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Abstract—A frequency grouping approach for multi-channel 

instantaneous blind source separation (I-BSS) of convolutive 
mixtures is proposed for a lower net residual inter-symbol 
interference (ISI) and inter-channel interference (ICI) than the 
conventional short-time Fourier transform (STFT) approach. Starting 
in the time domain, STFTs are taken with overlapping windows to 
convert the convolutive mixing problem into frequency domain 
instantaneous mixing. Mixture samples at the same frequency but 
from different STFT windows are grouped together forming unique 
frequency groups.  

The individual frequency group vectors are input to the I-BSS 
algorithm of choice, from which the output samples are dispersed 
back to their respective STFT windows. After applying the inverse 
STFT, the resulting time domain signals are used to construct the 
complete source estimates via the weighted overlap-add method 
(WOLA). The proposed algorithm is tested for source deconvolution 
given two mixtures, and simulated along with the STFT approach to 
illustrate its superiority for fairly motionless sources. 
 

Keywords—Blind source separation, short-time Fourier 
transform, weighted overlap-add method 

I. INTRODUCTION 
 multi-channel BSS algorithm estimates the underlying 
source signals without any knowledge of the mixing 

matrix [1-4]. This degeneracy is often circumvented by 
making some characteristic assumption about the underlying 
sources, such as mutual independence, or the mixing process. 
For instantaneous mixing problems, the observed mixtures 

0 1 1( ) [ ( ), ( ), , ( )]TLn x n x n x n−=    x K  are linear mixtures of the 
scaled Dirac-impulse filtered sources 0 1( ) [ ( ), ( ),n s n s n=   s  

1, ( )]TLs n− K , where T  represents vector or matrix transpose. 
That is 
 
 ( ) ( ) ( ) ,n n n= ⋅ +x H s ε  

 
where H  is an L L×  mixing matrix and ( )nε 0[ ( )nε=  

2 1, ( ), , ( )]TLn nε ε −   K  is the additive noise vector. In practice, 
observed signals tend to be convolutive mixtures of the 
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underlying sources as in most audio and video recordings. In 
this case the model is given by 

 
 ( ) ( ) ( ) ( ) ,n n n n= ∗ +x H s ε  (1) 
  

where *  is the convolution operator. It follows that I-BSS 
algorithms like those in [1-4] fail to acceptably identify the 
underlying sources. Consequently, estimation methods of 
instantaneous mixing in the frequency domain are used to 
facilitate the use of conventional I-BSS algorithms, 
particularly the STFT approach. In [5], it is said that the 
human voice is stationery for a period shorter than 10ms. Any 
longer than that the frequency components of the speech 
change and it is no longer stationery. Thus, given the delays 
and room reflection are not too long, K -point STFTs can be 
used to estimate the instantaneous mixing problem as 
proposed in [5] resulting in 

 
 ( ) ( ) ( ) ( ), , , ,n n nω ω ω ω= +x H s ε  (2) 
 

for the spectral range ( )2 1 /K Kω π0 ≤ ≤ − , where 

( , )nωx  and ( , )nωs  are the STFTs of the convolutive 
mixtures and sources respectively. An appropriate I-BSS 
algorithm is then applied to the spectral frame vector ( , )nωx  
giving 

 
 ( ) ( ) ( ), , ,n nω ω ω=y W x  

 
for the learned de-mixing matrix ( )ωW . The length of the 

STFT is dependent on the assumed time that the source 
signals are stationery. Clearly this stationery assumption 
varies from application to application and is not truly accurate 
despite acceptable results in certain applications such as the 
cock-tail party problem. 

 
In this paper, we propose a method for modeling an 

instantaneous mixing problem in the frequency domain 
without having to make stringent assumptions about the 
spectral properties of the underlying sources. However, we 
circumvent the BSS uncertainty problem by making an 
assumption on the mixing process that the sources are fairly 
motionless over certain period of time greater than the STFT 
window length. The result is more effective source separation 
as reflected by a measure of the net residual ISI and ICI 
compared to the conventional STFT approach of (2). 
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The rest of the paper is structured as follows: In Section II 

we introduce an algorithm for forming frequency collections 
from the STFT spectral frames, for a better approximation of 
the instantaneous mixing problem. Simulation results 
comparing this approach to the usual STFT method are 
presented in Section III. The discussion in Section IV 
summarizes the advantages and limitations of the proposed 
frequency grouping based algorithm.  

II. THE PROPOSED APPROACH 
Given the mixture signal ( )lx n , 0 1l L≤ ≤ − , a windowed 

data frame ( ) ( )r
lx n , 0 1r R≤ ≤ − , of length N  is extracted 

using 
 

 ( ) ( ) ( )( ) ,r
llx n x n w n r= − Γ  (3) 

 
for 1r n r N Γ ≤ ≤ Γ + − , where Γ  is the window hop-size. 
This results in R  vectors of the form 
 
 ( ) ( ) ( )( )

0 1 1( ) [ ( ), ( ), , ( )]r r rr T
Ln x n x n x n−=    x K . (4) 

 
We then take the discrete Fourier transform (DFT) of the 

data frames in (3) translated to time zero, that is ( )r
lx =%  

( ) ( )r
lx n r+ Γ , to produce the spectral frames ( ) ( )r

lX ω% , for all 
l . As a result, from the time domain vector ( ) ( )r nx%  we have 
the spectral vector 
 
 ( ) ( ) ( )( )

0 1 1( ) [ ( ), ( ), , ( )]r r rr T
LX X Xω ω ω ω−=    X% % % %K . 

 
If using the usual STFT approach, it is at this point that an 

I-BSS algorithm of choice is applied to each of the R  vectors. 
However, these are spectral frames and for source separation 
deconvolution filters must be used instead of an instantaneous 
de-mixing matrix as usually done. Fortunately if the sources 
have some stationery properties as mentioned earlier, an 

instantaneous matrix often suffices.If the sources are fairly 
motionless then the convolution kernels from the sources to 
the recording devices are fairly time-invariant. With this 
mixing process constraint, it is not necessary to make any 
assumptions about the source signals. The time-invariance 
means that the sources contributing to the frequency domain 
mixture sample say ( ) ( )r

klX ω% , for 0 1k K≤ ≤ −  (i.e. kω  
represents a unique frequency from the spectral range covered 
by ω ), are filtered in almost the same way as for ( )r

klX λ ω+% , 
for r λ+  1R≤ − . In other words, we can use samples from 
the R  STFTs of a particular mixture signal ( ) ( )r

lx n%  but at the 
same frequency kω  to infer the filter coefficient ( )kH ω . Let 
the frequency group ( )l kZ ω  be a collection of samples from 
the R  STFTs of the mixture signal ( )lx n  at the same 
frequency kω . That is 

 
 ( ) ( ) ( ) ( )(0) (1) ( 1)[ , , , ]R

l k k k kl l lZ X X Xω ω ω ω−=    K . (5) 
 

From all the L  mixture signals, we have the vectors 
 
 ( ) 0 1 1[ ( ), ( ), , ( )]Tk k k L kZ Z Zω ω ω ω−=    Z K  (6) 
 
for 0 1k K≤ ≤ − . This frequency grouping is illustrated in 
Fig. 1. After forming the vectors of (6), an I-BSS algorithm of 
choice is applied to each of them. Since these samples are at 
one frequency, it is mathematically appropriate to use an 
instantaneous de-mixing matrix regardless of the nature of the 
underlying sources. If ( )kωW  is the learned de-mixing matrix 
from the frequency group vector ( )kωZ , then the separated 
source signal frequency group vector at kω  is given by 
 
 ( ) ( ) ( ) , for 0 1.k k k k Kω ω ω=        ≤ ≤ −Q W Z  (7) 
 

If the I-BSS output to the frequency sample ( ) ( )r
klX ω%  is 
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( ) ( )r
klY ω% , then the output frequency group to ( )l kZ ω  is 

 
 ( ) ( ) ( ) ( )(0) (1) ( 1)[ , , , ],R

l k k k kl l lQ Y Y Yω ω ω ω−=    % % %K  (7) 
 
in accordance with (5). Hence the output vector is of the form 
 
 ( ) 0 1 1[ ( ), ( ), , ( )] ,Tk k k L kQ Q Qω ω ω ω−=    Q K  (8) 
 
for 0 1k K≤ ≤ − . Inherent to most BSS algorithms is the 
permutation of the outputs. As there are K frequency grouped 
vectors for I-BSS, it is possible that a particular source is 
produced at different values of l , 0 1l L≤ ≤ − . An attempt to 
construct the sources directly from the vectors of (8) might 
lead to spectral errors. Typical of most frequency domain BSS 
algorithms utilizing the STFT, there is a need for a 
permutation solving algorithm for accurate source estimates 
construction [5-7]. In [8, 9] the fourth order cross-cumulant 
(kurtosis) is used as a statistical dependency measure between 
the different I-BSS spectral outputs. Here we use it as 
  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2

2 2

2

, E

E E

E

E

l k m f l k m f

l k m f

H
l k m f

H
m f kl

Q Q Q Q

Q Q

Q Q

Q Q

κ ω ω ω ω

ω ω

ω ω

ω ω

⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤                                    −
⎣ ⎦ ⎣ ⎦

                                         − ⎡ ⎤⎣ ⎦
                                            − ⎡

2
,⎤⎣ ⎦

 (9) 

 
where E[.]  is mathematical expectation, H  denotes 
conjugate transpose, 0 , 1l m L≤ ≤ −  and 0 , 1f k K≤ ≤ − . 
Assuming the original sources are statistically independent 
and adequate source separation at each one of the frequency 
grouped vectors, a relatively high value of (9) suggests a high 
probability that the outputs at frequencies kω  and fω  are for 
the same source signal. 

Having solved the permutation problem, we decompose the 
samples of the source estimates frequency group ( )l kQ ω , 
0 1l L≤ ≤ − , to their respective STFT windows, yielding 

 
 ( ) ( ) ( )( )

0 1 1( ) [ ( ), ( ), , ( )] ,r r rr T
LY Y Yω ω ω ω−=    Y% % % %K  (10) 

 
for 0 1r R≤ ≤ − . This re-grouping is illustrated in Fig. 2. 
Applying the inverse STFT to the spectral frames gives the 
time zeroed outputs 
 
 ( ) ( ) ( ) ( )( )( ) ( ) ( )

1, , ,
Trr r r

Ln y n y n y n−⎡ ⎤=    ⎣ ⎦y% % % %K . 

 
It is possible that some spectral errors due to blocking 

effects and the I-BSS signal processing be pronounced in each 
of the time domain output frames. To minimize these, a 
synthesis/output window ( )f n  is applied to the output 

( ) ( )r
ly n%  giving a weighted output ( ) ( ) ( )r

ly n f n% . After 
windowing, the rth output frame is translated back to time rΓ  
yielding ( ) ( )( ) ( ) ( )r r

l ly n y n r f n r= − Γ − Γ% . The output vector 
frame is now 
 

 ( ) ( ) ( ) ( )( )( ) ( ) ( )
1, , ,

Trr r r
Ln y n y n y n−⎡ ⎤=    ⎣ ⎦y K . (11) 

 
The use of the input window ( )w n  and the output window 
( )f n  in an overlapped fashion is termed as the weighted 

overlap-add method (WOLA), and is presented in [10]. For 
ideal signal reconstruction, it is necessary that 
 

 ( ) ( ) 1
r

w n r f n r
∞

=−∞

− Γ − Γ =∑ . 

 
So, given say a Hann window, ( )w n  and ( )f n  can be 

derived as the square root function. The complete time domain 
source estimates are obtained via 

 

 ( ) ( ) ( ),r
l l

r
y n y n r

∞

=−∞

= − Γ∑  (12) 

 
for 0 1l L≤ ≤ − . The proposed algorithm steps are: 
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1. Extract the rth windowed data frames of length N  

using (3) to form the vector frames ( )( )
0( ) [ ( )rr n x n=x  

( )
1, ( ),rx n  K ( )

1, ( )]r T
Lx n− , for 0 r≤ ≤  1R − , using the 

input window ( )w n . 
2. Take the K -point DFTs of the frames translated to 

time zero, resulting in the spectral frames ( ) ( )r ω =X%  
( ) ( ) ( )
0 1 1[ ( ), ( ), , ( )]r r r T

LX X Xω ω ω−   % % %K , for 0 1r R≤ ≤ − . 
3. Form the frequency groups ( )l kZ ω , for all 0 k≤ ≤  

1K − , ending up with the vectors (6) as illustrated in 
Fig. 1. 

4. Apply the I-BSS algorithm of choice such as JADE [1] 
or RADICAL [2] to each of the vectors of (6), resulting 
in the output vectors given by (8). 

5. Solve the possible permutation of the outputs using an 
algorithm such as that given by (9). 

6. Translate the output samples from the frequency 
groups ( )l kQ ω , for 0 1l L≤ ≤ −  and 0 1k K≤ ≤ − , to 
their respective spectral frames as illustrated in Fig. 2, 
resulting in the vectors of (10). 

7. Apply the inverse DFT to each of the output spectral 
frames and translate each output to time rΓ  after 
applying the synthesis window ( )f n  to give the output 
vectors of (11). 

8. Construct the complete time domain source estimates 
using (12). 

 

III. SIMULATION RESULTS 
If ( )kωW  is the optimal de-mixing matrix to ( )kωH , then 

the overall transformation matrix ( ) ( ) ( )k k kω ω ω=G W H  can 
be represented as 
 
 ( ) ( )k k kω ω=G Δ P , 
 
for the diagonal matrix 1 211 22( ) diag( , , ,k e eτ τω α α− −=   Δ K  

)NLLe τα −  and the permutation kP . In ( )kωΔ , ijα  for 0 ≤  
, 1i j L≤ − , is the resulting scaling ambiguity of the source 

estimates and le τ−  is the resulting delay after processing. If 
( )kωG  is as defined above, then the sources are extracted 

without any ISI and ICI. Practically, such a result is rare due 
to a number of reasons, like an insufficient number of 
deconvolution coefficients, and as such there is always some 
amount of ISI and ICI in the extracted sources. Therefore, we 
can quantify the performance of a source deconvolution 
algorithm by a direct measure of the net residual ISI and ICI 
as in [8, 9]. That is 
 
 ( ) ( ) ( )P ISI ICIM k k kω ω ω= +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦G G G . 

 
If g ( )ij kω is the row-I and column-j coefficient at frequency 

kω , the net residual interference at kω  is given by 

 

 

( )
( )

( )
( )

( )

2
1 1

2
0 0

2
1 1

2
0 0

g
P 1

max g

g
1 .

max g

L L ij k
M k

i j j ij k

L L ij k

j i i ij k

ω
ω

ω

ω

ω

− −

= =

− −

= =

⎛ ⎞
⎜ ⎟= −⎡ ⎤⎣ ⎦ ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟                              + −
⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

G

 (13) 

 
Two speech signals ( 2L = ) were used to give two mixtures 

( 2M = ) A and B shown in Fig. 3 using a system of finite 
impulse response (FIR) filters of order 6K = . The FIR filters 
are obtained by truncating to six samples the impulse response 
of the transfer matrix 

 

 ( )

1 1

1 1

1 1

1 1

0.1 0.4 0.2 0.8
0.3 0.6 0.4 0.7

0.6 0.3
0.9 0.4 0.7 0.8

z z
z z

z
z z
z z

− −

− −

− −

− −

+ +⎡ ⎤    ⎢ ⎥+ +⎢ ⎥=
⎢ ⎥+ 0.9 + 0.7

    ⎢ ⎥
+ +⎣ ⎦

H . (14) 

 
The coefficients are time-invariant since the matrix ( )zH  is 

fixed, depicting a mixing process of motionless sources. Table 
I shows the performance results of the proposed approach 
against the usual STFT approach in decibel (dB). The I-BSS 
algorithm of choice is RADICAL [2] due its simplicity and 
robustness to outliers. The results suggest that the frequency 
frame method allows the I-BSS algorithm to separate mixtures 
better than the STFT or spectral frame approach, usually with 
a net residual interference difference of about 9dB according 
to (13). 

 
Fig. 3 shows the time domain plots of the original sources 

as well as their estimates. The estimates’ temporal structures 
closely resemble those of the originals, albeit scaling 
ambiguities inherent to I-BSS algorithms. However, there is 
an observable amount of noise/discrepancies which are due to 
an insufficient number of deconvolution filters, i.e. 6K = . 
This means that the I-BSS algorithm is applied to only six 
frequency bands. 

 
 
 

TABLE I 
NET RESIDUAL INTERFERENCE MEASURES IN DECIBEL 

Frequency STFT Frequency Frame 

0ω  -23 -32 

1ω  -19 -28 

2ω  -21 -29 

3ω  -21 -30 

4ω  -25 -31 

5ω  -23 -33 
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Key to the STFT approach is that the window length should 

be less than or equal to the time when the frequency 
components are stationery. We illustrate the relative 
performance of the frequency grouping approach against the 
STFT approach for varying window lengths in Fig. 4. 

 
For the used speech signals, when the STFT window length 

is greater than ~50ms, the STFT approach results in a 
significantly higher increase of the net residual interference as 
measured by (13) relative to the proposed method. The 

frequency grouping method does seem to eventually degrade 
in performance as the window length is increased, but this is 
mainly due to smaller values of R , or frequency samples per 
group ( )l kZ ω , 0 1l L≤ ≤ − . This compromises the data 
mining convergence for identifying the optimal basis vectors 
of the de-mixing matrix ( )kωW . 

IV. DISCUSSION 
Blind source separation of convolutive mixtures is usually 

tackled in the frequency domain to avoid the more complex 
time domain convolutive model. The usual approach is to 
apply several STFTs and by assuming that the frequency 
components are fairly stationery over the window length, the 
mixing process is approximately instantaneous over the 
spectral frames of the STFT. This approach means that it is 
necessary to know the spectral properties prior to source 
separation so as to use an optimal window length. 

 
Instead of making assumptions about the underlying 

sources, the BSS problem can be divided into two types of 
physically stationery sources (considered here) and moving 
sources. Given fairly motionless sources, the convolution 
kernels are time-invariant and this allows us to form frequency 
gatherings from the STFT spectral frames, forming a truly 
instantaneous problem. Simulation results illustrate that this is 
a better approach and is more consistent over varying window 
lengths of the STFT. 
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