
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

413
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Abstract—Kernel function, which allows the formulation of non-
linear variants of any algorithm that can be cast in terms of dot
products, makes the Support Vector Machines (SVM) have been
successfully applied in many fields, e.g. classification and regression.
The importance of kernel has motivated many studies on its composi-
tion. It’s well-known that reproducing kernel (R.K) is a useful kernel
function which possesses many properties, e.g. positive definiteness,
reproducing property and composing complex R.K by simple opera-
tion. There are two popular ways to compute the R.K with explicit
form. One is to construct and solve a specific differential equation
with boundary value whose handicap is incapable of obtaining a
unified form of R.K. The other is using a piecewise integral of
the Green function associated with a differential operator L. The
latter benefits the computation of a R.K with a unified explicit form
and theoretical analysis, whereas there are relatively later studies
and fewer practical computations. In this paper, a new algorithm
for computing a R.K is presented. It can obtain the unified explicit
form of R.K in general reproducing kernel Hilbert space. It avoids
constructing and solving the complex differential equations manually
and benefits an automatic, flexible and rigorous computation for more
general RKHS. In order to validate that the R.K computed by the
algorithm can be used in SVM well, some illustrative examples and
a comparison between R.K and Gaussian kernel (RBF) in support
vector regression are presented. The result shows that the performance
of R.K is close or slightly superior to that of RBF.

Keywords—admissible support vector kernel, reproducing kernel,
reproducing kernel Hilbert space, Green function, support vector
regression

I. INTRODUCTION

THE mathematical result underlying the kernel function,
which was presented almost a century ago [1], has

received relatively little attention in the machine learning
community until support vector machines (SVM) was pro-
posed [2]. SVM is one of excellent kernel methods, whose
crucial ingredient is the kernel function. It’s shown that SVM
has many advantages, e.g. no local optima, good ability of
generalization, intrinsic regularization and the sparseness of
support vectors, etc. [3]. These advantages encourage re-
searchers actively focus on applying SVM to various fields
e.g. pattern recognition [4]–[6] and face detection [7], [8]etc.
Moreover, it’s also rapidly applied in the domain of regression,
e.g. function approximation [3], [9], prediction [10], [11] and
other applications [12]. The tutorial can be seen in [13], [14].
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Kernel function is a crucial ingredient of SVM. It’s known
that a kernel is called admissible support vector kernel (SV
kernel) [14] when it satisfies Mercer’s condition [1]. Mercer’s
condition is one of popular methods to validate whether a
prospective kernel is a positive definite function since any
kernel should be capable of corresponding to a dot product
in high dimensional feature space. Kernel function is regarded
as a significant trick which can benefit the computation of
dot products in high-dimensional feature space using simple
function defined on pairs of input patterns [15], [16]. In other
words, the computations depend only on the inner product
defined in feature space, rather than an explicit nonlinear
function ϕ. Additionally, the SV kernel implies the features
of data in feature space since it contains all the information
about the relative positions of the data, i.e. choosing different
kernel will produce different SVMs.

However, it is usually time-consuming and demanding to
validate or compose a SV kernel. It’s well-known that almost
all the methods, e.g. Mercer’s method, only tell us whether
or not a prospective kernel is actually a dot product in a
given space, but it does not show how to construct the
feature map and the images of the input data in the feature
space and even what the feature space is. Although, there are
plentiful studies on SVMs with some conventional kernels, e.g.
polynomial kernel K(x, x′) = (< x, x′ > +1)

d, Gaussian ker-
nel (RBF) K(x, x′) = exp

(−‖x− x′‖/(2σ2)
)

and sigmoid
kernel K(x, x′) = tanh (ν < x, x′ > +c), the best choice of
a kernel for a given problem is still an open research issue
[6]. It’s found that the polynomial kernel is usually inferior
for higher nonlinearity problem and sigmoid kernel performs
closely to RBF but with complex form, conditional satisfaction
with Mercer’s condition and unintelligibility [14]. Research
has shown that RBF is not only theoretically well-founded
but also superior in some practical classification applications
[6], [17]. However, the performance of RBF is sensitive to the
parameter σ [18], and there is no evidence to show that the
RBF is the optimal choice for regression, especially dealing
with multivariable complex function.

Therefore, many researches are devoted to an exploratory
study on the composition method of SV kernels and related
properties, e.g. hybrid composition method based on some
operations of kernels, e.g. positive linear combinations, inte-
grals and products, etc. [14], [19], [20], multi-scale kernel [21]
especially based on wavelet functions [22], [23] and feature
space [24], [25], such as reproducing kernel Hilbert space
(RKHS) [26], [27], etc. Recently, the multi-scale kernel and
RKHS are the research hotspots. Although the former adopts
techniques from wavelet theory and shift invariant spaces to
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construct a new class of kernels, it still bases on RKHS [21].
Furthermore, as a result of reproducing property of R.K, it
can show us a feature map with explicit expression and the
corresponding RKHS. Therefore, the attention is paid to the
kernel function in RKHS.

Reproducing kernel(R.K) is a well-known kernel function in
RKHS, which is regarded as a special SV kernel. Although the
basis concept and principle [28], frames [29] and properties
[30], and conceptual comparison of R.K to the other kernels,
e.g. Mercer kernel, positive definite kernel(PDK) [25], etc.,
have been well studied, there are relatively little work on
quantitative analysis and comparison in SVR based on some
R.K with explicit expressions. There are two popular ways
to compute R.K in RKHS. One is constructing and solving
a specific differential equation with boundary value problem
[31], [32] whose handicaps are the requirement of professional
mathematic knowledge and incapable of extending to more
general cases. The other is to compute a R.K with a unified
explicit expression using a piecewise integral of Green func-
tion associated with a differential operator L [33] but with
relatively later and less researches.

In this paper, an algorithm for composing R.K in Sobolev
RKHS is proposed to obtain a unified explicit expression. It
avoids constructing and solving the complex differential equa-
tions with boundary-value manually and benefits an automatic,
flexible and rigorous computation with computer codes, e.g.
Matlab. Finally, some examples and simulation comparisons
are presented to validate the R.K computed. The result shows
that the performance of R.K in SV algorithm is close or
superior to that of conventional RBF.

II. PRELIMINARY

A. Kernel Methods and SVM Formulation

Kernel methods (KMs) owe the name to the use of kernel
functions, which handle the problems by mapping the data
into a high dimensional feature space, where each coordinate
corresponds to one feature of the data items. It is a significant
trick that the learning machine can be operated in the feature
space by simply computing the inner products between the
images of all pairs of data in the feature space. Since the
mapping can be quite general (not necessarily linear, for
example), the relations found in this way are accordingly very
general. There are several advantages in employing kernel
function:

1) Offering a computational shortcut. The kernel function
can implicitly map the input vectors into feature space
to contain all the information about the relative positions
rather than explicitly choose feature space and mapping
functions. Therefore, the training data are only partici-
pated in the computation of the kernel matrix.

2) Avoiding the curve of dimension. The amount of com-
putation required depends on the number of support
vectors (SVs) rather than the dimensionality of primal
input space.

3) Allowing incorporating prior knowledge. The kernel
function allows one to incorporate prior knowledge of

problem domain since a similarity measure between two
input data [16].

These attractive properties make the KMs widely applied in
many fields, e.g. support vector machines [2] , kernel principle
component analysis [34], kernel Fisher discriminate analysis
[35] and kernel self-organizing map [36], etc.

In this section, a very brief introduction of SVMs will be
presented as the application background of the composition
approach of SV kernel.

Given a training set D = {(xi, yi), i = 1, ..., l} ⊂ Ω ×
C, where Ω denotes the space of the input data (e.g. Ω =
R

d, where d denotes dimensionality of input), C denotes the
space of output (e.g. C = {−1,+1} for binary classification,
C = R for regression). SV algorithms aim at minimizing an
upper bound of the generalization error through maximizing
the margin between the separating hyperplane and the data,
which is based on the structural risk minimization principle
[14].

SV algorithm is to find the following curve in feature space
both for classification or regression problems:

f(x) =
∑
i∈SV

βiK(xi, x) + b (1)

where βi = αiyi for classification, βi = αi−α∗
i for regression

respectively, αi and α∗
i are Lagrange multipliers, b denotes the

bias, i ∈ SV denotes the indices of support vectors (SVs), i.e.
xi with nonzero αi or α∗

i , K(·, ·) is the kernel function.
It can be solved by the following constrained optimization

problems:
(1) For classification problem [2], [13]:

max
αi

∑l
i=1 αi −

∑l
i,j=1 αiαjyiyjK(xi, xj)

s.t.
∑l

i=1 yiαi = 0, 0 ≤ αi ≤ C, i = 1, ..., l
(2)

(2) For regression problem [14]:

max
α,α∗ − 1

2

l∑
i,j=1

(αi − α∗
i )
(
αj − α∗

j

)
K(xi, xj)

+
l∑

i,j=1

(αi − α∗
i ) yi −

l∑
i,j=1

(αi − α∗
i ) ε

s.t.
l∑

i=1

(αi − α∗
i ) = 0, αi, α

∗
i ∈ [0, C]

(3)

where C > 0 determines the upper bound, ε ≥ 0 denotes a
constant controlling the noise tolerances.

Obviously, the complexity of (1) only depends on the
amount of SVs and SV kernel rather than the dimensionality
of Ω. In practice, the SVs, which depend on the selection of
kernel and parameters of SV algorithm [6], can be automat-
ically extracted by SV algorithm. In other words, the major
task of the SVM lies in the selection of its kernel [19].

B. Validating Approaches for SV Kernels

Kernel function is a crucial ingredient in SV algorithm,
and a kernel function is called a SV kernel when it satisfies
Mercer’s condition [14]. As noted in precious section, the
SV algorithm only depends on dot products between input
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xi, i.e. SV kernel essentially. In addition, the optimization
problem in nonlinear case corresponds to finding the flattest
function in feature space rather than in input space [14].
Therefore, different SV kernel implies different feature space,
and consequently different reflection of the feature of the
estimation function.

The question that raises now is which function K(s, t)
corresponds to a dot product in a feature space. There are
large numbers of studies on this, e.g. [2], [14], [37], [38]. The
following theorems including Mercer’ and Bochner’s theorem,
represent these functions.

Theorem 1 (Mercer’s Theorem): Let Ω be a closed subset
of R

n, n ∈ N, μ be a Borel measure on Ω. Suppose K ∈
L∞(Ω2) such that the integral operator TK : L2(Ω) → L2(Ω)
defined by

TKf(·) :=
∫
Ω

K(·, x)f(x)dμ(x) (4)

is semi-positive. Let ψi ∈ L2(Ω) be the eigenfuntion of TK
associated with the eigenvalue λi �= 0 and normalized such
that ‖ψi‖L2 = 1 and let ψi denote its complex conjugate.
Then

1) (λi(T ))i ∈ l1
2) ψi ∈ L∞(Ω) and supi ‖ψi‖L∞ <∞
3) K(x, x′) =

∑
i∈N

λiψi(x)ψi(x
′) (referred to as Mercer

kernel) holds for almost all (x, x′), where the series con-
verges absolutely and uniformly for almost all (x, x′).

Less formally speaking this theorem means that if
∫
Ω×Ω

K(x, x′)f(x)f(x′)dxdx′ ≥ 0, for all f ∈ L2(Ω) (5)

holds, then K(x, x′) can be written as a dot product in
some feature space, i.e. any function K(x, x′) which satisfies
Mercer’s condition is a SV kernel. Unfortunately, to validate
some function in respect of the Mercer’s condition is still of
difficulty and intractability.

Theorem 2 (Bochner’s Theorem [38]): Given a positive fi-
nite Borel measure μ on R, the Fourier transform Q of μ, i.e.
Q(t) =

∫
R
exp(−itx)dμ(x) is a continuous function, then Q

is a positive definite function and vice versa. In other words,
every positive definite function is the Fourier transform of a
positive finite Borel measure, i.e. the kernel takes the form
K(x, x′) = Q(x− x′) is positive definite, and vice versa.

Here, the kernel function in theorem 2 is called translation
invariant kernel, e.g. K(x, x′) = exp

(−‖x− x′‖2/(2σ2)
)

.
Smola et al. [37] presented the following method for validating
a SV kernel based on the Bochner’s theorem.

Theorem 3: A kernel K(x, x′) = K(x− x′) is an admissi-
ble SV kernel if and only if the Fourier transform

F [K](ω) = K̂(ω) = (2π)−
d
2

∫
Ω

e−i<ω,x>K(x)dx (6)

is nonnegative.
Moreover, for kernels K(x, x′) = K(< x, x′ >) (dot-

product kernel), there exists sufficient conditions for being
admissible, for further details see [39].

III. PERSPECTIVES OF REPRODUCING KERNEL AND SV
KERNEL

A. Definition of Reproducing Kernel
It is well-known that the reproducing kernel Hilbert space

(henceforth abbr. as RKHS) is the foundation of the learn-
ing, sampling, filtering and scattered approximation problems.
Some basic concepts will be introduced at first. For more
details on RKHS see e.g. [26], [28], [30], [40].

Defintion 1 (RKHS): Let Ω ⊆ R
d be an arbitrary nonempty

set, H is a Hilbert space of function f : Ω → R (short for
f ∈ R

Ω). The H is called a reproducing kernel Hilbert space
(RKHS) if there exists K : Ω×Ω → R, satisfies the following:

(i) For ∀x, Kx(y) = K(y, x) as a function of y belongs to
H.

(ii) The reproducing property: ∀x ∈ Ω, and ∀f ∈ H,

f(x) =< f,Kx > (7)

(iii) H is spanned by K, that is, H = span{Kx(·)|x ∈ Ω}
And, H is called the native space of K [30].
Defintion 2 (R.K): K : Ω × Ω → R is called a R.K of H,

if it satisfies the conditions (i) and (ii) in Definition 1.
Here, some denotations are presented, i.e., the Hilbert space

H with R.K K is denoted by HK(Ω), and correspondingly
norm and inner product will be denoted by ‖·‖K and < ·, · >K

respectively.
The R.K possesses some basic properties, e.g. uniqueness,

existence, positive definiteness, convergence, projection, and
compositing complex R.K with simpler ones by sums, prod-
ucts and other operations, etc. [28].

As stated previously, the theorems presented above can only
tell us whether or not a prospective kernel is actually a dot
product in a given space, rather than show how to construct
the feature map and the images of the input data in the feature
space. Moreover, applying (7) to function Kx at y, then

K(y, x) = Kx(y) =< Kx,Ky >, for x, y ∈ Ω (8)

which implies that the nonlinear map function takes the form
of R.K with any fixed x or y. Whereas the conventional
SV kernels are incapable of presenting the map functions
explicitly. As a result, the features of images of data can be
analyzed further.

B. Relations between SV Kernel and Reproducing Kernel
It’s necessary to discuss the relations between various

kernels to validate that the R.K can be used as a SV kernel.
It is hoped that the discussion here would help to bridge the
conceptual gap between some familiar kernels, e.g. positive
(semi-)definite kernel (PDK), Mercer kernel and R.K, whereas
some of the observations are not new or profound.

Defintion 3 (PDK): Let Ω be a subset of R
n, n ∈ N, K :

Ω × Ω → R is symmetric and positive (semi-)definite (PD),
if and only if for arbitrary finite sets {x1, ..., xm} ⊆ Ω , the
matrix K = (K(xi, xj))1≤i,j≤m is symmetric and positive
definite, i.e. for ∀m ∈ N, ∀ci ∈ R, and ∀x1, ..., xm ∈ Ω,
i = 1, ...,m, K satisfies the following inequation

m∑
i,j=1

cicjK(xi, xj) ≥ 0 (9)
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Theorem 4: K : Ω×Ω → R is a SV kernel iff K is a PDK.
The proof is obvious. Refer to e.g. [41].
Theorem 5: K : Ω× Ω → R is a Mercer kernel iff K is a

PDK.
Proof: if K is a Mercer kernel, i.e. there exists a map

function Φ such that K(t, s) =< Φ(s),Φ(t) >. Then,
m∑

i,j=1

cicjK(xi, xj) =
m∑

i,j=1

cicj < Φ(xi),Φ(xj) >

= ‖
m∑
i=1

ciΦ(xi)‖2 ≥ 0

thus, K is a PDK according to (9).
For the converse, if K is a PDK, K is a Mercer kernel

according to Theorem 4 and 1, which completes the proof.
Theorem 6: K : Ω × Ω → R is a Mercer kernel iff there

exists a RKHS H with R.K K, i.e. HK(Ω).
Proof: According to Moore-Aronszajn Theorem [28], any

PDK K is associated with a space HK(Ω) and vice versa.
Note that the Theorem 5 holds if K is a PDK, that is, K is a
Mercer kernel, which completes the proof.

IV. A NEW COMPOSITION APPROACH OF SV KERNEL

As stated in previous section, any R.K can be used as a SV
kernel theoretically. Therefore, it’s important to discuss how
to compute a R.K with an explicit expression. In other words,
it is a composition approach of SV kernel.

A. Existence and Construction Theorems
It’s well-known that it is usually very time-consuming and

demanding to compute the R.K for a given RKHS. There are
two popular ways to compute the explicit form of a R.K. One
is to construct and solve a specific differential equation with
boundary value for a special case [31], [32]. It’s found that
it is incapable of obtaining a unified form of R.K for general
RKHS since the differential equations have to be constructed
for special case manually. For example, Cui et al. [42] defined
the Inner products of RKHS W 1

2 [a, b] and W 2
2 [a, b] as follow:

< u, v >=

∫
Ω

[u(x)v(x) + u′(x)v′(x)] dx (10)

< u, v >=

∫
Ω

[u(x)v(x) + 2u′(x)v′(x) + u′′(x)v′′(x)] dx (11)

and constructed the following differential equations:

−d2Fx(y)/dy
2 + Fx(y) = 0, y �= x

dFx(a)/dy = dFx(b)/dy = 0

dFx(x− 0)/dy − dFx(x+ 0)/dy = 1

(12)

and
d4Fx(y)/dy

4 − 2d2Fx(y)/dy
2 + Fx(y) = 0, y �= x

d2Fx(b)/dy
2 = d2Fx(a)/dy

2 = 0

d3Fx(b)/dy
3 − 2dFx(b)/dy = 0

d3Fx(a)/dy
3 − 2dFx(a)/dy = 0

dFx(x+ 0)/dy = dFx(x− 0)/dy

Fx(x+ 0) = Fx(x− 0)

d2Fx(x+ 0)/dy2 = d2Fx(x− 0)/dy2

d3Fx(x+ 0)/dy3 − d3Fx(x− 0)/dy3 = 1

(13)

respectively to obtain the corresponding R.Ks for the first time,
e.g. the R.K of W 1

2 [a, b] is as follows:

K(x, y) =

⎧⎨
⎩

ex+y+e2a+2b−(x+y)+e2a−(y−x)+e2b+(y−x)

2(e2b−e2a)
,y ≤ x

ex+y+e2a+2b+(x+y)+e2a+(y−x)+e2b−(y−x)

2(e2b−e2a)
,otherwise

(14)
It’s noted that this method is too demanding to obtain an

explicit form of R.K in more general RKHS, and consequently
there are no solutions to Wm

2 (Ω) for m ≥ 3 so far (see [42],
[43] for more details).

The other is based on a piecewise integral of Green function
associated with a differential operator L [33], [44], [45].
It’s noted that it can obtain a R.K with a unified explicit
expression and benefits the theoretical analysis, whereas there
are relatively later studies and fewer practical computations.

In this section, an algorithm for computing a R.K with a
unified explicit form in Sobolev RKHS Wm

2 (Ω) is presented. It
avoids constructing and solving the differential equations with
boundary values manually and benefits an automatic, flexible
and rigorous computation with computer codes, e.g. Matlab.

Defintion 4 (Sobolev): A Sobolev space Wm
p is defined

to be the subset of Lp such that function f and its weak
derivatives up to some order m have a finite Lp norm, for
given p ≥ 1. In other words, a Sobolev space Wm

p (Ω) consists
of function f , where f is m-times absolutely continuous
differentiable on Ω, and f (m)(x) ∈ Lp(Ω), (1 ≤ p ≤ ∞).

1) For general differential operator: As an illustration, the
computation in Wm

2 [a, b] is considered (henceforth Wm
2 for

short), whose inner product is adapted to the following form

< u, v >=
m∑
i=1

(λiu)(λiv) +

∫ b

a

Lu(t) · Lv(t)dt (15)

and give the following existence and construction theorems:
Theorem 7: Wm

2 [a, b] possesses a R.K as follows:

K(t, s) =

m∑
i=1

ϕi(t)ϕi(s) +

∫ b

a

G(t, τ) ·G(s, τ)dτ (16)

where L = Dm + am−1(t)D
m−1 + a1(t)D+ a0(t), t ∈ [a, b]

is any m-order linear differential operator, D = d/dt, G(·, ·)
is a Green function and ϕi is the dual basis of λi for any
i = 1, ...,m in kerL (the null space of L), i.e.,

Lϕj(t) = 0, λiϕj = δi,j , i, j = 1, ...,m (17)

which can be computed by

Φ(t)T = (ϕ1(t), ..., ϕm(t)) = (u1(t), ..., um(t))M−1 (18)

where λi ∈ kerL is a linearly independent functional, {ui}mi=1

is any set of basis of kerL, M = [λiuj ]m×m is a m × m
matrix.

Proof: Firstly, given ∀ri ∈ R, i = 1, ...,m, h ∈ L2[a, b],
suppose uf ∈ kerL satisfies the following equations:

Dj−1uf (a) = rj , j = 1, ...,m (19)

Then, there exists a f ∈Wm
2 as follows

f(t) = uf (t) +

∫ t

a

GL(t, τ)Lf(τ)dτ (20)
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is the solution of the following initial value problem

Lf(t) = h(t) , t ∈ [a, b]

Dj−1f(a) = Dj−1uf (a) = rj , j = 1, ...,m
(21)

where GL(t, s) is the Green function associated with L, i.e.

GL(t, s) = 0, t ∈ [a, s];LGL(t, s) = 0, t ∈ [s, b]

Dj−1GL(t, s)|t=s = δj,m, j = 1, ...,m
(22)

where δ denotes Kronecker Delta. It’s obvious that substituting
(22) and (20) into (21) can complete the verification.

For ∀f ∈Wm
2 , let Λ :Wm

2 → R
m|Λf = (λ1f, ..., λmf) be

a linear operator, P : Wm
2 → kerL be a projection operator,

then kerL = (kerΛ)
⊥ and

(Pf)(t) =
m∑
i=1

(λif)ϕi(t) = Λf · Φ(t) (23)

And let G(t, s) = (I − P )GL(t, s), then

f(t) =
m∑
i=1

(λif)ϕi(t) +

∫ b

a

G(t, τ)Lf(τ)dτ (24)

Since uf ∈ kerL, then (Puf )(t) = uf (t), thus

Pf(t) = P

(
uf (t) +

∫ t

a

GL(t, τ)Lf(τ)dτ
)

= uf (t) +

∫ t

a

P(t)GL(t, τ)Lf(τ)dτ (25)

where P(t) denotes the projection with respect to t, and thus

f = (I − P )f + Pf =

∫ t

a

(
I − P(t)

)
GL(t, τ)Lf(τ)dτ

+ Pf =

m∑
i=1

(λif)ϕi(t) +

∫ b

a

G(t, τ)Lf(τ)dτ
(26)

LG(·, τ) = δ(· − τ), λiG(·, τ) = 0, i = 1, ...,m (27)

Secondly, it’s easy to validate that (15) is the inner product
of Wm

2 . In addition, for any Cauchy sequence {fn} in Wm
2 ,

∃f0 ∈ Wm
2 such that Λfn

n→∞−→ Λf0 since R
m is complete.

Since {Lfn} is a Cauchy sequence in L2[a, b], then ∃h ∈
L2[a, b] such that Lfn n→∞−→ h as L2[a, b] is complete too.
Thus, for any Cauchy sequence {fn} in Wm

2 , ∃f0 ∈ Wm
2 is

as follows:

f(t) = Λf0 · Φ(t) +
∫ b

a

G(t, τ)h(τ)dτ (28)

such that fn
n→∞−→ f0 in Wm

2 , which proves that Wm
2 is a

Hilbert space.
Finally, K(t, s) in (16) is a symmetric function, and K(t, s)

belongs to Wm
2 as a function of either t or s. Additionally,

the following equations hold

LK(·, τ) = G(τ, ·), λiK(·, τ) = ϕi(τ), i = 1, ...,m (29)

Thus, substituting (29) into (24)

f(t) =

m∑
i=1

(λif)ϕi(t) +

∫ b

a

G(t, τ)Lf(τ)dτ

=

m∑
i=1

(λif) (λiK(·, t)) +
∫ b

a

Lf(τ)LK(τ, t)dτ

= < f(τ),K(τ, t) > (30)

which achieves our assertion.
From the proof of theorem 7, the following corollary holds:
Corollary 1: Wm

2 equipped with the inner product (15) can
be decomposed as a direct sum of two subspaces as follows:

Wm
2 [a, b] = kerL ⊕ kerΛ � H1 +H2 (31)

where the subspaces H1 and H2 are RKHSs equipped with
the following inner products:

< u, v >H1 =
m∑
i=1

(λiu)(λiv) (32)

< u, v >H2 =

∫ b

a

Lu(t) · Lv(t)dt (33)

respectively, and the corresponding reproducing kernels are

K1(t, s) =
m∑
i=1

ϕi(t)ϕi(s) (34)

K2(t, s) =

∫ b

a

G(t, τ) ·G(s, τ)dτ (35)

Recall (16), the computation of kernel consists of two parts,
i.e. (i) computing the dual basis ϕi of λi for ∀i = 1, ...,m, and
(ii) computing the Green function G(t, s) and the integral (35).
It’s obvious that the computational cost is mainly in (ii) which
is associated with m-order differential operator L. Therefore,
a basic green function was introduced [46], i.e.

g(t, s) =
m∑
i=1

ui(t)ũi(s) (36)

where {ui}mi=1 is any set of basis of kerL and {ũi}mi=1 are
the corresponding adjoint functions, and then

G(t, s) = g(t, s)−
m∑
i=1

λig(·, s)ϕi(t) (37)

which satisfies (27).
2) For differential operator with m different eigenvalues:

Recall (16), it is computed for any m-order differential oper-
ator L. When the following linear differential operator

L = (D − r1)(D − r2) · · · (D − rm) (38)

is chosen, where ri �= rj , (i �= j) are the m different
eigenvalues, the following theorem holds

Theorem 8: The RKHS kerΛ in (31) which is equipped
with inner product (35) possesses a R.K as follows:

K2(t, s) = bTmQm(t, s)bm (39)

where bm = (bm1, ..., bmm)T is the last column of M−1, i.e.,

bmi = (−1)m+i
∏

1≤k≤i−1

1

(ri − rk)

∏
i+1≤k≤m

1

(rk − ri)
(40)
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M denotes a Vandermonde matrix, i.e.

Mi = (1, ri, ..., r
m−1
i )T (41)

where ri �= rj , (i �= j) is the eigenvalue of L, Qm(t, s) =
(qij(t, s))m×m is as follows:

qij(t, s) =

⎧⎨
⎩

eri(t−a)+rj(s−a)−e
rθ(i,j)|t−s|

ri+rj
,ri + rj �= 0

eri(t−s)(t+s−|t−s|−2a)
2 ,otherwise

(42)

where θ(i, j) =

{
j − 1,t ≤ s

i− 1 ,otherwise
Proof: let λ0i (1 ≤ i ≤ m) be a functional with an initial-

value constrains, i.e. λ0i f = f (i−1)(a), W (u1, ..., um)(t) be a
Wronskian matrix as follows

W (u1, ..., um)(t) =M · diag (u1(t), ..., um(t)) (43)

where ui(t) = exp(rit) is the bases of kerL. Let νij =
M−1(i, j). From the result in [47], we have

νij = (−1)i+j
∏

1≤k≤i−1

1

(ri − rk)

∏
i+1≤k≤m

σm−j(i)

(rk − ri)
(44)

where σk(i) =
∑

1≤j1≤...≤jk≤m,
jd �=i,d=1,...,k

rj1rj2 · · · rjk

Recall (18), the dual bases to {λ0i }m1 are as follows:

ϕi(t) =
m∑

k=1

νki exp (rk(t− a)) (45)

then

ũi(t) = νime
−rit = bmi (46)

= (−1)m+i
∏

1≤k≤i−1

1

(ri − rk)

∏
i+1≤k≤m

e−rit

(rk − ri)

Recall (36) and (37), the basic Green function can be
obtained:

g(t, s) =
m∑
i=1

νim exp (ri(t− s)) · (t− s)0+ (47)

and substituting (44)-(47) to (37) and (35), will achieve our
assertion. The verification will not be discussed further due to
the limited space, for more details see e.g. [45].

3) For simpler differential operator: It’s obvious that it
is superior to the method using differential equation since
the R.K can be obtained a uniform and concise form (16).
It’s found that the complexity is mainly concentrated on
the computation of Green function which depends on the
differential operator L. In addition, if, according to Definition
4, the Sobolev spaces admit the following natural norm:

‖f‖mp =

m∑
i=0

‖f (i)‖p =

m∑
i=0

(∫
|f (i)(t)|pdt

) 1
p

(48)

Then Wm
p equipped with the norm (48) is a Banach space.

Note that it is enough to take only the first and last elements,
i.e. the norm defined by ‖f (m)‖p + ‖f‖p, is equivalent to
the norm in (48). The fact described above motivates us to

simplify the differential operator in Theorem 8 as a simpler
one:

L = Dm − 1 (49)

From Theorem 8, the following theorem holds, since the
differential operator in (49) possesses m different eigenvalues.

Theorem 9: Wm
2 equipped with the following inner prod-

uct:

< u, v >=
m∑
i=1

u(i−1)(a)v(i−1)(a)+

∫ b

a

(u(m)−u)(v(m)−v)dt
(50)

possesses a R.K as follows:

K(t, s) =
m∑
i=1

ϕi(t)ϕi(s) + V T
mQm(t, s)Vm (51)

where Vm = (ν1m, ..., νmm)T =M−1(i,m), and Qm(t, s) is
a m×m matrix, whose element qij(t, s) is as follows

qij(t, s) =

⎧⎨
⎩

eri−1(t−a)+rj−1(s−a)−e
rθ(i,j)|t−s|

ri−1+rj−1
,ri−1 + rj−1 �= 0

eri−1(t−s)(t+s−|t−s|−2a)
2 ,otherwise

(52)
where θ(i, j) is the same as in Theorem 8.

Proof: It’s found that the eigenvalues of (49) are

rk = exp(2kπi/m), k = 0, ...,m− 1 (53)

Note that for ∀k, j = 1, ...,m,

rk · rj = rk+j , r−k = r−1
k , rm+k = rk, r

m+k
1 = rk1 (54)

It’s obvious if substituting (53) and (54) into Theorem 7
and 8, which completes the proof.

Additionally, two cases, according to the parity of m,
should be considered in Theorem 9, there are the following
corollaries:

Corollary 2: Wm
2 , (m = 2m0) equipped with an inner

product as follows:

< u, v > =

m∑
i=1

u(i−1)(a)v(i−1)(a) (55)

+

m0∑
i=1

(−1)i
[
u(i−1)v(m−i) + v(i−1)u(m−i)

]b
a

+

∫ b

a

[
u(m)v(m) − (−1)m02u(m0)v(m0) + uv

]
dt

possesses a R.K with form (51), where Qm(t, s) is as follows:

qij(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

et−s(t+s−|t−s|−2a)
2 ,i = 1; j = m0 + 1

es−t(t+s−|t−s|−2a)
2 ,i = m0 + 1; j = 1

eri−1(t−a)+rj−1(s−a)−e
rθ(i,j)|t−s|

ri−1+rj−1
,otherwise

(56)
Proof: Firstly, recall (50), then

∫ b

a

(u(m)−u)(v(m)−v)dt =
∫ b

a

(u(m)v(m)−uv(m)−u(m)v+uv)dt

(57)
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and ∫ b

a

uv(m) + u(m)vdt =

m0∑
i=1

(−1)i
[
u(i−1)v(m−i) + v(i−1)u(m−i)

]b
a

+(−1)m0

∫ b

a

2u(m0)v(m0)dt (58)

Then, substituting (57) and (58) into (50), it’s found that
the inner product in (55) is equivalent to (50).

Secondly, recall (53), then rm0
= exp(iπ) = −1, i.e. r0 +

rm0 = 0 since m = 2m0. Then ri−1 + rj−1 = 0, (1 ≤ i ≤
j ≤ m) if and only if i = 1; j = m0+1 or i = m0+1; j = 1,
and substitute into (52) can easily achieve the assertion.

Corollary 3: Wm
2 , (m = 2m0 +1) equipped with an inner

product as follows:

< u, v >=
m∑
i=1

u(i−1)(a)v(i−1)(a) (59)

+
m∑
i=1

(−1)i
[
u(i−1)v(m−i)

]b
a
+

∫ b

a

[
u(m)v(m) + uv

]
dt

possesses a R.K with form (51), where Qm(t, s) is as follows:

qij(t, s) =
eri−1(t−a)+rj−1(s−a) − erθ(i,j)|t−s|

ri−1 + rj−1
(60)

where 1 ≤ i ≤ j ≤ m
Proof: Similar to Corollary 2, the inner product (59) is

equivalent to (50) when m is an odd number.
According to (53), there are no 1 ≤ i ≤ j ≤ m such that

ri−1 + rj−1 = 0 since m is odd number, thus (60) holds.

B. An Algorithm for Computation Reproducing Kernel

In this section, the algorithm is proposed based on the
theorems and corollaries in previous section. Fig.1 shows a
brief flow chart of the algorithm for computing the R.K in
Wm

2 [a, b]. The algorithm can be summarized as follows:

Determin m

Calculate m eigenvalues ri

Get a set of basis {ui} in ker L

Calculate the inverse matrix
of Vandermonde matrix M 

Calculate the dual basis φi

Calculate elements of Qm(t, s)

Calculate R.Ks of H1 and H2

Sum K1 and K2

Fig. 1. Flow chart of the algorithm for the computation of reproducing kernel
in Wm

2 [a, b]

Step 1: Determine a positive integer m;

Step 2: Calculate the eigenvalues ri e.g. in (38) or (53);
Step 3: Give any set of basis or calculate the corresponding

set of basis of H1 = kerL associated with ri, e.g. in (43);
Step 4: Calculate the inverse matrix of Vandermonde matrix

M , i.e. calculate all the elements νij , e.g. in (44);
Step 5: Calculate the dual bases {ϕi}m1 , e.g. in (45);
Step 6: Calculate qij(t, s), e.g. in (42) or (52);
Step 7: Compute the reproducing kernel K1 of H1 = kerL

according to Step 5 and (34)
Step 8: Compute the reproducing kernel K2 of H2 = kerΛ

according to Step 6 and (35) or Theorem 8, 9 and its corollaries
Step 9: Sum K1 and K2

Note that users are only asked to set an initial value of m
to start the algorithm. Therefore, it will benefit an automatic,
flexible and rigorous computation with computer codes, e.g.
Matlab.

V. NUMERICAL EXAMPLES AND SIMULATION ANALYSIS

A. Numerical Examples

Example 1 (Even) Let m = 2, i.e. m0 = 1, then L =
D2 − 1, the eigenvalues are r0 = 1, r1 = −1, and the bases
of kerL are u1(t) = et, u2(t) = e−t. According to (44), then
ν11 = ν12 = ν21 = 1/2, ν22 = −1/2, then dual bases are
ϕ1(t) = (et−a−e−t+a)/2, ϕ2(t) = (et−a+e−t+a)/2. Recall
(55), it’s obtained that

q11(t, s) = (exp(t+ s− 2a)− exp(|t− s|)) /2
q12(t, s) = (exp(t− s)[t+ s− |t− s| − 2a]) /2

q21(t, s) = (exp(s− t)[t+ s− |t− s| − 2a]) /2

q22(t, s) = − (exp(−t− s+ 2a)− exp(−|t− s|)) /2
Substituting the results calculated above into (51), and

considering the equivalent inner product (55), thus

K(t, s) = ϕ1(t)ϕ1(s) + ϕ2(t)ϕ2(s) + ν212q11

+ν12ν22(q21 + q12) + ν222q22 =
5et+s−2a

8
+

3e−(t+s−2a)

8

− (t+ s− |t− s| − 2a) cosh(t− s)

4
− sinh |t− s|

4

Example 2 (Odd) Let m = 1, then L = D−1, the eigenvalue
is r0 = 1, u1(t) = et is a basis of kerL, and ν11 = r−1

0 = 1,
dual basis ϕ1(t) = et−a, q11(t, s) = et+s−2a−e|t−s|

2 . Finally,
the R.K is

K(t, s) =
3

2
(exp(t+ s− 2a)− exp(|t− s|)) (61)

and the corresponding inner product is

< u, v >= 2u(a)v(a)− u(b)v(b) +

∫ b

a

[u′v′ + uv]dt (62)

B. Simulation and Results

In order to validate that the R.K computed by the algorithm
can be used as SV kernels well, a comparison between one
of the kernels computed, i.e. R.K in (61), and classical RBF
is presented. Consider a simple illustrative regression problem
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involving one input and one output in which the target function
y(x) as follows is known for a target with additive noise.

y(x) = (1− x+ 2x2) exp(x2/2) (63)

Take a data set of N = 50 training points in which the input
data point x is picked uniformly from the interval [−4, 4], and
the target t is generated by an additive noise process ti =
y(xi) + ξi, where ξi is additive noise as follows:

ξi = 0.2 · ‖y‖∞ · (2εi − 1)/2 (64)

where ‖y‖∞ = max{y(x1), ..., y(xN )}, εi is uniform vari-
able. For the experiment, a RBF K(x, x′) = e(−‖x−x′‖/(2σ2))

with width σ = 0.6, which is selected by cross validation, was
used. In addition, three metrics was introduced for comparing
the performance of SV kernels, i.e. (i) R square (R2) as follows

R2 = 1−
∑l

i=1(yi − ŷi)
2∑l

i=1(yi − ȳ)2
(65)

where ŷi denotes the corresponding predicted value for ob-
served value yi; ȳ denotes the mean of the observed values.

Generally speaking, (i) the larger the R2, the more accurate
the SVR; (ii) Training time implies the computational effi-
ciency. The smaller the training time, the more efficient the
SVR; (iii) Amount of support vectors shows the generalization
ability. The smaller the amount of support vectors, the better
the generalization ability.

The regression results (where the parameters in SVR, i.e.
regularization constant C = 100 and tolerance error ε = 0.15)
of RBF and R.K are illustrated in Fig. 2 and Fig. 3 respectively,
and the comparison of R square, training time and amount of
support vectors (SVs) are shown in Table I.

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3
True Values
Observation
SVs
Prediction

Fig. 2. Regression results of RBF

It’s noted that, the accuracy and training time of R.K is
slightly superior to that of RBF, whereas the generalization
ability is inferior. Overall, the performance of R.K is almost
similar to that of RBF, which implies that the R.K computed
by the algorithm can be used as SV kernel well. Consequently,
it illuminates that the algorithm can be used to provide more
alternatives of SV kernel for SVMs.
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Fig. 3. Regression results of R.K

TABLE I
COMPARISON OF R2 , TRAINING TIME AND AMOUNT OF SVS

R2 Training time Amount of SVs

RBF 0.940292595217094 1.124502136444716 24
R.K 0.975836312367347 1.043337910265132 26

Best R.K R.K RBF

VI. CONCLUSIONS

This paper proposes an algorithm for computing the R.K
in a general RKHS. Some concepts and relations analysis
will help to elucidate that the proposed algorithm can be
considered to be an approach for constructing a SV kernel.
Meanwhile, the advantages of the algorithm, i.e. it avoids
the complex and demanding task on constructing and solving
the differential equation with boundary value problems in
conventional method, and obtains a unified explicit expression
of R.K for further analysis, are presented. In a word, it
benefits an automatic, flexible and rigorous computation. Some
numerical examples and experimental results are shown to
illustrate the validity and effectiveness of the proposed method.
However, the construction of the SV kernel function and the
way to choose an appropriate kernel in a specific application
are far from full-understood. As we know, the power of
machine learning, especially SVMs, lies in the selection of
kernel and its parameters which have to depend on the wit
of the user and his ”expert” understanding of the processing
data. Therefore, the issue on choosing the right kernel and
the optimal parameters either in kernel itself or in machine
learning algorithms would be our future work.
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