
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1946

Abstract—The problem of mapping tasks onto a computational

grid with the aim to minimize the power consumption and the
makespan subject to the constraints of deadlines and architectural
requirements is considered in this paper. To solve this problem, we
propose a solution from cooperative game theory based on the
concept of Nash Bargaining Solution. The proposed game theoretical
technique is compared against several traditional techniques. The
experimental results show that when the deadline constraints are
tight, the proposed technique achieves superior performance and
reports competitive performance relative to the optimal solution.

Keywords—Energy efficient algorithms, resource allocation,
resource management, cooperative game theory.

I. INTRODUCTION
OWER management in various computing systems is
widely recognized to be an important research problem.

Power consumption of Internet and Web servers accounts for
8% of the US electricity consumption. By reducing the
demand for energy, the amount of CO2 produced each year by
electricity generators can also be mitigated. For example,
generating electricity for the next generation large-scale data
centers would release about 25M tons of additional CO2 each
year [19]. Power consumption is also a critical and crucial
problem in large distributed computing systems, such as,
computational grids because they consume massive amounts
of power and have high cooling costs. These systems must be
designed to meet functional and timing requirements while
being energy-efficient. The quality of service delivered by
such systems depends not only on the accuracy of
computations, but on their timeliness [36].

A computational grid (or a large distributed computing
system) is composed of a set of heterogeneous machines,
which may be geographically distributed heterogeneous
multiprocessors that exploit task-level parallelism in
applications. Resource allocation in computational grids is
already a challenging problem due to the need to address
deadline constraints and system heterogeneity. The problem
becomes more challenging when power management is an
additional design objective because power consumption of the
system must be carefully balanced against other performance

S. U. Khan is with the Department of Electrical and Computer

Engineering, North Dakota State University, Fargo, ND 58102, USA (phone:
701-231-7615; fax: 701-231-8677; e-mail: samee.khan@ ndsu.edu).

C. Ardil is with the National Academy of Aviation, Baku, Azerbaijan, (e-
mail: cemalardil@gmail.com).

measures. Power management can be achieved by two
methods. The Dynamic Power Management (DPM) [27]
approach brings a processor into a power-down mode, where
only certain parts of the computer system (e.g., clock
generation and time circuits) are kept running, while the
processor is in an idle state. The Dynamic Voltage Scaling
(DVS) [34] approach exploits the convex relation between the
CPU supply voltage and power consumption. The rationale
behind DVS technique is to stretch out task execution time
through CPU frequency and voltage reduction.

Power-aware resource allocation using DVS can be
classified as static and dynamic techniques. Static techniques
are applied at design time by allocating and scheduling
resources using off-line approaches, while dynamic
techniques control the runtime behavior of the systems to
reduce power consumption.

The traditional resource allocation and scheduling theory
deals with fixed CPU speed, and hence cannot be directly
applied to this situation. In this paper, we study the problem of
power-aware task allocation (PATA) for assigning a set of
tasks onto a computational grid each equipped with DVS
feature. The PATA problem is formulated as multi-
constrained multi-objective extension of the Generalized
Assignment Problem (GAP). PATA is then solved using a
novel solution from cooperative game theory based on the
celebrated Nash Bargaining Solution (NBS) [22]; we shall
acronym this solution concept as NBS-PATA.

The rest of the paper is organized as follows: A brief
discussion of related work is presented in Section II. The
PATA problem formulation and background information are
discussed in Section III. In Section IV, we model a
cooperative game played among the machines for task
allocation with the objective to minimize power consumption
and makespan, simultaneously. Experimental results and
concluding remarks are provided in Sections V and VI,
respectively.

II. RELATED WORK
Most DPM techniques utilize power management features

supported by hardware. For example, in [4], the authors
extend the operating system's power manager by an adaptive
power manager (APM) that uses the processor's DVS
capabilities to reduce or increase the CPU frequency thereby
minimizing the overall energy consumption [6]. The DVS
technique at the processor-level together with a turn on/off

Energy Efficient Resource Allocation
in Distributed Computing Systems

Samee Ullah Khan and Cemal Ardil

P

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1947

technique at the cluster-level to achieve high power savings
while maintaining the response time is proposed in [11]. In
[26] the authors introduce a scheme to concentrate the
workload on a limited number of servers in a cluster such that
the rest of the servers can remain switched-off for a longer
time. Other techniques use a utilization bound for scheduling
a-periodic tasks [1], [2] to maintain the timeliness of
processed jobs while conserving power.

While the closest techniques to combining device power
models to build a whole system has been presented in [13],
our approach aims at building a general framework for
autonomic power and performance management where we
bring together and exploit existing device power management
techniques from a whole system's perspective. Furthermore,
while most power management techniques are either heuristic-
based approaches [15], [16], [19], [30], or stochastic
optimization techniques [10], [29], [34], we use game theory
to seek radically fast and efficient solutions compared with the
traditional approaches, e.g., heuristics, genetic algorithms,
linear and dynamic programming, branch-and-bound etc. With
game theoretical techniques the solution may not be globally
optimal in the traditional sense, but would be optimal under
given circumstances [17].

Another advantage of using game theory is that our overall
management strategy allows to use lower level information to
dynamically tune the high-level management policies freeing
the need to execute complex algorithms [18]. The proposed
generic management framework not only enables us to
experiment with different types of power management
techniques ranging from heuristic approaches but also
provides a mechanism to consolidate power management with
other autonomic management objectives pertinent to
computational grids, such as fault-tolerance and security.

III. PROBLEM FORMULATION

A. Background Information
The power consumption in CMOS circuits is captured by

the following:
2

EFFP V f C= × × , (1)
where V, f, and CEFF are the supply voltage, clock

frequency, and effective switched capacitance of the circuits.
It is to be understood that time to finish an operation is
inversely proportional to the clock frequency. This
relationship can be extended to gather an insight on the energy
consumption of the processor, by simply recalling that energy
is power times time. Therefore, the energy per operation, Eop,
is proportional to V2. This implies that lowering the supply
voltage will reduce the energy consumption of the system in a
quadratic fashion. However, lowering the supply voltage also
decreases the maximum achievable clock speed. More
specifically, f is (approximately) linearly proportional to V [5].
Therefore, we have:

3P f∝ , and 2
opE f∝ . (2)

A computing device’s power consumption can be

significantly reduced by running the device’s CPU at a slower
frequency. This is the key idea behind the DVS technology. In
conventional system design with fixed supply voltage and
clock frequency, clock cycles, and hence energy, are wasted
when the CPU workload is light and the processor becomes
idle. Reducing the supply voltage in conjunction with the
clock frequency eliminates the idle cycles and saves the
energy significantly. We have:

3P t−∝ , and 2
opE t−∝ (3)

since f ∝ t-1, where t is the time to complete an operation.
Thus, the reduction of the supply voltage would reduce the
energy dissemination, it would substantially slow down the
time to complete an operation – a balance is needed.

B. The System Model
We consider the system as a collection of machines that

comprise the computational grid and the collection of tasks.
Machines: Consider a computational grid comprising of a

set of machines, M = {m1, m2, …, mm}. Assume that each
machine is equipped with a DVS module. Each machine is
characterized by:

1. The frequency of the CPU, fj, given in cycles per unit
time. With the help of a DVS, fj can vary from fj

min to
fj

max, where 0 < fj
min < fj

max. From frequency it is easy to
obtain the speed of the CPU, Sj, which is simply the
inverse of the frequency.

2. The specific machine architecture, A(mj). The
architecture would include the type of CPU (Intel,
AMD, RISC), bus types and speeds in GHz, I/O, and
memory in Bytes.

Tasks: Consider a metatask, T = {t1, t2, …, tn}, where ti is a
task. Each task is characterized by:

1. The computational cycles, ci, that it needs to complete.
(The assumption here is that the ci is known a priori.)

2. The specific machine architecture, A(ti), that it needs to
complete its execution.

The deadline, di, before it has to complete its execution.
It is obvious that the metatask, T, also has a deadline, D,

which is met if and only if the deadlines of all its tasks are
met.

C. Preliminaries
Suppose we are given a computational grid and a metatask,

T, and we are required to map T on the computational grid
such that all the characteristics of the tasks and the deadline
constraint of T are fulfilled. We term this fulfillment as a
feasible task to machine mapping. A feasible task to machine
mapping happens when:

1. Each task ti∈T can be mapped to at least one mj subject
to the fulfillment of all the constraints associated with
each task: Computational cycles, architecture, and
deadline.

2. The deadline constraint of T is also satisfied.
3. The number of computational cycles required by ti to

execute on mj is assumed to be a finite positive number,
denoted by cij. The execution time of ti under a constant

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1948

speed Sij, given in cycles per second is tij = cij/Sij.
A task, ti, when executed on machine mj draws, pij amount

of power. Lowering the power, will lower the CPU frequency
and consequently will decrease the speed of the CPU, and
hence cause ti to possibly miss its deadline. For simplicity
assume that the overhead of switching the CPU frequency is
minimal and hence ignored.

The architectural requirements of each task are recorded as
a tuple with each element bearing a specific requirement. We
assume that the mapping of architectural requirements is a
boolean operation. That is, the architectural mapping is only
fulfilled when all of the architectural constraints are satisfied,
otherwise not.

D. Problem Statement
Given is a computation grid and a metatask T. Find the task

to machine mapping, where:
“The total power utilized by the computational grid is

minimized such that the makespan of the metatask, T, is
minimized.”

Mathematically, we can say:

1

min
n m

ij ij

i j i

p x
= =

∑∑ such that
1

1

min max
n

ij ij
j m

i

t x
≤ ≤

=

∑ subject to

{0,1}, 1, 2, ..., ; 1, 2,
ij

x i n j m∈ = = (4)

if , , , such that () (), then 1
i j i j ij

t m i j A t A m x→ ∀ ∀ = = (5)

, , , 1
ij ij i ij

t x d i j x≤ ∀ ∀ = (6)

() {0,1}
ij ij i

t x d≤ ∈ (7)

1

() 1, , , 1
n

ij ij i ij

i

t x d i j x
=

≤ = ∀ ∀ =∏ (8)

Constraint (4) is the mapping constraint, when xij =1, a task,
ti, is mapped to machine, mj. Constraint (5) elaborates on this
mapping in conjunction to the architectural requirements and
it states that a mapping can only exists if the architecture is
mapped. Constraint (6) relates to the fulfillment of the
deadline of each task, and constraint (7) tells us about the
boolean relationship between the deadline and the actual time
of execution of the tasks. Constraint (8) relates to the deadline
constraints of the metatask, which will hold if and only if all
the deadlines of the tasks, di, i =1, 2, …n, are satisfied.

This formulation is in the same form as that of a GAP
except for constraints (6), (7), and (8). The major difference
between PATA and GAP is that the capacity of resources in
PATA, in terms of the utilization of power, are defined in
groups, whereas in case of GAP, they are defined
individually.

IV. PROPOSED GAME THEORETICAL TECHNIQUE
We consider the system model described in Section 3. The

cooperative game presented here considers each machine in
the computational grid as a player. The goal of the players is
to execute task in a manner that reduces the overall makespan
of the metatask, while keeping the aggregate power
consumption to its minimum. If pij is the power consumed and
tij is the time taken by machine j to execute task i, then the
objective of the cooperative game is to minimize both pij and
tij. Hypothetically, we can express this cooperative game
(CG1) as:

1

min
n m

ij ij

i j i

p x
= =

∑∑ such that
1

1

min max
n

ij ij
j m

i

t x
≤ ≤

=

∑

subject to (4), (5), (6), (7), (8) and

1 1

n m

ij

i j

p P
= =

≤∑∑ (9)

0, 1, 2, ..., ; 1, 2, ...
ij

p i n j m≥ = = (10)
The conservation condition (9) states that the total power

allocated is bounded. Clearly, the power consumption has to
be a positive number (10). These constraints make the PATA
problem convex. Otherwise, the NBS set of points can grow
exponentially, making the extraction of an agreement point an
NP-hard problem.

In transforming the problem, the above cooperative game
(CG1) is equivalent to the following cooperative game (CG2):

()
1

max
n m

ij ij

i j i

p x
= =

−∑∑ such that ()
1

1

max min
n

ij ij
j m

i

t x
≤ ≤

=

−∑

subject to (4), (5), (9)
() , , , 1

ij ij i ij
t x d i j x− ≥ − ∀ ∀ = (11)

()() {0,1}
ij ij i

t x d− ≥ − ∈ (12)

()()
1

1, , , 1
n

ij ij i ij

i

t x d i j x
=

− ≥ − = ∀ ∀ =∏ (13)

0, 1, 2, ..., ; 1, 2,
ij

p i n j m− ≤ = = (14)
Based on the above, we can formulate a cooperative game

as follows. The machines in the computational grid are the
players, each having fj(x) = - pij as an objective function. In a
cooperative game, all players need to optimize their objective
functions simultaneously.

Assume that all players are able to achieve performance
strictly superior to the initial performance, that is the set J =
M. The initial performance of player j is given by γj

0. This
corresponds to the peak power consumption of the machine j.
This will always be an agreeable point because this is the
minimum acceptable performance, but another NBS with
greater performance is desired by reducing the power as much

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1949

Input: Machines each initialized to its maximum power using the DVS ={dvs1, dvs2, ….dvsl}.
Output: A task to machine mapping consumes the minimum power and that has the minimum possible makespan.

1. For i = 1 to n
2. Sort the machines in decreasing order of their current power consumption: p1≥ p2 ≥…≥ pm.
3. pav = (∑ pj)/m
4. while (pav > pm) do

a. m = m – 1
b. pav = (pav – (pm+1/m+1)) (m+1/m)

5. If the architectural constraint (5) is met then goto Step 5a else goto Step 5c.
a. If the smallest dvsl that satisfies the deadline constraint (6) is found then goto Step 5b else goto Step 6.
b. Assign task ti to machine mm with dvsl, update pm and goto Step 2.
c. If m > 1 then m = m – 1 and goto Step 4 else goto Step 6.

6. Initialize all machines to maximum power and goto Step 2.

Fig. 1 The pseudo-code for the proposed technique

TABLE I
VARIOUS PARAMETRIC VALUES FOR THE COEFFICIENT OF VARIANCE METHOD

Variable Values

Vtask {0.10, 0.50}
μtask 2×1012
αtask {2, 10}
βtask {2×1011, 1×1012}
Vmach {0.10, 0.50}
μmach [1.315×1010, 6.5214×1014]
αmach {2, 10}
βtask {[1.32×109, 6.58×109], [6.52×1013, 3.26×1014]}

as possible.
Theorem 1 (NBS-PATA): The NBS for the cooperative

PATA game is determined by solving the following
optimization problem.

()0

1

max
n m

j ij ij ij
i j i

x p xγ
= =

−∑∑ such that
1

1

max min
n

ij ij
j m

i

t x
≤ ≤

=

−∑

subject to (4), (5), (9), (10) (11), (12), (13).
Proof: Consider fj(γj) = -pij which is concave and bounded

above, and hence guarantees a solution but with higher
complexity. The set of solutions determined by the constraint
is convex and compact, and hence is not always guaranteed
but has a lower complexity. Using the fact that fj(γj) = -pij are
1-1 functions of pij the results follows. ■

Now, assume that the machines in the computational grid
are sorted in the decreasing order of their current power
consumption. Given such a list, we assign a task to the
machine that is currently running on a power just above the
weighted average power consumption. The assignment
warrants adjusting the power consumption to the appropriate
DVS level DVS = {dvs1, dvs2, ….dvsl} as to which the
machine can guarantee the deadline associated with the task.
This procedure is applied until a feasible solution is found.

Based on Theorem 1, we derive an algorithm (called NBS-
PATA) for obtaining NBS for the cooperative PATA game.

The pseudo-code for NBS-PATA is depicted in Fig. 1.
Theorem 2 (Correctness of the NBS-PATA): The power

adjustments, pijs, computed by the NBS-PATA technique
solve the optimization problem in Theorem 4.

Proof: The while loop in Step 4a finds the minimum index
m for which

1 1

n m

m ij

i j

p P mγ
= =

< −⎛ ⎞⎜ ⎟
⎝ ⎠
∑∑ (15)

If |J| = |M| then it means that all γjs are positive. Applying
Theorem 6 and the proof follows.
If |J| < |M| (which may be the most probable case) then we get

| |

1 1

| |
n m

J ij

i j

p P Jγ
= =

< −⎛ ⎞⎜ ⎟
⎝ ⎠
∑∑ (16)

when γjs are sorted as γ1 ≥ γ2 ≥ … ≥ γ|J|.
Now, we know that γ|J| ≠ 0. Also, we know that NBS-PATA

will not allocate any tasks to γ|J| in the while loop. The only
argument that we need to be concerned with is the integrity of
the while loop. That can be answered by showing that at any
given instance, the while loop always produces a task to
machine assignment that is covered by Theorem 1. By
definition, the while loop if stooped at an instance where the
first k machines were dealt with, then those k machines will
correspond to the k fastest machines that bare the power
consumption of γ1, γ2, …, γk. But we know from Theorem 1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1950

that a machine j’s best strategy is:

1 ,

n

j ik

i k M k j

p P mγ
= ∀ ∈ ≠

= −⎛⎛ ⎞ ⎞⎜⎜ ⎟ ⎟
⎝⎝ ⎠ ⎠

∑ ∑ (17)

and in terms of power is given as:

1 ,

n

ij ik

i k M k j

p p P m
= ∀ ∈ ≠

= −⎛⎛ ⎞ ⎞⎜⎜ ⎟ ⎟
⎝⎝ ⎠ ⎠

∑ ∑ (18)

This completes the proof. ■
The execution of NBS-PATA technique is in O(n mlog(m)).

The complexity is determined by observing that Step 2 in Fig.
1 takes O(mlog(m)). Step 2 enclosed in Step 1 which takes
O(n). This polynomial time complexity is possible because the
objective functions are convex; however, in general
determining an NBS is an NP-hard problem [25].

V. EXPERIMENTS AND DISCUSSIONS
In this section, we demonstrate the quality of solutions

produced by our NBS-PATA technique. The simulation study
assumed synthetic task sets (explained in the subsequent text).
We set forth two major goals for our experimental study:

1. To measure and compare the performance of NBS-
PATA against 1) the optimal solution and 2) the min-
min heuristic [8].

2. To measure the impact of system parameter variations,
such as, the tightness of the task related constraints.

Based on the size of the problems, the experiments were
divided in two parts. For small size problems, we used an
Integer Linear Programming tool called LINDO [28]. LINDO
is useful to obtain optimal solutions, provided the problem size
is relatively small. Hence for small problem sizes, the
performance of the NBS-PATA is compared against 1) the
optimal solution using LINDO and 2) the min-min heuristic
[8]. The LINDO implementation and the min-min heuristic do
not consider power as an optimization constraint; however,
they are very effective for the optimization of the makespan.
Thus, the comparison provides us with a wide range of results.
On one extreme we have the optimal algorithm, on the other a
technique which scales well with the corresponding increase in
the problem size. For large size problems, it becomes
impractical to compute the optimal solution by LINDO.
Hence, we only consider comparisons against the min-min
heuristic.

The system heterogeneity is captured by the distribution of
the number of CPU cycles, cij, on different mjs. Let C denote
the matrix composed by cij, where i = 1, 2, …, n and j = 1, 2,
…,m. The C matrix was generated using the coefficient of
variation method described in [3]. The method requires
various inputs which are reported in Table I. di, the deadline of
task ti was generated using the method described in [36]. Let
wi be the largest value among the elements in the i-th row of C
and let wis corresponding machine be denoted by m0. Let Z =
n/m, where n is the number of tasks and m is the number of
machines. di is calculated as K × (wi/Sm0) × Z, where K is a
pre-specified positive value for adjusting the relative deadlines

of tasks and Sm0 is the speed of machine m0 running at DVS
level of 100%. For this study, we keep the architectural
affinity requirements confined to memory. (Adding other
requirements such as, I/O, processor type, etc. will bear no
affect on our experimental setup or theoretical results.) Each
machine is assigned a memory on random from within the
range [500-5000] GB, while each task is associated a
corresponding memory requirement on random from within
the range [20-50] MB.

For small size problems, the number of machines was fixed
at 5, while the number of tasks varied from 20 to 40. The
number of DVS levels per machine was set to 4. The
frequencies of the machines were randomly mapped from
within the range [200MHz-2000MHz]. We assumed that the
potential difference of 1mV across a CMOS circuit generates a
frequency of 1MHz. For large size problems, the number of
machines was fixed at 16, while the number of tasks varied
from 1000 to 5000. The number of DVS levels per mj was set
to 8. Other parameters were the same as those for small size
problems.

Min-min: The Min-min heuristic begins with the set U of
all unmapped tasks. Then, the set of minimum completion
times, CT = {cti | cti = minj tij, for each i ∈ U}. Next, the task
with the overall minimum completion time from CT is selected
and assigned to the corresponding machine. Lastly, the newly
mapped task is removed from U, and the process repeats until
all tasks are mapped.

Comparative results: The experimental results for small
size problems with K equal to 1.5 and 1.0 are reported in Figs.
2 and 3. These figures show the ratio of the makespan
obtained from the two techniques and the optimal. The plots
clearly show that the NBS-PATA technique performs
extremely well and achieves a performance level of 10%-15%
of the optimal when K was set at a very tight bound 1.0.

For large problem instances, first, we compare the
makespan identified by the min-min and the NBS-PATA
technique. Since the min-min heuristic does not optimize
power consumption, we compared the min-min with a version
of NBS-PATA that ran on full power and also compared it
with the (original) version that optimized power. Figs. 4 and 5
show the relative performance of the techniques with various
values of K, Vtask, and Vmach. The results indicate that NBS-
PATA outperforms the min-min technique in identifying a
smaller makespan when power is not considered as an
optimization criteria. The performance of NBS-PATA is
notably superior to the min- min technique when the deadline
constraints are relatively loose. It can also be observed that
NBS-PATA, when considering power as an optimization
resource, identifies a task to machine mapping that produces a
makespan that is within 5%-10% of the min-min technique. It
was noticed that the relative performance of the min-min
technique was much better for large size problems, compared
with small size problems, because with the increase in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1951

Fig. 2 Makespan ratio of min-min and
NBS-PATA over optimal

 Fig. 3 Makespan ratio of min-min and
NBS-PATA over optimal

 Fig. 4 Makespan

Fig. 5 Makespan Fig. 6 Power consumption Fig. 7 Power consumption

TABLE II
AVERAGE EXECUTION TIME (SEC.) OF THE THREE TECHNIQUES

Problem size K = 1.5, m = 5 K = 1.0, m = 5
No. of tasks 20 20 20 20 20 20 25 30 35 40
Optimal 0.2732 0.2934 0.2934 0.2934 0.2934 0.2934 0.3470 0.4183 0.4938 0.5290
Min-Min 0.0032 0.0031 0.0031 0.0031 0.0031 0.0031 0.0042 0.0045 0.0052 0.0057
NBS-PATA 0.0673 0.0793 0.0793 0.0793 0.0793 0.0793 0.0872 0.0971 0.1004 0.1159

TABLE III

AVERAGE EXECUTION TIME (SEC.) OF THE THREE TECHNIQUES

Problem size K = 0.50, m = 16 K = 0.25, m = 16
No. of tasks 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Min-Min 0.1395 0.1470 0.1537 0.1682 0.1753 0.1534 0.2985 0.3408 0.4485 0.5230
NBS-PATA 5.8401 8.3245 4.8314 6.4984 8.7219 5.7817 6.4629 7.3901 8.0293 9.6038

size of the C matrix, the probability of obtaining larger values
of wis also increases. Moreover, the relative performance of
NBS-PATA was also much better for large size problems,
compared with small size problems, because the DVS levels
for the large problem size are twice more than the DVS levels
for the small problem size.

Next, we compare the power consumption of both the
techniques. Figs. 6 and 7 reveal that on average the NBS-
technique utilizes 60%-65% less power as compared to the
min-min technique. That is a significant amount of savings
considering that the makespan identified by NBS-PATA is
within 5%-10% of the makespan identified by the min-min
technique.

Lastly, we analyze the running time for both small and large
problem sizes. For completion, the running time of the optimal
for small problem size is also presented for comparisons. It

can be seen that when the number of tasks increase, the ratio
of running time of NBS-PATA to that of the min-min heuristic
decreases in the case of small problem size from 22 to 17 and
in the case of large problem size from 56 to 18. The results are
depicted in Tables II and III.

VI. CONCLUSIONS
This paper presented a power-aware resource allocation

strategy in computational grids for multiple tasks. The
problem was formulated as an extension of the Generalized
Assignment Problem. A solution from cooperative game
theory based on the concept of Nash Bargaining Solution
(NBS-PATA) was proposed for this problem. We proved
through rigorous mathematical proofs that the proposed NBS-
PATA can guarantee pareto-optimal solutions in mere O(n

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1952

mlog(m)) time (where n is the number of tasks and m is the
number of machines). The solution quality of the NBS-PATA
was experimentally compared against the optimal (for small
problems sizes) and the min-min heuristic (for large problem
sizes). The experimental results confirm superior performance
of the proposed scheme in terms of reduction in power
consumption, makespan compared to the min-min heuristic,
and comparative solution compared to the optimal.

We plan to study power-aware resource allocation problems
which fulfill application specific demands. We also plat to
investigate power-aware resource allocation techniques that
cater for dynamic environments and which allocate resource
on run-time. Moreover, modeling, measuring, and optimizing
the communication, the messages, and the energy costs offer
new challenges, especially in sensor networks, primarily
because the communication is carried out in an ad hoc
environment. We plan on extending our current study to
dynamic, real-time, and ad hoc environments.

REFERENCES
[1] T. Abdelzaher and V. Sharma, “A Synthetic Utilization Bound for

Aperiodic Tasks with Resource Requirements,” in Euromicro
Conference on Real Time Systems, 2003.

[2] T. Abdelzaher and C. Lu, “Schedulability Analysis and Utilization
Bounds for Highly Scalable Real-time Services,” in IEEE Real-Time
Technology and Applications Symposium, 2001.

[3] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen and S. Ali, “Task
Execution Time Modeling for Heterogeneous Computing Systems,” in
9th Heterogeneous Computing Workshop, May 2000, pp. 185-199.

[4] Application Specific and Automatic Power Management based on
Whole Program Analysis, available at:
http://cslab.snu.ac.kr/~egger/apm/final-report.pdf, 2004.

[5] H. Aydin, R. Melhem, D. Mosse and P. Mejya-Alvarez, “Dynamic and
Aggressive Scheduling Techniques for Power-aware Real-time
Systems,” in IEEE Real-Time Systems Symposium, Dec. 2001, pp. 95-
105.

[6] R. Bianchini and R. Rajamony, “Power and Energy Management for
Server Systems,” IEEE Computer, vol. 37, no. 11, pp. 68-74, 2004.

[7] S. J. Brams, Theory of Moves, Cambridge University Press, New York,
USA, 1994.

[8] T. D. Braun, S. Ali, H. J. Siegel and A. A. Maciejewski, “Using the Min-
Min Heuristic to Map tasks onto Heterogeneous High-performance
Computing Systems,” in 2nd Symposium of the Los Alamos Computer
Science Institute, Oct. 2001.

[9] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low Power
CMOS Digital Design, IEEE Journal of Solid-State Circuits, 27(4):473-
484, 1992.

[10] E. Chung, L. Benini, A. Bogliolo and G. Micheli, “Dynamic Power
Management for non-stationary service requests”, IEEE Transactions on
Computers, vol. 51, no. 11, pp. 1345-1361, 2002.

[11] E. N. Elnozahy, M. Kistler, R. Rajamony, “Energy-Efficient Server
Clusters,” in 2nd Workshop on Power-Aware Computing Systems, 2002.

[12] J. Greenberg, The Theory of Social Situations: An Alternative Game-
Theoretic Approach, Cambridge University Press, Cambridge, UK,
1990.

[13] S. Gurumurthi, A. Sivasubramaniam, M.J. Irwin, N. Vijaykrishnan, M.
Kandemir, T. Li and L.K. John, “Using Complete Machine Simulation
for Software Power Estimation: The SoftWatt Approach,” in
International Symposium on High Performance Computer Architecture,
2000, pp. 141-150.

[14] I. Hong, G. Qu, M. Potkonajak and M. B. Srivastava, “Synthesis
Techniques for Low-power Hard Real-time Systems on Variable Voltage
Processors,” in IEEE Real-time Systems Symposium, 1998, pp. 178-187.

[15] C. Hsu and U. Kremer, “The Design, Implementation, and Evaluation of
a Compiler Algorithm for CPU Energy Reduction,” in International

Conference on Programming Language Design and Implementation,
2003.

[16] C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method for
Energy Saving of Event-driven Computation,” in International
Conference on Computer-Aided Design, 1997, pp. 28-32.

[17] S. U. Khan and I. Ahmad, “A Powerful Direct Mechanism for Optimal
WWW Content Replication,” in 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2005.

[18] S.U. Khan and I. Ahmad, “Non-cooperative, Semi-cooperative, and
Cooperative Games-based Grid Resource Allocation,” in 20th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2006.

[19] B. Khargharia, S. Hariri, F. Szidarovszky, M. Houri, H. El-Rewini, S. U.
Khan, I. Ahmad, and M. S. Yousif, “Autonomic Power & Performance
Management for Large-Scale Data Centers,” NSF Next Generation
Software Program Workshop, in 21th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2007.

[20] D. G. Luenberger, Linear and Nonlinear Programming, Addison-
Wesley, 1984.

[21] C. Montet and D. Serra, Game Theory and Economics, Palgrave, 2003.
[22] J. Nash, “The Bargaining Problem,” Econometrica, vol. 18, pp. 155-162,

1950.
[23] J. Nash, “Non-Cooperative Games,” Annals of Mathematics, vol. 54, pp.

286-295, 1951.
[24] M. J. Osborne and A. Rubistein, A Course in Game Theory, MIT Press,

Massachusetts, U.S.A., 1994.
[25] C. H. Papadimitriou and M. Yannakakis, “On the Approximability of

Trade-offs and Optimal Access of Web Sources,” in 41st IEEE
Symposium on Foundations of Computer Science, 2000, pp. 86-92.

[26] E. Pinheiro, R. Bianchini, E. V. Carrera and T. Heath, “Load Balancing
and Unbalancing for Power and Performance in Cluster-Based Systems,”
in Workshop on Compilers and Operating Systems for Low Power, 2001.

[27] Q. Qiu and M. Pedram, “Dynamic Power Management Continuous-time
Markov Decision Processes,” in 36th Design Automation Conference,
1999, pp. 555-561.

[28] L. Schrage, Linear, Integer, and Quadratic Programming with LINDO,
The Scientific Press, USA, 1986.

[29] T. Simunic, “Dynamic Management of Power Consumption”, in Power
Aware Computing, pp. 101-125, 2002.

[30] M. Srivastava, A. Chandrakasan and R. Brodersen, “Predictive System
Shutdown and other Architectural Techniques for Energy Efficient
Programmable Computation,” IEEE Transactions on VLSI Systems, vol.
4, pp. 42-55, 1996.

[31] A. Stefanescu and M. W. Stefanescu, “The Arbitrated Solution for
Multiobjective Convex Programming,” Rev. Roum. Math. Pure
Applicat., vol. 29, pp. 593-598, 1984.

[32] T. E. Truman, T. Pering, R. Doering and R. W. Brodersen, “The InfoPad
Multimedia Terminal: A Portable Device for Wireless Information
Access,” IEEE Trans. Computers, 47(10):1073-1087, 1998.

[33] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior, 3ed, Princeton University Press, 1953.

[34] M. Weiser, B. Welch, A. J. Demers and S. Shenker, “Scheduling for
reduced CPU Energy,” in Symposium on Operating Systems Design and
Implementation, Nov. 1994, pp. 13-23.

[35] H. Yaiche, R. R. Mazumdar and C. Rosenberg, “A Game Theoretic
Framework for Bandwidth Allocation and Pricing in Broadband
Networks,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp.
667-678, 2000.

[36] Y. Yu and V. K. Prasanna, “Power-Aware Resource Allocation for
Independent Tasks in Heterogeneous Real-Time Systems,” in 9th IEEE
International Conference on Parallel and Distributed Systems, 2002.

