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Abstract—In the normal operation conditions of a pico satellite, 

conventional Unscented Kalman Filter (UKF) gives sufficiently good 
estimation results. However, if the measurements are not reliable 
because of any kind of malfunction in the estimation system, UKF 
gives inaccurate results and diverges by time. This study, introduces 
Robust Unscented Kalman Filter (RUKF) algorithms with the filter 
gain correction for the case of measurement malfunctions. By the use 
of defined variables named as measurement noise scale factor, the 
faulty measurements are taken into the consideration with a small 
weight and the estimations are corrected without affecting the 
characteristic of the accurate ones. Two different RUKF algorithms, 
one with single scale factor and one with multiple scale factors, are 
proposed and applied for the attitude estimation process of a pico 
satellite. The results of these algorithms are compared for different 
types of measurement faults in different estimation scenarios and 
recommendations about their applications are given. 
 

Keywords—attitude algorithms, Kalman filters, robust 
estimation.  

I. INTRODUCTION 
INCE it was proposed, Kalman filter has been widely used 
as an attitude determination technique and different 

Kalman filter types have been developed with that purpose. As 
a known fact; attitude estimation problem of a pico satellite 
cannot be solved by linear Kalman filters because of the 
inherent nonlinear dynamics and kinematics.  In such case 
Extended Kalman Filter (EKF) may be used instead. By using 
EKF, it is possible to estimate attitude parameters of a satellite 
which has three onboard magnetometers as the only 
measurement sensors [1]. However, mandatory linearization 
phase of EKF procedure may cause filter to diverge and 
usually, Jacobian calculations required for this phase are 
cumbersome and time-consuming [2].  

Unscented Kalman Filter (UKF) is a relatively new Kalman 
filtering technique that generalizes Kalman filter for both 
linear and nonlinear systems and in case of nonlinear 
dynamics, UKF may afford considerably more accurate 
estimation results than the former observer design  
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methodologies such as Extended Kalman Filter. UKF is based  
on the fact that; approximation of a nonlinear distribution is 
easier than the approximation of a nonlinear function or 
transformation [2]. UKF introduces sigma points to catch 
higher order statistic of the system and by securing higher 
order information of the system, it satisfies both, better 
estimation accuracy and convergence characteristic [3]. 
Besides, as the estimation characteristic of the UKF is not 
affected by the level of nonlinearity, it can be preferred for the 
systems, which has highly nonlinear dynamics and 
measurements models such as the spacecrafts [4].  

On the other hand, UKF has no capability to adapt itself to 
the changing conditions of the measurement system. 
Malfunctions such as abnormal measurements, increase in the 
background noise etc. affects instantaneous filter outputs and 
process may result with the failure of the filter. In order to 
avoid from such condition, the filter must be operated 
robustly.  

UKF can be made adaptive and hence insensitive to the 
priori measurements or system uncertainties by using various 
different techniques. Multiple Model Based Adaptive 
Estimation (MMAE), Innovation Based Adaptive Estimation 
(IAE) and Residual Based Adaptive Estimation (RAE) are 
three of basic approaches to the adaptive Kalman filtering. In 
the first approach, more than one filters run parallel under 
different models for satisfying filter’s true statistical 
information. However that can be only achieved if the 
sensor/actuator faults are known. Also, this approach requires 
several parallel Kalman filters to run and the processing time 
may increase in such condition [5].  In IAE or RAE methods, 
adaptation is applied directly to the covariance matrices of the 
measurement and/or system noises in accordance with the 
differentiation of the residual or innovation sequence. To 
realize these methods, the innovation or residual vectors must 
be known for m epoch and that causes an increment in the 
storage burden, as well as the requirement to know the width 
of the moving window [6]. Besides, in order to estimate 
covariance matrix of the measurement noise based on the 
innovation or residual vector; number, type and distribution of 
measurements must be consistent for all epochs within a 
window. 

Another concept is to scale the noise covariance matrix by 
multiplying it with a time dependent variable. One of the 
methods for constructing such algorithm is to use a single 
scale factor as a multiplier to the process noise covariance 
matrices [5, 7]. This algorithm, which may be named as 

Robust UKF Insensitive to  
Measurement Faults for  

Pico Satellite Attitude Estimation 
Halil Ersin Soken, Chingiz Hajiyev 

S 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

615

 

 

Adaptive Fading Kalman Filter (AFKF), can be both used 
when the information about the dynamic process or the priori 
measurements is absent [8]. However, when the point at issue 
is the recent measurements, another technique to scale 
measurement noise covariance matrix and make filter robust 
(insensitive to recent measurement faults) should be proposed. 
Therefore, if there is a malfunction in the measurement 
system, Robust Kalman Filter (RKF) algorithm can be utilized 
and  via correction applied to the filter gain, good estimation 
behaviour of the filter can be secured without being affected 
from faulty current measurements [6].  

However, estimation performance of the Kalman filter 
differs for each variable when it is utilized for complex 
systems with multivariable and it may be not sufficient to use 
single measurement noise scale factor (MNSF) as a multiplier 
for the measurement noise covariance matrices [9]. Single 
MNSF may not reflect corrective effects for the faulty 
measurement to the estimation process, accurately. Technique, 
which can be implemented to overcome this problem, is to use 
multiple MNSFs to fix relevant component of the gain matrix, 
individually. Hence a robust unscented Kalman filter (RUKF) 
algorithm with multiple MNSFs may be considered instead of 
RUKF with single MNSF.  

In literature, it is possible to meet with a limited number of 
RUKF applications, which also considers measurement noise 
scaling as well as process noise and uses unscented Kalman 
filter. In [10] a two-stage adaptive UKF is proposed in the 
base of the process noise and measurement noise covariances 
matrices adaptation. Basically, it applies the methodology 
presented in [8] to the nonlinear systems by the use of UKF. 
However, as a disadvantage, it secures the adaptation using 
only single fading factor and as it is aforementioned, that may 
be a problem for implementations on complex systems like 
spacecrafts. 

In this paper, Robust Unscented Kalman Filter (RUKF) 
algorithms with single and multiple measurement noise scale 
factors, which make filter insensitive to current measurement 
faults, are introduced and applied for the attitude parameter 
estimation process of a pico satellite. Results of these 
algorithms are compared for different types of measurement 
malfunctions in different estimation scenarios and the 
recommendations about their utilization are given.  

II. PICO SATELLITE MATHEMATICAL MODEL 
If the kinematics of the pico satellite is derived in the base 

of Euler angles, then the mathematical model can be expressed 
with a 6 dimensional system vector which is made of attitude 
Euler angles (ϕ is the roll angle about x  axis; θ  is the pitch 
angle about y axis; ψ  is the yaw angle about z axis) vector 
and the body angular rate vector with respect to the inertial 
axis frame, 

              ,
T

x y zx ϕ θ ψ ω ω ω⎡ ⎤= ⎣ ⎦               (1) 

      ,
T

BI x y zω ω ω ω⎡ ⎤= ⎣ ⎦                           (2) 

where BIω  is the angular velocity vector of body frame with 

respect to the inertial frame. Besides, dynamic equations of the 
satellite can be derived by the use of the angular momentum 
conservation law;  

                 ( ) ,x
x x y z y z

d
J N J J

dt
ω

ω ω= + −                    (3) 

   ( ) ,y
y y z x z x

d
J N J J

dt
ω

ω ω= + −                    (4) 

  ( ) ,z
z z x y x y

d
J N J J

dt
ω

ω ω= + −                    (5) 

where xJ , yJ  and zJ  are the principal moments of inertia 

and xN , yN  and zN   are the terms of the external moment 
affecting the satellite.  If the gravity gradient torque is taken 
into the consideration for the Low Earth Orbit (LEO) satellite, 
these terms can be written as 

              
( )
( )
( )

23 33

13 333
0

13 23

3
y zx

y z x

z x y

J J A AN
N J J A A

r
N J J A A

μ
⎡ ⎤−⎡ ⎤ ⎢ ⎥⎢ ⎥ = − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦

 .                 (6) 

Here μ is the gravitational constant, 0r  is the distance 
between the centre of mass of the satellite and the Earth and 

ijA  represents the corresponding element of the direction 

cosine matrix of [11]; 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
.

c c c s s
A c s s s c c c s s s s c

s s c s c s c c s s c c

θ ψ θ ψ θ
ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ ϕ θ

ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ ϕ θ

−⎡ ⎤
⎢ ⎥= − + +⎢ ⎥
⎢ ⎥+ − +⎣ ⎦

    (7) 

In matrix A , ( )c ⋅ and ( )s ⋅ are the cosines and sinus 
functions successively. Kinematic equations of motion of the 
pico satellite with the Euler angles can be given as  

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1
0 .
0 / /

s t c t p
c s q

s c c c r

ϕ ϕ θ ϕ θ
θ ϕ ϕ
ψ ϕ θ ϕ θ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

&

&

&

          (8)           

Here ( )t ⋅ stands for tangent function and p , q and r are the 

components of BRω  vector which indicates the angular 
velocity of the body frame with respect to the reference frame. 

BIω and BRω can be related via, 

0

0
.

0
BR BI Aω ω ω

⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥⎣ ⎦

                              (9) 

where 0ω  denotes the angular velocity of the orbit with 

respect to the inertial frame, found as ( )3
0 0/ .rω μ=   

III. THE MEASUREMENT SENSOR MODELS 

A. The Magnetometer Model 
As the satellite navigates along its orbit, magnetic field 

vector differs in a relevant way with the orbital parameters. If 
those parameters are known, then, magnetic field tensor vector 
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that affects satellite can be shown as a function of time 
analytically [3, 11]. Note that, these terms are obtained in the 
orbit reference frame. 

( ) ( ) ( ) ( ) ( ) ( ) ( ){1 03
0

cos cos sin sin cos cose
e

MH t t i i t
r

ω ε ε ω= −⎡ ⎤⎣ ⎦    

( ) ( ) ( )}0sin sin sin et tω ε ω−  (10) 

( ) ( ) ( ) ( ) ( ) ( )2 3
0

cos cos sin sin cos ,e
e

MH t i i t
r

ε ε ω= − +⎡ ⎤⎣ ⎦           (11) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){3 03
0

2 sin cos sin sin cos cose
e

MH t t i i t
r

ω ε ε ω= −⎡ ⎤⎣ ⎦  

( ) ( ) ( )}02sin sin sin et tω ε ω−  (12) 
Here  

• 157.943 10 . ;eM x Wb m=  the magnetic dipole 
moment of the Earth, 

• 14 3 23.98601 10 / ;x m sμ = the Earth Gravitational 
constant, 

• 97 ;i = o  the orbit inclination, 
• 57.29 10 / ;e x rad sω −=  the spin rate of the Earth, 

• 11.7 ;ε = o  the magnetic dipole tilt, 
• 0 6,928,140 ;r m=  the distance between the centre of 

mass of the satellite and the Earth. 

Three onboard magnetometers of pico satellite measures the 
components of the magnetic field vector in the body frame. 
Therefore for measurement model, which characterizes the 
measurements in the body frame, gained magnetic field terms 
must be transformed by the use of direction cosine matrix, .A  
Overall measurement model may be given as; 

               
( )
( )
( )

( )
( )
( )

1
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, , ,
, , ,
, , ,

x

y

z

H t H t
H t A H t
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ϕ θ ψ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,                 (13) 

where, ( )1H t , ( )2H t and ( )3H t  represent the Earth magnetic 
field vector components in the orbit frame as a function of 
time and ( ), , ,xH tϕ θ ψ , ( ), , ,yH tϕ θ ψ  and ( ), , ,zH tϕ θ ψ  
show the Earth magnetic field vector components in body 
frame as a function of time and varying Euler angles. 
Furthermore 1η  is the zero mean Gaussian white noise with 
the characteristic of  

2
1 1 3 3

T
k j x m kjE Iη η σ δ⎡ ⎤ =⎣ ⎦ .                  (14) 

Here, 3 3xI is the identity matrix with the dimension of  3 3× , 

mσ  is the standard deviation of each magnetometer error and 

kjδ  is the Kronecker symbol. 
 

B. The Rate Gyro Model 
Inertial Measurement Unit (IMU) consists of three rate 

gyros aligned through three axes, orthogonally to each other. 
Rate gyros supply directly the angular rates of the body frame 
with respect to the inertial frame. Hence the model for rate 
gyros can be given as; 

, 2BI meas BIω ω η= + .                         (15) 
where, ,BI measω  is the measured angular rates of the satellite 

and 2η  is the zero mean Gaussian white noise with the 
characteristic of 

 2
2 2 3 3

T
k j x g kjE Iη η σ δ⎡ ⎤ =⎣ ⎦ ,                   (16) 

Here, gσ is the standard deviation of each rate gyro random 
error.   

IV. ROBUST UNSCENTED KALMAN FILTERS FOR ATTITUDE 
ESTIMATION 

A. Robust Unscented Kalman Filter with Single  
    Measurement Noise Scale Factor    
In case of normal operation of the measurement system, 

filter works correctly. However when there is a malfunction in 
the estimation system such as abnormal measurements, step-
like changes or sudden shifts in the measurement channel etc. 
filter fails and estimation outputs become faulty [6]. 

Therefore, a robust algorithm must be introduced such that 
filter makes itself insensitive to faults in case of malfunctions 
and corrects estimation process without affecting good 
estimation behaviour.   

Robust algorithm affects characteristic of filter only when 
the condition of the measurement system does not correspond 
to the model used in the synthesis of the filter. Otherwise filter 
works with regular UKF algorithm [2] in an optimal way.  
Adaptation occurs as a change in the covariance matrix of the 
innovation sequence, 

( ) ( ) ( ) ( )1 1 1 ,vv yyP k k P k k S k R k+ = + + +      (17) 

where ( )S k is the scale factor calculated in the base of 

innovation sequence,  ( )1e k + , analyses. In robust case filter 
gain becomes 

( ) ( ) ( ) ( ) ( )
1

1 1 1 1xy yyK k P k k P k k S k R k
−

⎡ ⎤+ = + + + +⎣ ⎦  (18) 

The gain matrix is changed when the condition of 

( ) ( ) ( ) ( )1 1 1 1T
yytr e k e k tr P k k R k⎡ ⎤⎡ ⎤+ + ≥ + + +⎣ ⎦ ⎣ ⎦        (19) 

is the point at issue. Here ( )tr ⋅ is the trace of the related 
matrix. Left hand side of (19) represents the real filtration 
error while the right hand side is the accuracy of the 
innovation sequence known as a result of priori information. 
When the predicted observation vector ( )ˆ 1y k k+  is 

reasonably different from the current measurement vector , 
( )1y k + , real filtration error exceeds the theoretical one. 

Hence, gain matrix must be fixed hereafter by the use of 
robust algorithm and so scale factor ( )S k . In order to 
calculate MNSF equality of 

( ) ( ) ( ) ( ) ( )1 1 1 1T
yytr e k e k tr P k k S k R k⎡ ⎤⎡ ⎤+ + = + + +⎣ ⎦ ⎣ ⎦        (20) 
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is used. Equation (20) can be rewritten as 

( ) ( ) ( ) ( ) ( )1 1 1 1T
yytr e k e k tr P k k S k tr R k⎡ ⎤⎡ ⎤+ + = + + ⎡ + ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦   (21) 

If the knowledge of  

   ( ) ( ) ( ) ( )1 1 1 1T Ttr e k e k e k e k⎡ ⎤+ + = + +⎣ ⎦               (22) 

is taken into consideration, (21) becomes 

   ( ) ( ) ( ) ( ) ( )1 1 1 1 .T
yye k e k tr P k k S k tr R k⎡ ⎤+ + = + + ⎡ + ⎤⎣ ⎦⎣ ⎦  (23) 

As a result, MNSF can be obtained as 

( )
( ) ( ) ( )

( )
1 1 1

.
1

T
yye k e k tr P k k

S k
tr R k

⎡ ⎤+ + − +⎣ ⎦=
+⎡ ⎤⎣ ⎦

             (24) 

MNSF increases in case of malfunctions. That makes up an 
increment in covariance matrix of innovation sequence and a 
decrement in Kalman gain as it can be seen from (17) and 
(18). Consequently, current faulty measurements are regarded 
with a small weight in the estimation process and filter outputs 
are not affected. 

B. Robust Unscented Kalman Filter with Multiple  
    Measurement Noise Scale Factor    
As it is discussed, robustness of the filter may be secured by 

using single MNSF as a corrective term on the filter gain. 
However that is not a healthy procedure as long as the filter 
performance differs for each state for the complex systems 
with multivariable [9]. The preferred method is to use a matrix 
built of multiple scale factors to fix the relevant term of the 
Kalman gain matrix, individually. 

Robust algorithm affects characteristic of filter only when 
the condition of the measurement system does not correspond 
to the model used in the synthesis of the filter. Otherwise filter 
works with regular UKF algorithm in an optimal way.  In case, 
where the system operates normally, the real and the 
theoretical innovation covariance matrix values match as in 
(25).  

( ) ( ) ( ) ( )
1

1 1 1 1 1 ,
k

T
yy

j k
e k e k P k k R k

μμ = − +

+ + ≥ + + +∑            (25) 

here, μ is the width of the moving window.  
However, when there is a measurement malfunction in the 

estimation system, the real error will exceed the theoretical 
one. Hence, if a scale matrix, ( )S k , is added into the 
algorithm as, 

( ) ( ) ( ) ( ) ( )
1

1 1 1 1 1 ,
k

T
yy

j k
e k e k P k k S k R k

μμ = − +

+ + = + + +∑      (26) 

then, it can be determined by the formula of, 

( ) ( ) ( ) ( ) ( )1

1

1 1 1 1 1 .
k

T
yy

j k

S k e k e k P k k R k
μμ

−

= − +

⎧ ⎫⎪ ⎪= + + − + +⎨ ⎬
⎪ ⎪⎩ ⎭

∑ (27) 

In case of normal operation, the scale matrix will be a unit 
matrix as ( )S k I= . Here I represents the unit matrix.  

Nonetheless, as μ is a limited number because of the 
number of the measurements and the computations performed 
with computer implies errors such as the approximation errors 
and the round off errors;  ( )S k  matrix, found by the use of 
(27) may not be diagonal and may have diagonal elements 
which are “negative” or lesser than “one” (actually, that is 
physically impossible).    

Therefore, in order to avoid such situation, composing scale 
matrix by the following rule is suggested: 

( )1 2, , , nS diag s s s∗ ∗ ∗ ∗= K                            (28) 

where, 
{ }max 1, 1,i iis S i n∗ = = .                  (29)  

Here, iiS represents the ith diagonal element of the 

matrix ( )S k . Apart from that point, if the measurements are 

faulty, ( )S k∗ will change and so affect the Kalman gain 
matrix; 

( ) ( ) ( ) ( ) ( )
1

1 1 1 1xy yyK k P k k P k k S k R k
−∗⎡ ⎤+ = + + + +⎣ ⎦ . (30) 

In case of any kinds of malfunctions, the related element of 
the scale matrix, which corresponds to the faulty component 
of the measurement vector, increases and that brings out a 
smaller Kalman gain, which reduces the effect of the faulty 
innovation term on the state update process. As a result, 
accurate estimation results can be obtained even in case of 
measurement malfunctions. 

On the other hand, robust algorithms are used only in case 
of faulty measurements and in all other cases procedure runs 
optimally with regular Unscented Kalman filter. Checkout is 
satisfied via a kind of statistical information. In order to 
achieve that, following two hypotheses may be introduced: 

• oγ ; the system is normally operating 
• 1γ ; there is a malfunction in the estimation system. 

Failure detection is realized by the use of following 
statistical function, 

( ) ( ) ( ) ( )
1

( ) 1 1 1 1 .T
yyk e k P k k R k e kβ

−
⎡ ⎤= + + + + +⎣ ⎦    (31) 

This statistical function has 2χ distribution with M degree 
of freedom where M  is the dimension of the innovation 
vector. 

If the level of significance, ,α  is selected as, 

{ }2 2
, ;MP αχ χ α> =                    ; 0 1α< < ,              (32) 

the threshold value, 2
,Mαχ  can be determined. Hence, when the 

hypothesis 1γ  is correct, the statistical value of ( )kβ  will be 

greater than the threshold value 2
,Mαχ , i.e.: 

                   ( ) 2
0 ,: Mk αγ β χ≤                        k∀  

                 ( ) 2
1 ,: Mk αγ β χ>                           k∃            (33) 
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V. SIMULATIONS 
In order to understand the efficiency of the proposed robust 

unscented Kalman filter algorithms and examine the 
advantages of each algorithm, RUKF with single MNSF and 
RUKF with multiple MNSFs, various estimation scenarios are 
performed. In the first scenario, it is considered that the pico 
satellite has only three magnetometers onboard as the 
measurement sensors. Different kinds of measurement 
malfunctions are implemented to one of these magnetometers 
and robust Kalman filter algorithms are tested for these cases. 
On the other hand, in the second scenario, pico satellite has 
also three gyros for measuring attitude rates with respect to the 
inertial frame, so there are six measurement devices in total. 
Besides, the measurement error is implemented to one of the 
gyros in this case. 

Simulations are realized for 2000 seconds with a sampling 
time of 0.1sectΔ =  As an experimental platform a cubesat 
model is used and the inertia matrix is taken as; 

3

3

3

2.1 10 0 0
0 2.0 10 0
0 0 1.9 10

x
J x

x

−

−

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Nonetheless the orbit of the satellite is a circular orbit with 
an altitude of 550r km= . Other orbit parameters are same as it 
is presented in the section for the Earth Magnetic Field Model 
(Section III-A).  

Simulations are also done with regular UKF so as to 
compare results with both RUKF algorithms. For robust 
Kalman filters taken 2

,Mαχ  value corresponds to the reliability 
level of %95. 

Results are summarized by tables which represent the 
absolute estimation errors. Note that, for all presented tables, 
highlighted results are gained at seconds where the 
measurement malfunction is implemented. 

A. Instantaneous Abnormal Measurements  
For the first scenario, where there are only magnetometers 

on the pico satellite, instantaneous abnormal measurements 
are simulated by adding a constant term to the magnetic field 
tensor measurement of one magnetometer at the 500th second.  

As it is seen from Table I, both RUKF algorithms (with 
single and multiple MNSFs) give more accurate estimation 
results than UKF in case of the instantaneous abnormal 
measurements. The results obtained by regular UKF are not 
reliable when the measurements are gained with an error. 
However, RUKFs with single and multiple MNSFs maintain 
their estimation characteristic for the whole process and afford 
precise estimation outputs in case of the abnormal 
measurements, as well as the normal operation condition.  

Although RUKF with multiple MNSFs gives better 
estimation results, there is not any significant difference 
between the estimation outputs of two filters, RUKF with 
single MNSF and RUKF with multiple MNSFs, as the Table I 
presents. Nonetheless, as a result of the moving window data 
keeping and the matrix calculations, it is apparent that RUKF 
with multiple MNSFs demands a larger calculation effort and 

that is an extra load for the onboard computers of the pico 
satellite. Under this circumstances, because of the lesser 
computational burden, which is more essential for the limited 
processor of the pico satellite, RUKF with single MNSF may 
be preferred.   

For the second scenario, in which there are also gyros 
onboard, measurement malfunction is implemented to one of 
the gyros at the 500th second. Results are summarized at Table 
II by comparing the absolute estimation errors of three filters; 
UKF, RUKF with single MNSF and RUKF with multiple 
MNSFs.  

TABLE I 
COMPARISON OF ABSOLUTE VALUES OF ERROR IN CASE OF INSTANTANEOUS 
ABNORMAL MEASUREMENTS FOR SCENARIO OF FAULTY MAGNETOMETER 

MEASUREMENT. 
Abs. Values of 

Err. for 
Regular UKF 

Abs. Values 
of Err. for 

RUKF with 
Single MNSF 

Abs. Values 
of Err. for 

RUKF with 
Multi. MNSFs 

 
 
 

Par. 
500 s. 1000 s. 500 s. 1000 s. 500 s. 1000 s. 

(deg)ϕ 2.6941 0.9987 0.071 0.1709 0.0652 0.1286 

(deg)θ 1.1066 0.8125 0.4872 0.0861 0.3746 0.0705 

(deg)ψ 0.7437 5.1317 0.9257 1.2101 0.7132 0.9247 

(deg/s)xω 0.028 0.002 0.0003 0.0005 0.0003 0.0003 

(deg/s)yω 0.0181 0.0055 0.001 0.0009 0.0007 0.0007 

(deg/s)zω 0.0007 0.0005 0.0016 0.0001 0.0013 0.0004 

 
TABLE II 

COMPARISON OF ABSOLUTE VALUES OF ERROR IN CASE OF INSTANTANEOUS 
ABNORMAL MEASUREMENTS FOR SCENARIO OF FAULTY GYRO 

MEASUREMENT. 
Abs. Values of 

Err. for 
Regular UKF 

Abs. Values of 
Err. for RUKF 

with Single 
MNSF 

Abs. Values of 
Err. for RUKF 

with Multi. 
MNSFs 

 
 
 

Par. 
500 s. 1000 s. 500 s. 1000  500 s. 1000  

(deg)ϕ 20.54 1.663 0.008 0.1626 0.0086 0.0192 

(deg)θ 37.63 0.005 1.0302 0.0482 0.1126 0.0032 

(deg)ψ 33.70 3.491 1.7212 1.0506 0.1956 0.1371 

(deg/s)xω 0.063 0.002 0.0002 0.0003 0.0001 0.0001 

(deg/s)yω 0.013 0.001 0.0005 0.0004 0.0001 0.0001 

(deg/s)zω 0.085 0.003 0.0037 0.0005 0.0005 0.0001 

 
As it is seen from the Table II, unlike the first scenario, this 

time estimation characteristic of the RUKF with multiple 
MNSFs is much better than RUKF with single MNSF. Hence, 
if the pico satellite has also gyros onboard for attitude rate 
measurements, utilizing RUKF with multiple MNSFs may be 
more sensible despite the increased computational demands.  

  

B. Continuous Bias at Measurements 
For the first scenario, continuous bias term is formed by 

adding a constant term to the measurements of one of the 
magnetometers in between 500th and 530th seconds. As Table 
III shows, again optimal UKF fails about estimating states 
accurately. Moreover, implemented faulty measurement 
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affects the estimation process even after 530th second and 
estimation results of UKF worsens by time as the results for 
1000th second reflects. Per contra, RUKF algorithms with 
single and multiple MNSFs reduce the effect of the innovation 
sequence and eliminate the estimation error which is caused 
by the biased measurements of one magnetometer.  

For the second scenario, in which there are also gyros 
onboard, bias term is implemented to one of the gyros in 
between 500th and 530th seconds. Results are summarized at 
Table IV by comparing the absolute estimation errors of three 
filters; UKF, RUKF with single MNSF and RUKF with 
multiple MNSFs. As it reflects, RUKF with multiple MNSFs 
is again preferable if the measurement input is also taken from 
the gyros.  

 TABLE III 
COMPARISON OF ABSOLUTE VALUES OF ERROR IN CASE OF CONTINUOUS 

BIAS AT MEASUREMENTS FOR SCENARIO OF FAULTY MAGNETOMETER 
MEASUREMENT. 

Abs. Values of 
Err. for 

Regular UKF 

Abs. Values of 
Err. for RUKF 

with Single 
MNSF 

Abs. Values of 
Err. for RUKF 

with Multi. 
MNSFs 

 
 
 

Par. 
500 s. 1000 s. 500 s. 1000 s. 500 s. 1000 s. 

(deg)ϕ 5.0535 15.759 0.1064 0.2743 0.0928 0.2329 

(deg)θ 2.7733 23.431 0.7773 0.1348 0.6617 0.1156 

(deg)ψ 1.2492 192.76 1.4749 1.9333 1.256 1.6444 

(deg/s)xω 0.0558 0.0798 0.0006 0.0007 0.0005 0.0006 

(deg/s)yω 0.0352 0.2307 0.0015 0.0015 0.0013 0.0013 

(deg/s)zω 0.0043 0.1422 0.0025 0.0001 0.0021 0.0001 

 
TABLE IV 

COMPARISON OF ABSOLUTE VALUES OF ERROR IN CASE OF CONTINUOUS 
BIAS AT MEASUREMENTS FOR SCENARIO OF FAULTY GYRO MEASUREMENT. 

Abs. Values of 
Err. for 

Regular UKF 

Abs. Values of 
Err. for RUKF 

with Single 
MNSF 

Abs. Values of 
Err. for RUKF 

with Multi. 
MNSFs 

 
 
 

Par. 
500 s. 1000s. 500 s. 1000 s. 500 s. 1000 s. 

(deg)ϕ 4.0597 954.43 0.0265 0.0519 0.0125 0.0269 

(deg)θ 8.3862 405.73 0.2955 0.0135 0.1572 0.0051 

(deg)ψ 7.567 760.22 0.5159 0.3726 0.2733 0.1927 

(deg/s)xω 0.0141 0.9859 0.0001 0.00003 0.0001 0.00002 

(deg/s)yω 0.0019 0.0724 0.00002 0.0002 0.00001 0.0001 

(deg/s)zω 0.0198 0.8744 0.0012 0.0003 0.0006 0.0001 

VI. CONCLUSIONS AND DISCUSSION 
In this paper Robust Unscented Kalman Filter algorithms 

with single and multiple measurement noise scale factors for 
the case of measurement malfunctions are developed. By the 
use of defined variables named as scale factor, current faulty 
measurements are taken into consideration with small weight 
and the estimations are corrected without affecting the 
characteristic of the accurate ones. In the presented RUKFs, 
the filter gain correction is performed only in the case of 
malfunctions in the measurement system. 

If the magnetometers are used as the only onboard 
measurement devices, and the computational resources are 
restricted, utilization of RUKF with single MNSF is 
recommended for pico satellite attitude estimation because of 
the lower computational demands even though it gives similar 
results with RUKF with multiple MNSFs. Besides, if any 
other measurement devices are also used, i.e. gyroscopes, in 
this case, RUKF with multiple MNSFs gives significantly 
better estimation results and its utilization is recommended.    

The proposed approaches do not require a priori statistical 
characteristics of the faults and can be used for both linear and 
nonlinear systems. Furthermore the presented RUKF 
algorithms are simple for practical implementation. These 
characteristics make introduced RUKF algorithms extremely 
important in point of view of supplying reliable parameter 
estimation for the attitude control system of a pico satellite. 
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