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Abstract—In the present research, a finite element model is 

presented to study the geometrical and material nonlinear behavior of 
reinforced concrete plane frames considering soil-structure 
interaction. The nonlinear behaviors of concrete and reinforcing steel 
are considered both in compression and tension up to failure. The 
model takes account also for the number, diameter, and distribution 
of rebar along every cross section. Soil behavior is taken into 
consideration using four different models; namely: linear-, nonlinear 
Winkler's model, and linear-, nonlinear continuum model. A 
computer program (NARC) is specially developed in order to 
perform the analysis. The results achieved by the present model show 
good agreement with both theoretical and experimental published 
literature. The nonlinear behavior of a rectangular frame resting on 
soft soil up to failure using the proposed model is introduced for 
demonstration. 
 

Keywords—Nonlinear analysis, Geometric nonlinearity, Material 
nonlinearity, Reinforced concrete, Finite element method, Soil-
structure interaction, Winkler's soil model, Continuum soil model 

I. INTRODUCTION 

EOMETRICAL and material nonlinear analysis is 
considered one of the most important design and safety 

tools in structural engineering. In the classical analysis 
methods of plane framed structures, the axial and flexural 
rigidities are assumed to be constants, and the supports are 
considered to be perfect. However, such ideal conditions are 
unrealistic because the material behavior is actually nonlinear 
and perfect supports do not exist in reality. The axial and 
flexural rigidities certainly decrease with the increasing 
internal forces. The structure geometry is continuously 
changing with the varying applied forces too. Moreover, the 
column footings are mostly resting on deformable soil. 
Therefore, developing a step-by-step nonlinear analysis 
method to investigate such real situations up to failure is 
essential. 

Many authors studied the monotonic behavior of reinforced 
concrete structures having different cross-sectional shapes and 
subjected to biaxial bending and axial forces. Dunder [1] 
studied the monotonic behavior of reinforced concrete 
members with perfect supports; assuming a symmetric 
distribution of steel reinforcement over the rectangular cross 
section.  
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Kwat and Filippou [2] studied the nonlinear characteristics 

of reinforced concrete structures provided with perfect 
supports under monotonic loads.  

Concrete and reinforcing steel bars were represented by 
separate material models. Anam and Shoma [3] and Ibrahim 
and Zubydan [4] studied the structural behavior of perfectly 
supported reinforced concrete frames taking both the 
geometrical and material nonlinear effect into account. 

Other authors studied the structural behavior of frames 
considering soil structure interaction. Hassan [5] studied the 
elastic stability of uncracked and cracked plane frames resting 
on elastic soil. Based on a nonlinear material model, Jahromi 
et-al [6] studied the soil structure interaction of steel frames 
with elastic reinforced concrete footings resting on elastic soil. 

In this research a new finite element model is presented to 
analyze the nonlinear behavior of plane reinforced concrete 
frames. Variations of axial and flexural rigidities along the 
frame members are investigated. The effects of material and 
geometrical nonlinearity are considered. Moreover, the soil-
structure interaction is considered via four different soil 
models. The proposed model is able to predict the normal 
stress distribution over the cross-section, straining actions, 
crack depth, residual rigidities along the members, structure 
deformed shape, and the settlement. Real stress-strain curves 
of concrete and reinforcing steel are considered in the analysis. 

II. FINITE ELEMENT MODEL OF REINFORCED CONCRETE 

SUPERSTRUCTURES 

A. Material modeling 

The nonlinear stress-strain behaviors of concrete and 
reinforcing steel were investigated earlier by many researchers 
[2, 3, 4, 7, 8, and 9]. The material models adopted in the 
present work, are discussed in this section. 

1. Concrete in compression 

Fig. 1 shows the stress-strain relationship of concrete in 
compression as given by Ibrahim and Zubydan [4]. For 
unconfined sections (without stirrups), the relation is modeled 
by a parabolic curve up to the maximum strength (σco) 
followed by a descending linear response till failure. For 
confined sections (with stirrups), a similar model is considered 
as shown in the figure. It should be noticed that the crushing 
strain of a confined section (εm) is much higher than that of an 
unconfined section (εuc). 
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Fig. 1 Stress-strain relationship of concrete in compression 

2. Concrete in tension 

 The stress-strain relationship of concrete in tension is 
illustrated in Fig. 2, [8 and 9]. It can be clearly observed that 
the tensile strength of concrete increases linearly with 
increasing strain up to cracking. At cracking strain (εcr), a 
small subsequent drop in tensile strength occurs. The tensile 
strength then decreases monotonically with increasing strain 
up to failure. 
 

 
Fig. 2 Stress-strain relationship of concrete in tension 

3. Reinforcing steel 

Fig. 3 shows a typical stress-strain relationship of steel in 
tension and compression. The behavior is almost linear-elastic 
up to the yield strength. The strain increases up to the 
hardening point without increasing in stress. After that, the 
stress increases again with strain forming a strain-hardening 
region up to the ultimate strength, [4 and 8]. 
 

 
Fig. 3 Stress-strain relationship of reinforcing steel 

4. Analysis of reinforced concrete sections 

The proposed nonlinear model of reinforced concrete 
sections subjected to axial force and bending is developed in 
this section.  

The following assumptions are adopted in order to simplify 
the analysis: 

- Strain distribution is assumed to be linear along the 
section while the stress distribution is nonlinear. 

- The bond between concrete and reinforcing steel is 
assumed to be perfect. 

- Deformations due to shear and torsion are neglected. 
 
The forces acting on a reinforced concrete section are 

resisted by the stresses both in concrete and reinforcement. 
Fig. 4 shows a reinforced concrete section subjected to an 
axial force (N) and a bending moment (M) with the 
corresponding strain and stress distributions. For any cross-
section, the longitudinal normal stresses in both the concrete 
and reinforcing steel should be in equilibrium with the stresses 
due to N and M. Therefore, the following two conditions of 
equilibrium must be satisfied: 
 

NFF sc =Σ+Σ  (1) 

nsc eNMMM .+=Σ+Σ  (2) 

 
Where, 

ΣFc, ΣFs = summation of forces due to stress distribution 
in concrete and steel, respectively, 
ΣMc, ΣMs = summation of moments due to stress 
distribution in concrete and steel, respectively, 
en = Location of neutral axis measured from centroidal 
axis. 

 
Fig. 4 Strain and stress distributions on a reinforced concrete section 

subjected to axial force and bending moment 
 

The solution of this couple of nonlinear equations should be 
carried out using a finite element technique. In this case, the 
cross-section is divided into a number of equal concrete strips 
as shown in Fig 5. The strains for each strip are functions of 
the cross section curvature (φ) and the neutral axis location 
(en), while the stresses, in turn, are functions of the strains. The 
normal stress distribution on each concrete strip is numerically 
integrated in order to obtain the force and moment acting on 
that strip. The sum the forces (and moments) for all strips and 
rebar gives the total reinforced concrete section normal force 
(and moment), respectively.  
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Fig. 5 Finite element technique for concrete section 

 
It is clear that the problem is basically dependent on two 

related unknowns; namely: the neutral axis position (en), and 
the curvature of cross-section (φ). Therefore, the problem is 
solved iteratively using the modified Newton-Raphson 
iteration method [10]. 

B. Force-displacement relationship 

If a structure is in the state of stable equilibrium and the 
small displacement theory is valid, then there is a relationship 
between the deformations of the structure and the applied load 
system. For the plane frame element shown in Fig. 6, the load-
displacement relationship can be expressed by: 
 

iiiT dFdk }{}{][ =× δ  (3) 

 
Where, 

[kT] i = tangential stiffness matrix for the ith element, 
{ dδ} i = displacements vector for the i th element, 
{ dF} i = force vector for the i th element, 

 
The tangential stiffness matrix [kT] is composed of two 

components and can be written as: 
 

igimiT kkk ][][][ +=  (4) 

 
Where, 

[km] i and [kg] i = material and geometrical stiffness matrix 
for the i th element, respectively, 

 
Fig. 6 End forces and displacements of a plane frame element 

The geometric stiffness matrix [kG] for frame element is 
given by: 
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Where, 

± P = tensile or compressive axial force, 
L = length of frame element. 

 
It is clearly observed that the geometrical stiffness matrix 

[kg] depends on the axial force P. It expresses the decrease in 
the flexure stiffness due to the presence of a compressive axial 
force. The negative sign corresponds to a compressive axial 
force, and vice versa. 

Equation (3) is formed in an incremental form since the use 
of the geometric matrix to capture the second-order effects 
requires a stepwise application of the applied loads. This 
matrix should be updated, at every load step, based on the 
resulting axial forces in the frame elements, [4, 11, and 12]. 

III.  SOIL MODELING 

In fact, the soil layers move down under vertical 
compressive loading. In this work, 4 different soil models are 
considered to investigate the soil-structure interaction. These 
models are linear-, nonlinear Winkler's soil models, and 
linear-, nonlinear continuum soil models. 

A. Linear Winkler's soil model 

This model assumes that the soil model is represented by an 
infinite number of elastic springs. The settlement (S(i)) of the 
soil at any point (i) on the surface is directly proportional to 
the soil pressure at this point (q(i)) as shown in Fig. 7. For an 
element at the i th location the contact pressure is given by: 

)()()( iisi SKq ×=  (6) 

Where, 
Ks(i)= modulus of subgrade reaction at point i. 

 
Fig. 7 Surface displacement of the Winkler's model 
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B. Nonlinear Winkler's model 

In the previous model the contact pressure-settlement 
relationship is linear as shown in Fig. 8. In fact, this 
relationship is nonlinear. Referring to Fig. 7, the nonlinear 
contact pressure (qn(i)) at the i th location is given by the 
following hyperbolic function: 
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Where, 

qu= geometrical parameters. 
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Fig. 8 Contact pressure-settlement relationship for linear and 

nonlinear Winkler's model 

C. Continuum soil model 

In fact, the surface settlement of soil media that possess a 
slight amount of cohesion will occur not only under loaded 
region, but also within certain limited zones outside the loaded 
region as shown in Fig. 9. This phenomenon restricts the 
applicability of Winkler's model. In order to account for this 
continuous behavior, soil media is often idealized as 
continuum model. Analysis of foundation using continuum soil 
model requires obtaining the modules of elasticity of the soil 
(Es), [13]. 
 

 
(a) A concentrated load (Q). (b) A uniform load (q) of area 

(2a × 2b). 
Fig. 9 Typical stress distribution of soil for continuum model 

 

Referring to Fig. 10, the vertical stress (σz(i)) and settlement 
(S(i)) at the i th location in a specific layer due to a concentrated 
load (Q)  is given by: 
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Fig. 10 Vertical stress distribution due to concentrated load using 

continuum model 
 

For uniform load (q) of area (2a × 2b) as shown in Fig. 11, 

the vertical stress ( •
)(izσ ) due to quarter of load area under the 

corner of load (a × b) is given by: 
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Therefore, the vertical stress (σz(i)) and settlement (S(i)) due 
to a uniform load (q) of area (2a × 2b) under the center of load 
is given by: 
 

•×= )()( 4 iziz σσ  (11) 
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Fig. 11 Vertical stress distribution due to uniform load using 

continuum model 

D. Relationship between Winkler's and continuum soil 
models  

Equation (13) gives the relation between modulus of 
subgrade reaction (Ks) and modules of elasticity of the soil 
(Es), [14]. 

IB

E
K s

s ×
=  (13) 

Where, 
B= minimum dimension of foundation (m), 
I= effect coefficient depend on (d/B, L/B) ratios 

[according to Fig. 12], 
d= depth of foundation layers exposed to compression 

(m), 
L= maximum dimension of foundation (m). 

IV. VERIFICATION OF THE MODEL 

A computer program called NARC (Nonlinear Analysis of 
Reinforced Concrete structures) is especially developed in 
order to carry out the analysis and to achieve the research 
goals. The program involves all above-mentioned constitutive 
models, formulations, and solution procedures. Structural 
failure of frames is assumed to occur when the stress in rebar 
reaches the ultimate limit. The program is capable to predict 
and plot the normal stress distribution along any cross-section, 
internal forces, deformed shapes (displacements), soil 
settlement, and axial- and flexural rigidity distributions on all 
members of the frame. The results of the proposed model are 
verified against theoretical and experimental data acquired 
from literature. Moreover, several study cases of R.C.  
structures subjected to general loading were analyzed 
nonlinearly up till collapse for demonstration.  
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Fig. 12 Effect coefficient (I) versus (d/B & L/B), [14] 

A. Comparison with experimental and theoretical beam test 

The RC beam (VC3) detailed in Fig. 13 was tested earlier, 
experimentally by Juvandes [15], and theoretically by 
Stramandinoli and Rovere [9].  The beam is subjected to a 
twin concentrated loads as indicated. The predicted load- 
deflection response achieved by present model (NARC) is 
compared in Fig. 14, with the previously published 
experimental and theoretical results. A fairly good agreement 
is can be noticed, from the first loading stage up till 90% of the 
ultimate load. Theoretical predictions of NARC were accurate 
within 7% for the ultimate load, and within 9% for the 
maximum deflection just before failure.  

B. Single-bay two-story frame test 

Fig. 15 shows a full-scale single-bay two-story frame, which 
was tested by Vecchio and Emara [16]. The frame was 
designed with a span of 3.5m and a story height of 2.0 m. The 
frame was built integrally with a large and heavy reinforced 
concrete base. 

 
Fig. 13 Details of tested beam (VC3) tested by Juvandes [15] 
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Fig. 14 Comparison between numerical and experimental results for 

VC3 beam tested by Juvandes [15] 
 

All members of the frame were similarly reinforced with 
four (φ19.5mm) deformed bars as top and bottom 
reinforcement, and φ11.3mm closed stirrups at 125mm spacing 
as shear reinforcement. Placement of the reinforcement was 
such as to provide a clear cover of 30mm for the girders, and 
20mm for the columns. Sections details and structure 
dimensions are also given in Fig. 15. 

The concrete had a compressive strength (σco) of 30MPa. 
The φ19.5mm reinforcing steel bars, used as longitudinal 
reinforcement in all members were found to have a yield 
strength of 418MPa, an ultimate strength of 596MPa, a 
modulus of elasticity of 192,500MPa, and a strain-hardening 
modulus of 3,100MPa. For φ11.3mm bars used for shear 
reinforcement, the material properties had a yield strength of 
454MPa and an ultimate strength of 640MPa. The frame was 
tested by applying a total axial load of 700kN to each column. 
Then, lateral load was applied monotonically until the ultimate 
capacity of the frame was achieved. 

Fig. 16 shows comparisons between the predicted load-
deflection responses for the first and top stories using (NARC) 
and the experimental results, [16]. It can be clearly observed 
that the analytical and experimental results are generally in a 
good agreement from the start up till 85% of the experimental 
ultimate load. The NARC prediction for ultimate load was 
found to be 15% higher, while the corresponding NARC 
deflections found to agree with the measured experimental 
deflections within 5% difference. This means that the proposed 
model NARC could reasonably predict the actual response of 
the test frame with acceptable discrepancy. 

 

 
Fig. 15 Details of test single-bay two-story frame tested by Vecchio 

and Emara [16] 
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Fig. 16 A comparison between experimental results [16] and NARC 

results for a single-bay two-story frame 
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V. NONLINEAR ANALYSIS OF FRAMED STRUCTURES 

CONSIDERING SOIL-STRUCTURE INTERACTION 

The efficiency of the developed computer code (NARC) for 
geometrical and material nonlinear analysis of RC frames 
considering soil-structure interaction, is studied in this section. 
The study case is given in Fig. 17. The shown 8m-wide, 4m-
high rectangular frame was designed according to (ECCS 203-
2001) code. The frame is founded by a 10m-long, 1m-wide 
strip footing. Details of cross sections and material properties 
for concrete and rebar are shown also in Fig. 17. The study 
case was analyzed several times assuming perfect support 
conditions at column bases, and by assuming real soil 
conditions under the footings too. 4-different soil models were 
considered; namely: linear-, nonlinear Winkler's model, and 
linear-, nonlinear continuum model. Table I lists the material 
parameters used in the analysis for both clay and sand soils.  
All study cases are summarized in Table II. 
 

TABLE I 
RELATIONSHIP BETWEEN WINKLER'S AND CONTINUUM MODELS 

Soil profile Clay soil Sand soil 
Es (kN/m2) 5000.0 50000.0 
B (m) 1.0 1.0 
d (m) 20.0 20.0 
L (m) 10.0 10.0 
I 1.8926 1.8926 
Ks (kN/m3) 2641.9 26418.7 

 
TABLE II 

STUDY CASES FOR FRAMES (SUPPORTS AND SOIL CONDITIONS) 

Perfect 
support 

Soil support 
Clay soil Sand soil 

1. Hinged 
support 

3. L. Winkler's model (Ks= 
2641.9kN/m3). 

4. L. Winkler's model (Ks= 
26418.7kN/m3). 

2. Fixed 
support 

5. NL. Winkler's model (Ks= 
2641.9kN/m3). 

6. NL. Winkler's model (Ks= 
26418.7kN/m3). 

 7. L. Continuum model (Es= 
5000kN/m2). 

8. L. Continuum model (Es= 
50000N/m2). 

 9. NL. Continuum model 
(Es= 5000kN/m2). 

10. NL. Continuum model 
(Es= 50000N/m2). 

For the finite element discretization, all structural elements 
(the columns, girder, and foundation) were discretized into 
equal elements 0.5 m each. Externally applied load (w) was 
gradually increased up till failure (structural mechanism). 
Figure 18 shows the deformed shape of the frame at the 
ultimate load (wu) as plotted by NARC for the 10-different 
analysis cases listed in Table II.  

Figure 19 shows a histogram that describes the effect of 
base conditions on the ultimate capacity of RC frames. It can 
easily be noticed that the frame ultimate capacity is sensitive to 
soil type as well as the soil model; on which the analysis is 
based. Ultimate capacities of frames resting on clay are 
relatively lower, if compared with frames resting on sandy 
soils. Moreover, linear soil models give higher predictions for 
the ultimate loads, when compared with nonlinear models. All 
NARC results for soil-structure interaction models are 
bounded by the two idealized (hinged and fixed) solutions. 

Figure 20 depicts a snap shot of the graphical output of 
NARC for the distribution of normal stresses and strains along 
a RC section.  

The given plot shows the stress distribution on RC section 
located at the upper end of the right column for study case No. 
4 (sand soil with L. Winkler model) at load (w = 122kN/m) just 
before the formation of plastic hinge. It is clear that the 
maximum compressive stress in concrete reached 40.8MPa 
while the tensile stress in rebar was 555.2MPa. The crack 
depth in this case was about 70% of the total depth of RC 
section. These results indicate that the considered RC section 
reached its ultimate capacity. 

 

 

 
Section properties 

Stirrup  
• φst = 10mm (for column & girder). 

• φst = 12mm (for foundation). 

• No. of branches = 2. 

• Stirrup spacing = 150mm. 

• Yield strength = 360MPa. 

Reinforced steel 
• Yield strength = 400MPa. 

• Ultimate strength = 600MPa. 

• Young's modulus = 200,000MPa. 

• Ultimate strain = 0.04. 

Concrete 
• Max. compressive strength = 40MPa. 

• Max. tensile strength = 3.35MPa. 

Fig. 17 Dimensions and details of rectangular frame 
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1. Hinged support (wu= 100kN/m) 

(Beam mechanism-Girder) 
 

 
2. Fixed support (wu= 140kN/m) 

(Beam mechanism-Girder) 
 

 
3. Clay (L. Winkler) (wu= 110kN/m) 

(Beam mechanism-Foundation) 
 

 
4. Sand (L. Winkler) (wu= 140kN/m) 

(Beam mechanism-Girder) 
 

 
5. Clay (NL. Winkler) (wu= 105kN/m) 

(Beam mechanism-Foundation) 
 

 

 
6. Sand (NL. Winkler) (wu= 136kN/m) 

(Combined mechanism) 
 

 
7. Clay (L. continuum) (wu= 120kN/m) 

(Beam mechanism-Foundation) 
 

 
8. Sand (L. continuum) (wu= 140kN/m) 

(Beam mechanism-Girder) 
 

 
9. Clay (NL. continuum) (wu= 118kN/m) 

(Beam mechanism-Foundation) 
 

 
10. Sand (NL. continuum) (wu= 130kN/m) 

(Beam mechanism-Girder) 

Fig. 18 Deformed shape of the frame at ultimate load (wu) for 10-study cases listed in table II 
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Fig. 19 Ultimate load (wu) for different cases of soil model 

 

 
Fig. 20 Normal stress distribution on the cross section located at the 
upper end of the right column for study case No. 4 (sand soil with L. 

Winkler model) at load w = 122kN/m 

Figures 21 through 24 show the comparisons between load-
deflection curves obtained throughout soil structure interaction 
analyses carried out by NARC for the 4-soil models proposed 
in this work. In these figures, the abscissa shows the increase 
of frame drift at the left corner [mm], whereas the coordinate 
shows the increase in applied vertical load [kN/m]. The linear 
and nonlinear soil structure interaction response curves for 
every soil model are plotted, together with the response curves 
for the idealized hinged-hinged and fixed-fixed frames, for the 
sake of comparison. It is clear that the drift increases linearly 
with increasing loads up till cracking of the RC section located 
at the upper end of the right column. For further loading, the 
frame exhibits nonlinear strain hardening response up till the 
ultimate load level, which is encountered when the rebar fails 
at the same section. The results show that the response of 
frames resting on clayey soils is closer to that of a hinged-
hinged frame. On the other hand, the behavior of frames 
founded by sandy soils is closer to that of a fixed-fixed frame. 
Predictions of the drift are generally higher for nonlinear soil 
models, except for sandy soils modeled by continuum model. 
For frames resting on clayey soils, the ultimate load 
predictions obtained by the continuum model are about 10% 
higher, if compared with Winkler's model predictions. 
However, the ultimate load predictions for frames resting on 
sandy soils are slightly sensitive the type of soil model 
considered in the analysis.  

Variations of the bending moments at midspan of strip 
footing (M1) and at the right column-base (M3) with the 
applied load (w) are shown in Figs. 25 and 26. The abscissa in 
these figures shows the changes in bending moments [kNm], 
and the coordinate shows the increase in applied vertical load 
[kN/m]. Every figure shows 4-distinct curves for sand 
following the 4-considered soil models, besides 4-additional 
curves for clay. It is obvious from Fig. 25 that the bending 
moments (M1) at midspan of strip footing are much greater for 
clay if compared with sand, at the same load level. However, 
the situation is different for the moment (M3) at the right 
column-base as shown in Fig. 26. In this latter case, bending 
moments are smaller for clay if compared with sand, at the 
same load level. Figure 25 also shows that, the nonlinear 
results for bending moment (M1) at midspan are bigger than 
the linear results, when the same category of soil model is 
considered. Moreover, bending moments (M1) resulting from 
Winker’s models are higher than those of the continuum model 
at the same load level. 

These results of bending moments can be understood in 
context with the settlement behavior the frame as shown in 
Figs. 27 and 28. In these figures, the variations of settlements 
at midspan of strip footing (δ1) and at the right column-base 
(δ3) with the applied load (w) are shown. It should be 
emphasized here that the abscissa in Figs. 27 and 28 shows the 
increase in applied vertical load [kN/m], whereas the 
coordinate shows the settlement [mm]. Every figure shows 4-
separate settlement curves for sand gathered from the 4-
different soil models, besides 4-additional curves for clay. It is 
clear from these figures that the settlement is much bigger for 
clay if compared with sand, at the same load level.  
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Fig. 21 Load versus drift for linear Winkler's model 
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Fig. 22 Load versus drift for nonlinear Winkler's model 
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Fig. 23 Load versus drift for linear continuum model 
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Fig. 24 Load versus drift for nonlinear continuum model 
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Fig. 25 Load versus bending moment at midspan of strip footing 
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Fig. 26 Load versus bending moment at bottom section of right column. 
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Fig. 27 Load versus settlement at midspan of strip footing 
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Fig. 28 Load versus settlement at bottom section of right column 
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On this basis, the resulting differential settlement and 
curvature of the strip footing are much more considerable for 
clay soils. Accordingly, the resulting bending moments in the 
footing supported by clay are greater. 

From Figs. 27 and 28, it can be noticed that Winkler's 
settlement predictions at midspan of strip footing are smaller 
than those of the continuum model. The contrary is true at 
column base; as the Winkler's settlement predictions therein 
are bigger. Therefore, the resulting differential settlement, and 
hence the bending moments, in the footing are bigger for 
Winkler's model, if compared with continuum model.  

One of the most interesting options available in NARC, is 
its capability to display and plot the distribution of residual 
flexural rigidity for the entire frame at any loading stage. 
Moreover, the corresponding distributions of strains and 
stresses for both concrete and rebar at any cross section can be 
also displayed, as shown in Figs. 29 and 30. 

The Winkler's predictions for bending moments in the strip 
footing are bigger than the continuum model predictions, as 
stated earlier. Consequently, deterioration of flexural rigidities 
of footing sections in a specific region as predicted by 
Winkler’s model happens earlier, if compared with continuum 
model. This can easily be noticed from Figs. 29 and 30 that 
illustrate the distribution of residual flexural rigidity for the 
entire frame as predicted by both models. Careful investigation 
of both figures shows that both distributions of residual 
rigidity along the frame members are almost identical. 
However, the loads causing the deterioration in both cases are 
quite different. For the distribution of residual flexural rigidity 
shown in Fig. 29, which was predicted via Winkler’s model, 
the applied load was 70 kN/m. On the other hand, the results 
shown in Fig. 30, were achieved by the continuum model when 
the load reached 110 kN/m (about 57% higher than the load 
applied with Winkler’s model). 

 

 

 
              Cross section                Strain    Stress of concrete   Stress of steel 

Fig. 29 Residual flexural rigidity at w = 70kN/m and normal stress 
distribution for foundation cracked section (L. Winkler) 

 

 

 
              Cross section                Strain    Stress of concrete   Stress of steel 
Fig. 30 Residual flexural rigidity at w = 110kN/m and normal stress 

distribution for foundation cracked section (L. cont.) 

VI. CONCLUSIONS 

A nonlinear finite element model, in the form of a computer 
program, was presented for the soil-structure interaction 
analysis of plane framed structures up to failure. The material 
and geometrical nonlinearities for both concrete and rebar are 
taken into account. 4-different models are available in the 
program to consider the soil behavior based on Winkler’s and 
continuum formulations. The program is capable to list the full 
details of the soil-structure nonlinear analysis. It can also 
display and plot the frame deformations, soil settlement, 
internal forces, strain, and stress distributions along the RC 
cross sections, in addition to the distribution of axial as well as 
flexural residual rigidities for all members. The present 
analysis procedure and the program were validated by 
comparing the results with previous theoretical and 
experimental tests. An application of the proposed model on a 
rectangular RC frame subjected to vertical and lateral loads, 
with different soil conditions was also introduced for 
demonstration. Analysis results confirmed the expected 
structural behavior of the frame up to failure, which is 
governed by the details of RC sections, material properties, as 
well as the type of soil. The frame drift increases linearly with 
increasing loads up till cracking of RC sections, then the frame 
exhibits nonlinear strain hardening response up till the ultimate 
strength, which is encountered when the rebar fails. 
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