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Abstract—A new observer based fault detection and diagnosis 
scheme for predicting induction motors’ faults is proposed in this 
paper. Prediction of incipient faults, using different variants of 
Kalman filter and their relative performance are evaluated.  Only soft 
faults are considered for this work. The data generation, filter 
convergence issues, hypothesis testing and residue estimates are 
addressed. Simulink model is used for data generation and various 
types of faults are considered. A comparative assessment of the 
estimates of different observers associated with these faults is 
included.

Keywords—Extended Kalman Filter, Fault detection and 
diagnosis, Induction motor model, Unscented Kalman Filter 

I.  INTRODUCTION

HIS conventional Fault Detection and Diagnostic (FDD) 
methods to identify faults in electric machines make use 
of MCSA (motor current signature analysis), noise and 

vibration monitoring and acoustic noise measurements [1]. 
MCSA is a knowledge based approach wherein the stator 
currents are acquired for a time window and the FFT is 
computed. Peaks observed in different frequency bands are 
indicative of various types of faults, which can be identified 
with the help of a look-up table [2]. However, MCSA method 
is not effective in case of variable frequency drives [3]. 
Acoustic noise and vibration based fault detection have 
limitations as they are sensitive to motor alignments, natural 
frequency of foundation and location of installation.   

   In this paper, a model based fault detection and 
diagnostics methodology is proposed, wherein a 5th order state 
variable model in d-q stationary reference frame, with Ids, Iqs,

dr, qr and  as the state variables, is used [4]. The advantage 
of this model is that it requires minimum information of the 
machine parameters such as stator and rotor inductances, 
resistances, and mutual inductance, which can be computed 
using standard no load and blocked rotor tests on induction 
machines.  

S. Padmakumar and Kallol Roy are with the Bhabha Atomic Research 
Center (BARC), Mumbai, India 400085 (email: spadma@iitb.ac.in;  
kallolr@barc.gov.in). Vivek Agarwal is with the Department of Elec. Engg, 
IIT Bombay, Mumbai-400076, India (email:agarwal@ee.iitb.ac.in) 

Model based fault detection methods use appropriate 
transformations and deploy stochastic observers. The 
difference between estimated state variables (computationally 
obtained) and actual measurements, termed residues, obtained 
thereof provide the information required to judge the 
deviation of these residues from their healthy Gaussian white 
noise. The variations in the residues thus generated, by one or 
a combination of parameters and state estimates, are used for 
characterizing different type of faults. 

The main benefit of model-based approach is that the 
existing inputs and information can be utilised for observer 
processing without the need for additional sensors. However, 
an accurate and simple mathematical model needs to be used 
which takes care of non-linear dynamics of induction motors 
and sometimes non-Gaussian uncertainties. A comparative 
assessment on the use of Extended Kalman Filter (EKF), 
Unscented Kalman Filter (UKF) and Central Difference 
Kalman Filter (CDKF) for fault detection and diagnosis of 
induction machines has been attempted and the same is 
presented. Suitable detection techniques, having the capability 
of decoupling the impacts of disturbances and other measured 
inputs on fault signatures, are also addressed. 

II. OBSERVER  BASED   METHODS : ADVANTAGES AND 
LIMITATIONS

The state space motor model chosen for this study 
comprises five states. They are direct and quadrature axis 
stator currents (Ids, Iqs) direct and quadrature axis rotor fluxes 
( dr, qr) and the rotor speed ( ). The proposed algorithm is 
based on state observers (EKF, UKF and SRUKF) all of 
which can accommodate measurement uncertainties (noise) 
and model inaccuracies [5]. This study compares the relative 
performance of various observers applied to an induction 
motor. However, the limitation of any state observer is that 
initial selection of covariance matrices is very important and 
convergence and stability depend on this selection. In 
addition, the model needs to satisfy controllability and 
observability criteria and the noise terms are assumed to be 
zero mean Gaussian.  

A.  Discrete time state variable model. 
The discrete time state variable model, which is used for 

this work is,                      
1      X k A X k B U kd d                     (1) 
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1Y k C X kd                   (2) 
The state space representation involves KR, KL, TR, Lm, Lr,

which are machine parameters, expressed in convenient form 
to be used in “A” matrix where [4], 

2
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T = Sampling time, TR = Rotor time constant = Lr / Rr.
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Standard EKF equations taking Jacobian of ‘Ad’ matrix into 
account have been used in this paper for simulations. 
Relevant simulation results are also presented.

B.  Simulink model for motor  

A ‘Simulink’ model, as shown in Fig. 1 is used to simulate 
input parameters required for observer iterations. Two input 
voltages and two input currents in d-q axis are required to 
run observer iterations, which are generated from this model. 

Fig. 1.  SIMULINK  model of induction motor used for simulations. 

Fig. 2 shows the input voltage waveforms in d-q axis while 
Fig. 3 shows the d-q axis currents. Fig. 4 shows a typical d-
axis current signal, corrupted with Gaussian white noise for 
the purpose of iterations in Kalman filter. The residue is 
calculated through iterations based on the difference between 
the predicted value and the measured value of any particular 
state – the d-axis stator current in this case. Once the corrected 
value is used for iteration instead of predicted value, a residue 
is generated. Any deviation from this white noise could be 
identified as an incipient fault. 
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Fig.  2. d and q axis voltages as input to the model
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Fig. 3. d and q axis currents as input to the model 

Fig.  4.  Motor current signal with noise added. 

A healthy motor is expected to have a residue, which is 
merely a white noise, with a mean zero, as can be seen from 
Fig. 5. Fig. 6 shows the estimated speed computed by EKF 
algorithm. The initial transients are attributed to transient 
currents during starting and observer response to these 
uncertainties. 
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Fig. 5.  Residue of motor current (healthy case). 

Fig. 6. The estimated and actual speed of motor 

C.  Simulations and results for various observers. 

The model used for iterations is a 10hp, 400 V, 3-phase, 50 
Hz asynchronous motor. Other machine parameters are given 
in Appendix A. All the four observers under consideration 
need two motor input voltages transformed into d-q axis and 
two stator currents in d-q axis. Other ‘states’ need not be 
known. The ReBEL® software toolkit version 0.2.7 along with 
MATLAB® is used for the iterations. Both KF and EKF have 
shown stable behavior in estimating states as shown in Fig 7 
and 8. Results with UKF and its variant CDKF are shown in 
Figs. 8 and 9. In all cases, the same model and environmental 
parameters were passed and the results of Unscented Kalman 
filter (UKF) and Central Difference Kalman filter (CDKF) has 
not shown superior performance.

Fig. 7. KF Estimate of motor current.

Fig. 8. EKF estimate of motor current signal. 

Fig. 9. UKF estimate of motor current signal

Fig.  10.  CDKF estimate of motor current signal. 
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D.  Faults 

The faults considered here are soft faults such as a bias in 
current sensors, parametric variations in resistances or motor 
inductances, changes in unmeasured disturbances etc. A 
typical fault can be mathematically represented as [7]: 

f  = ,   ( ),b e k ti if f        (8) 

where f stands for the fault type, which can be any of the 
faults such as sensor fault (bias, f), actuator fault (bias, u),
disturbance fault (d) or parameter fault (p). bf,i is the bias 
magnitude occurring at time t in the ith sensor, ef,i is the fault 
vector with its ith element equal to unity and all other elements 
equal to zero. t represents the time of occurrence of the fault 
and (k t) is the unit step function [7] defined as below: 

( ) 0  if  k     and 1  if  k   k t t t    (9)

If a bias of magnitude bz,i occurs at time t, in the ith sensor, the 
output is given by, 

 ( ),Z k H k v k b k tx z i    (10) 

Similarly for bias magnitude of b u,i occurs in an actuator i at
time t, is represented by, 

   ( ), ,u k m k b e k tu i u i        (11)  

E.  Fault detection and Fault confirmation test 
The test statistic, based on innovations at each time sample 
used for fault detection, is given by,  

1Tk k V k k       (12) 

where V(k) represents error covariance matrix and is 
computed as, 

( / 1) TCP k k C R       (13) 

The test statistic (k) follows a central Chi-square distribution 
with n degrees of freedom. For any level of significance , the 
test can be chosen from this distribution. A fault flag is set at 
any time, t when the test statistic (k) exceeds the test 
criterion. The rejection of the null hypothesis by FDT at time t
indicates that the fault may have occurred and a confirmation 
test is to be applied. On detection of a fault, in order to avoid a 
false alarm, a fault confirmation test is to be deployed. After 
N sampling instances, a confirmatory statistical test is done by 
making use of all innovations in the time [t, t+N], as shown 
below. 

1( , ) ( ) ( ) ( )
t N

k t

TN t k V k k     (14) 

The occurrence of a fault at time t is confirmed if the test 
statistic ( , )N t  exceeds the test criteria [7]. 

Fig. 11. Current signal residue under bias fault condition 

Fig. 11 shows the residue of motor stator current with a 
current sensor fault. Fig. 12 shows the residue of induction 
motor with stator resistance increased. The shifts in both the 
cases are very distinct and can be identified from their 
respective fault signatures. Fig. 13 gives a comparative 
response of KF, EKF, UKF and CDKF to a step change in 
sensor current.

Fig. 12. Motor current signal residue with resistance change 

 Fig. 13 shows the performance of observers for the state 
estimation and Fig. 14 shows the relative performance to a 
fault in a current sensor. KF and EKF show a step change 
where as UKF and CDKF has given a slow response. Both
linearised KF and EKF are able to predict the state (d-axis
current) with better accuracy and have a faster response for 
bias fault in current sensor. On the other hand, UKF and 
CDKF have shown relatively slower response to the same 
bias fault. 
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Fig.  13.  KF, EKF, UKF and SRUKF  as applied to state and residue estimation 

Fig. 14.  KF, EKF, UKF and SRUKF  response to a bias fault (current) in induction motor 
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III.  CONCLUDING REMARKS

A comparative study on  observer based fault detection 
and diagnosis in induction motors is presented in this 
paper, where a 5th order induction motor model is used 
with four different variants of Kalman filter. The shift in 
residues for current signal is used as the identification 
strategy. The type of fault is identified by the statistical 
correlations and the fault signatures. This method has the 
advantage that it takes care of model and measurement 
uncertainties, and is independent of input supply 
frequencies and supply variations. The model is machine 
specific and Kalman filter and its variants require extensive 
tuning to account for model uncertainties. This 
comparative study brings out the relative advantages of 
observers in fault detection and diagnosis domain and 
enables to select the right observer for this application. 

NOMENCLATURE

Vds : d-axis stator applied voltage 
Vqs : q- axis stator applied voltage 
Ids    : d- axis stator current in stationary ref. frame 
Iqs : q- axis stator current in stationary ref. frame 

dr  : d- axis rotor flux in stationary ref. frame 
qr : q- axis rotor flux in stationary ref. frame 
   : Rotor speed 

Lm : Mutual inductance 
Ls  : Stator self inductance 
Tr  : Rotor time constant 

        
Appendix - A 

MOTOR DETAILS USED FOR SIMULATIONS 

Motor rating: 10HP, 400Volts, 3 phase 50 Hz 
Stator resistance: 0.7384 
Stator inductance: 3.045 mH 
Rotor resistance: 0.7402 
Rotor inductance: 3.045mH 
Mutual inductance: 0.1241mH 
No of pair of poles: 2 
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