Another drawback of others than 
warehousing approach is the impossibility to 
manipulate directly the source databases. The smallest 
data element is a web page, while with the warehouse 
we can have a great granularity and work with, for 
instance, a gene name or a gene attribute.  

• Versioning: Warehouses also allows the user to keep 
track of the version of each single accessed database, a 
feature that is not very relevant for small projects but 
crucial to larger ones. 

IV. IMPLEMENTATION 

A. Requirements 
In order for GeNS be usable, one of the main requirements 

was that its schema should be easy to understand and 
maintain. To address this issue, we have focused many of our 
efforts to achieve a comprehensible schema, with a limited 
number of tables. 

Another requirement was that the system should be scalable 
in size, in order to contain several gigabytes of data and 
hundreds of millions of biological entities relations. 

The system should also be scalable in terms of the number 
of databases that it stores. This should be obtained without 
having any changes in the schema. 

Even containing a huge leap of data, the system should be 
efficient in order to give short response times to the most 
typical queries. This is especially important because we want 
this tool to be used to answer user-defined queries and also to 
be a platform that could be used by other software tools. To 
attain this requirement, we have stored the gene identifiers and 
the bio entity entries in separated tables and have optimized 
the database with the addition of indexes. 

The data stored in the database should be accessible 
through the use of several methods. To achieve this we have 
implemented a set of web services, which can be used to 
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query and extract data from the database, in addition to SQL 
queries. 

One last requirement was the possibility to track the current 
version of the inserted data, as well as the possibility to update 
the existent data without having to change the entire database. 

B. Data integration 
To construct GeNS database we have selected the most 

representative databases that cover a wide span of fields. For 
each database we have identified the most adequate method to 
obtain the data and have developed a specific loader 
responsible for converting the data to a format compatible 
with GeNS schema. We have implemented three distinct 
database loaders: a Web Services loader, a tabular files loader 
and a specific XML and text parser loader. 

The data integration procedure follows the steps proposed 
by Davidson [22] in 1995: the data is basically retrieved and 
transformed to a common data model in order to match the 
current semantic schema and integrated in the database; 
Davidson also proposed two further steps that were not 
followed due to the nature of this platform. 

Figure 1 contains a schema with the selected databases and, 
for each, the method used to extract the data: EMBL-EBI [23], 
UniProt (SwissProt and TrEMBL) [24], ExPASy (PROSITE 
and ENZYME), NCBI [20] (Entrez, Taxonomy, Pubmed, 
RefSeq, GenBank and OMIM), Biomart, ArrayExpress, 
InterPro, Gene Ontology [25] (GO), KEGG [11] (Genes, 
Pathway, Orthology and Drug) and PharmGKB  (Gene, Drug 
and Disease). 

Altogether these databases represent a very healthy set of 
data that span over 150 different data types. By merging all of 
this data, we obtain almost 7 million unique gene entries and 
over 140 million biological relations. 

C. Meta -model design 
Providing a correct representation of biological data 

without sacrificing the system’s performance or scalability, 
among a long list of requirements, is still a challenge in 
bioinformatics [6]. In order to address this issue, one of two 
opposing schema design principles is typically applied: 
generalization or specialization.  

A general schema prioritizes flexibility, scalability and the 
integration of several types and large volumes of data. It uses 
a large, dynamic set of data sources (which may vary 
throughout the time) in order to encompass as much diverse 
data as possible. A database designed according to this 
principle will allow its users to correlate heterogeneous data 
and to, eventually, extract conclusions that would otherwise 
hardly be visible. On the other hand, a specialized schema 
accommodates only a limited number of datasets. Usually, 
only a handful of sources of data are used: these sources were 
chosen from the very beginning and usually remain unaltered 
for long periods of time. This schema is usually considered as 
more suited to address more specific issues once that unlike 
general database schemas, scalability and flexibility are 
secondary aspects. 

In GeNS we take advantage of both methods. To physically 
store the data we use a general schema that certifies the 
scalability and flexibility of the database. Then we support 
this physical schema with a concrete meta-model where all the 
entities and relations are specified.  

Figure 2a contains this meta-model, where the gene plays a 
central role. Related with each gene there is a network of data 
types that map to the previously shown databases. The 
addition of databases that contain new data types only requires 
changes in the meta-model and not in the physical model. 

D. Physical schema design 
Figure 2b represents the physical database model. Because 

we needed to explicitly store all the relations between genes 
and proteins, due to implementation purposes we have 
changed the central role from gene in the meta-model to 
protein in the physical model. Following, we will describe in 
detail the concepts applied in the design of the database. 

Organism: Stores taxonomic information; each entry 
corresponds to an organism with any given number of 
associated proteins. This table is the root of the hierarchical 
model. For each organism, we store organism detailed 
information such as its scientific names and reference 
sequence. 

Protein: This table stores information regarding each 
protein entry. This information includes gene locus, gene and 
protein sequence and the relations to two distinct tables: 
Identifier and BioEntity. 

Identifier: Contains all the synonyms, alternative names and 
identifiers for each entry. 

DataType: Contains a list with all the types of data 
retrieved from external databases, encompassing both 
identifiers and biological entities. Every entry in either 
Identifier and/or BioEntity tables references this table, so that 
we may easily determine the type of the data, thus preventing 
semantic related errors (e.g. comparing two completely 
unrelated objects).  

BioEntity: This table stores unique identifiers belonging to 
the biological entities associated with a given protein; this 
includes, among other things, pathway, gene ontology and 

Fig  1. Schematic representation of the dabases integrated in GeNS 
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gene expression identifiers. Detailed data regarding a specific 
entry in this table will reside in the Description table. 

Description: The description table stores structured data 
related to a specific biological entity. Examples of usage 
include the detailed description of a pathway or the mutation 
of a genetic disease. 

This hierarchical organization not only simplifies the 
database schema (hence making it easier to understand and 
maintain) but also greatly improves the system’s performance 
upon queries by simplifying access to the data that really 
matters. The system is also very flexible due to the way it 
maps data to proteins: each biological entity in the BioEntity 
table is unique and, thanks to an association table, multiple to 
multiple connections between proteins and biological entities 
keep data replication down to a bare minimum, while ensuring 
that the system’s scalability and performance remain 
unaffected, along with all the benefits provided by the 
hierarchical model. 

V. RESULTS 

A. Manual utilization 
The following example (Figure 3) demonstrates one of 

many possible scenarios in GeNS: a researcher wants to 
obtain the network of concepts related with the following 
gene: ‘sce:Q0085’. The system starts by determining the 
internal protein identifier through the Identifier table. With 
this identifier, we can now determine the alternative gene ids 
(still within the Identifier table). 

Subsequently, the system will ascertain the corresponding 
organism; in this particular case, we already know the answer 
due to the first three letters of the identifier (sce, the short 
name for Saccharomyces cerevisiae) but this fact will not 
affect the process. In order to do so, GeNS looks up the 
Protein table and uses the taxonomic id to identify the 

organism in the Organism table. In the Protein table it is also 
possible to find the gene locus, it sequence and a general 
description. 

 Following this procedure, GeNS maps every biological 
entity associated to our pre-determined protein identifier by 
looking up the ProteinBioEntity table (that contains all the 
relations between the two). This allows GeNS to retrieve the 
biological entities in the BioEntity table which, in turn, contain 
homology, bibliography, expression, ontology, pathway and 
enzyme related data, among others.  

Finally, more details about each biological entity can be 
obtained by looking up its description in the 
BioEntityDescription table. 

Extending this example, the researcher wants to obtain all 
others genes related with the KEGG pathway ‘sce00190’ 
where the gene ‘sce:Q0085’ was initially present. To do so he 
searches the Protein table for all the entries that contain a 
relation to the table BiologicalEntity that matches the required 
pathway. 

B. Programmatic utilization 
1) A text mining example 

QuExT (Query Expansion Tool) is a web application 
designed to search the biomedical literature in order to find 
relationships among sets of genes [26]. For a given list of 
genes, it expands the initial search in several biological 
domains using a mesh of co-related terms, extracts the most 
relevant document from the literature, and organizes them 
according to domain weighted factors. The role of GeNS 
database is to retrieve the network of concepts related with 
each gene entry in order to perform the query expansion. 

2) Studing common characteristics in a set of genes 
GeneBrowser is a web-based application that offers to the 

user several interpretation perspectives to help giving 
biological significance to the result coming from a DNA-
microarray experiment. A previous version was presented in 

             

Fig. 2. GeNS database schema; a) meta-model centred in the gene and related concepts; b) the protein centric database physical schema 

a) b) 
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[27] and an improved version is expected soon. For a given 
set of genes the system obtains and shows to the user relevant 
information extracted from external databases. Other features 
of the system include the possibility to see the accumulation 
of genes into several categories (Pathways, Gene Ontology 
terms and KEGG Orthology terms). 

The possibility of using the GeNS system enables a fast and 
easier development of an application because the development 
team only has to concentrate in the visualization and analysis 
of data due to the easiness of use of the database. 

VI. AVAILABILITY 
Both the schema and the data are available to be 

downloaded at http://bioinformatics.ua.pt/applications/gens. 
We provide a full copy compatible with SQL Server 2008 
representing approximately 20GB. For other DBMS, one can 
download Tab delimited files that mirror the database schema.  

As a convenience to users who do not want to maintain a 
local instance of the database, we also provide a public web 
services interface. To download the database, or to obtain 
more information regarding the web services interface access 
http://bioinformatics.ua.pt/applications/gens. 

VII. CONCLUSIONS 
In this paper we have presented the schema and the 

implementation of a platform for the integration of biological 
data. The main contributions of this tool are its easiness to use 
and maintain, while offering great performance, its coverage 
and scalability, attested by the number of data sources already 
integrated and by the simple procedure to augment these 
sources. 

The current instance already integrates the most relevant 
molecular biology databases having a total of 140 million 
biological relations. Despite that we are still working on 
feeding GeNS with other databases and data types. To show 
the functionality of GeNS we have presented two applications 
that we have been developing and that are mainly supported 

by GeNS services. The first is a tool that performs the 
functional analysis of microarray data and the second uses 
GeNS data to improve text mining results over PubMed. 
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