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Abstract—In this paper, a novel associative memory model will 

be proposed and applied to memory retrievals based on the 
conventional continuous time model. The conventional model 
presents memory capacity is very low and retrieval process easily 
converges to an equilibrium state which is very different from the 
stored patterns. Genetic Algorithms is well-known with the capability 
of global optimal search escaping local optimum on progress to reach 
a global optimum. Based on the well-known idea of Genetic 
Algorithms, this work proposes a heuristic rule to make a mutation 
when the state of the network is trapped in a spurious memory. The 
proposal heuristic associative memory show the stored capacity does 
not depend on the number of stored patterns and the retrieval ability 
is up to ~ 1. 
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Networks, Genetic Algorithms, Hopfield Neural Networks, and 
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I. INTRODUCTION 
YNAMIC associative neural memory architectures and 
their learning algorithms are considered as nonlinear 

dynamical systems that information retrieval is performed as 
an evolution of the system’s state in a high-dimensional state 
space. The retrieval is implemented by first initializing state 
with noisy or partial input pattern and then allowing the 
memory to perform a progressing search to find out the closest 
associative stored memory. 

During the past quarter century, the numerous 
autoassociative models have been extensively investigated on 
the basis of the autocorrelation dynamics. Since the proposals 
of the retrieval models by Anderson in [2], and Hopfield in 
[3], it has been well appreciated that the storage capacity of 
the autocorrelation model, or the number of stored pattern 
vectors, L, to be completely associated vs the number of 
neurons, N, which is called the relative storage capacity or 
loading rate and denoted as L/N, is estimated as ~0.14 at most 
for the autocorrelation learning model with the activation 
function as the signum one.  

For the limited capacity as above mention, many of 
researches were proposed to improve it. One of the considered 
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approaches is changes of active functions. Morita [10] 
replaced the monotonous active functions by a neuro-dynamic 
model with nonmonotonous mapping. He reported that the 
nonmonotonous mapping in a neuro-dynamics possesses a 
remarkable advantage in storage capacity, ~0.27, superior than 
the conventional association models with monontonous 
mappings. Nakagawa [12] [13] proposed sinusoidal mappings 
or skew tent mappings. The chaotic behavior of the network 
based on the nonmonotonous chaos dynamics and relaxation 
of the monotonous decreasing of the energy was found. The 
convergence to the spurious memories may be avoided 
through the parameter control from the monotonously 
increasing function of the activation function to the 
monotonously decreasing one. Therefore, high association 
ability was shown up to ~0.5.  

Another approach is improvement of energy functions. The 
energy function of networks always evolves in the direction 
that leads to lower network energy. Updating rules that based 
on the quadratic form of energy functions were investigated. 
Nakagawa [14] defined in terms of the entropy function 
instead of the conventional quadratic functions. The author 
realized the twice larger storage capacity in comparison with 
conventional model. 

The correlation weight matrix was also considered as 
improved models. Venkatesh [2] proposed updating rules of 
weight matrix modified by a diagonal matrix of positive 
eigenvalues and individual orthogonal matrix for increasing 
the radii of attraction-spheres around memories and specifying 
increased attraction in certain directions around each of 
memories.  

Yanai and Amari in [7] studied the probability of a state of 
networks belonging to the basin of attraction. The authors 
proposed the statistical neurodynamical method to analyze the 
one-step recall dynamics of the two-stage dynamic model and 
obtained the capacity of memory ~ Nlog/N   

Although many improved models have been proposed, 
major problems of autocorrelation model have still presented. 
Memory capacity is very low. Basins of attraction of stored 
patterns are small. There are many spurious memories, 
equilibrium states different from stored patterns. 

To improve the conventional associative memory model, 
this work proposes a novel approach based on the idea of 
well-known Genetic Algorithms (GAs). GAs is known with 
the capability of global optimal search through series of 
procedures as selection, crossover and mutation. GAs always 
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escapes local optimum on progress to reach a global optimum. 
This advantage is applied for associative memory models that 
almost easily trap at local spurious memories. Furthermore, 
this approach still keeps the conventional active function as 
well as the autocorrelation weight matrix because this matrix 
is really includes itself much more information capacity. The 
advantage of improvement is the stored capacity does not 
depend on the number of stored patterns and the retrieval 
ability is up to ~ 1. The remainder of this paper is organized as 
follows. In section 2, the mathematic models of associative 
memories and heuristic rule are introduced. In section 3, some 
illustrations and discussion is described. Finally, section 4 is 
conclusion.    

II. MATHEMATICS MODELS 

A. Continuous-time Associative Memory 
 
The stored binary vector: 

1e )r(
i ±=     (1≤i≤N,1≤r≤L)            (1) 

where N and L are the number of neurons and the number of 
stored pattern vectors.  

The states of the neural network are characterized in terms 
of the output vector  

Si (1≤i≤N)  
and the internal states   

σi  (1≤i≤N)   
which are related each other in terms of  

Si=f( σi )                      (2) 
where f(.) is the activation function of the neuron. To define a 
continuous time model, it is usually chosen a nonlinear 
function such Tanh 
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 A matrix of weights W is defined by Hebbian learning rule 
as 
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The continuous associative memory is described by the 
following differential equation 
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Updating rule 
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where δ  is distance between two simulated computing steps. 
The overlaps m(r) are defined by 
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Then the overlaps are calculated in terms of orthogonal 
relation: 
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where e(s) is a target pattern that needs to be retrieved and Hd is 
the Hamming distance between the initial vector si(0) and the 
target vector e(s). 
 The retrieval process is succeeded if 
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results in 1±  for 1t ≥ , in which the system will be in steady 
state such that  
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B. Mutative Procedure of Genetic Algorithms 
Mutation is a genetic operator that alters one ore more gene 

values in a chromosome from its initial state. This can result in 
entirely new gene values being added to the gene pool. With 
these new gene values, the genetic algorithm may be able to 
arrive at better solution than was previously possible. 
Mutation is an important part of the genetic search as help 
helps to prevent the population from stagnating at any local 
optima. Mutation occurs during evolution according to a user-
definable mutation probability. 

 

C. Improvement of Continuous-time Associative Memory 
by Mutation 

There are two phases to the operation of autoassociative 
memory, namely the storage phase and the retrieval phase. 
The first one according to the outer product rule, Hebbian 
learning rule, defines a symmetric weight matrix, representing 
the patterns to be memorized by the network. During the 
retrieval phase, an N-dimensional vetor called a probe, 
representing the state of network, typically contents an 
incomplete or noisy version of stored memories. The 
asynchronous updatine described above is continued until 
there are no further changes to report. Unfortunately, the 
spurious states of networks increase exponential with N. The 
associative memory has difficultly reached limited stored 
memories as shown in Fig. 1. 
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This paper defines a mutative error to detect retrieval 
process and proposed a heuristic rule to make a mutation 
when the state of the network is trapped in a spurious 
memory. The term, mutative error, is the difference of 
overlaps between present state and previous state. When the 
mutative error is small enough to determine the state of 
network is being trapped, the mutation phase is excited to try a 
better solution.   

 
Fig. 1 Overlaps of unsuccessful retrieval process. 

III. ILLUSTRATION AND DISCUSSION 

A.   4-pattern problem 
A simple illustration is used to examine the continuous-time 

model. This example has 4 stored patterns which are encoded 
by a 10x10 binary pixel grids, are shown in Fig. 2. In this test, 
we present the high noisy stored patterns as input patterns to 
test how the model behaved upon pattern association.  

 
Fig. 2 The four stored patterns. 

 
As shown in Fig. 3. , the continuous time model can be 

successfully recalled the correct stored pattern within around 
30 steps, and it will be stabilize in a steady state. All of 4 
patterns are included 40% noisy as initial patterns. The 

(a) 
 

(b) 

(c) 
 

(d) 

Fig. 3 (a)-(d). The sequence of 4 patterns with 40% noisy. 
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computing time of convergence depends on the value of 
simulation computing step. This example can be convergence 
in a shorter time with the larger computing step.  

 
Fig. 4. Retrieval to the closest associative stored memory. 

 

The second test is shown on Fig. 4.  to illustrate that the 
successful retrieval pattern is the nearest one among stored 
patterns. Hamming distances of from the initial pattern as 
shown in Fig. 4. to every stored pattern are correspondent to 
[0.3800; 0.4200; 0.5600; 0.5500]. The final target pattern 
converses to the first one.  Comparing to Lee model in [6], the 
second one was retrieved.   

B. Enlarge capacity of memory up to ~1 
We first present an example of the dynamics of the overlaps 

in Fig. 5(a)-(d). In this case, we choose the number of 
neurons, N=100, and the stored rate, L/N=0.5, is set as const. 
Fig. 5. (a), (b), (c) and (d) correspond to the different initial 
values of Hamming distances, Hd/N={0.05; 0.1; 0.15; 0.2}. It 
is clear to see the Heuristic rule is shown in this illustration. 
When the retrieval process traps in a local optimal called a 
spurious, the Heuristic rule generates a new state and the final 
results can be found out. The time that one of the overlaps 
increases up to 1 and the others go to zero represents the 

 
(a) 

 (b) 

 
(c) 

 
(d) 

Fig. 5(a)-(d). The time dependence of overlaps of the proposed model. 
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success of retrievals. In Fig. 5(d) the retrieval process is 
successful after 2 trials.  

To see the retrieval ability of the present model, the success 
rate Sr is defined as the rate of the success of 10 trials with the 
different stored patterns ei

(r) (1≤i≤N,1≤r≤L). Every trial the 
maximum of iterations is set 1,000. Then we present the 
dependence of the success rate Sr on the stored capacity L/N 
are depicted in Fig. 6.(a)-(d), corresponding to the different 
initial values of Hamming distances, Hd/N=0.05; 0.1; 0.15; 
0.2. 

For the comparison, the corresponding results of 
conventional models are shown in Fig. 7(a)-(d). It is found 
that the present approach may achieve larger memory capacity 
than the conventional autocorrelation strategy. The storage 
capacity beyond the conventional one with the depression of 
the success rate does not depend on the number of stored 
patterns. 

 It is easy to see that when the memory capacity rate L/N 
reaches to 1, the Heuristic model mostly can retrieve 
successfully. The retrieval process doe not depend on the 

number of stored patterns, L. It has only depended on the 
limited time of iterated process. Increasing number of 
iterations up to 10,000 the result is shown in Fig. 8.  

 
Fig. 8 The independence of  the memory capacity L/N on number of 

stored patterns, L, of Heuristic Continuous-time Associative 

 
(a) (b) 

 
(c) (d) 

Fig. 6(a)-(d). The dependence of the success rate on the memory capacity L/N of Heuristic Continuous-time Associative Memories. 
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Memories with number of iterations up to 10,000. 

 
 

IV. CONCLUSION 
In the present paper, we have proposed a novel associative 

memory based on the hybrid algorithm between conventional 
model and the mutative idea of Genetic Algorithms. From 
computer simulation results, it has been found that the large 
storage capacity, characterized by the success rate curve,  does 
not depend on the number of stored memories. As a future 
work, controlling the mutative process can obtain better 
results for associative memory model around the high 
sensitive area. 
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