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Anti-periodic solutions for Cohen-Grossberg
shunting inhibitory neural networks with delays

Yongkun Li, Tianwei Zhang and Shufa Bai

Abstract—By using the method of coincidence degree theory and
constructing suitable Lyapunov functional, several sufficient condi-
tions are established for the existence and global exponential stability
of anti-periodic solutions for Cohen-Grossberg shunting inhibitory
neural networks with delays. An example is given to illustrate our
feasible results.

Keywords—Anti-periodic solution; Coincidence degree; Global
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I. INTRODUCTION

IN recent years, the Cohen-Grossberg neural networks [1]
have been extensively studied because of their immense

potential of application perspective in different areas such as
pattern recognition, optimization, signal and image processing.
Hence, they have been the object of intensive analysis by
numerous authors and some good results on the existence and
exponential stability of periodic solutions for Cohen-Grossberg
neural networks with delays or with delays impulses have been
obtained [2-11].

On the other hand, shunting inhibitory cellular neural net-
works (SICNNs) have many applications in psychophysics,
speech, perception, robotics, adaptive pattern recognition, vi-
sion, and image processing. Since all these applications closely
relate to their dynamics, the dynamical behaviors of SICNNs
with delays have been widely investigated (see e.g. [12-
15]). Many important results on the dynamics behaviors of
SICNNs have been established and successfully applied to
signal processing, pattern recognition, associative memories,
and so on.

In this paper, we are concerned with the following Cohen-
Grossberg shunting inhibitory cellular neural networks with
delays:

u′ij(t) = −aij(uij(t))
{
bij(t, uij(t))

+
∑

ckl∈Nr(i,j)

Ckl
ij (t)fij(t, ukl(t− τkl(t)))

×uij(t)− Iij(t)
}
, (1)

Yongkun Li is with the Department of Mathematics, Yunnan University,
Kunming, Yunnan 650091, People’s Republic of China.
E-mail: yklie@ynu.edu.cn.

Tianwei Zhang is with the Department of Mathematics, Yunnan University,
Kunming, Yunnan 650091, People’s Republic of China.

Shufa Bai is with the Department of Mathematics, Yunnan University,
Kunming, Yunnan 650091, People’s Republic of China.

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, Cij denotes the cell at
the (i, j) position of the lattice, the r-neighborhood Nr(i, j)
of Cij is given by

Nr(i, j) =
{
Cij : max(

∣∣k − i∣∣, ∣∣l − j∣∣) ≤ r,
1 ≤ k ≤ m, 1 ≤ l ≤ n

}
,

uij acts as the activity of the cell Cij , Lij(t) is the external
input to Cij , aij(uij(t)) and bij(t, uij(t)) represent an amplifi-
cation function at time t and an appropriately behaved function
at time t, respectively, Ckl

ij (t) > 0 is the connection or coupling
strength of postsynaptic activity of the cell transmitted to the
cell Cij , and the activity function fij(t, xkl) is a continuous
function representing the output or firing rate of the cell Ckl,
Ckl are periodic functions with period ω

2 , τkl are periodic
functions with period ω

2 , ω is a positive constant.
Let u = (u11, u12, . . . , u1m,. . . , un1, . . . , unm)T be a col-

umn vector. The initial conditions of (1) is of the form

uij(s) = φij(s), s ∈ [−τ, 0], τ = max
(i,j)
{ sup

t∈[0,ω]

|τij(t)|},

where φij(s), i = 1, 2, . . . , n, j = 1, 2, . . . ,m, are continuous
ω
2 -anti-periodic solutions.

Arising from problems in applied sciences, the existence
of anti-periodic solutions plays a key role in characterizing
the behavior of nonlinear differential equations (see [16-20]).
Since SICNNs can be analog voltage transmission which is
often an anti-periodic process, it is worth continuing the inves-
tigation of the existence and stability of anti-periodic solutions
of SICNNs. To the best of the authors’ knowledge, this is
the first paper to study the existence and global exponential
stability of the anti-periodic solution of system (1).

The rest of this paper is organized as follows. In Section
2, we obtain system (2) which is equivalent to system (1).
After that, we shall introduce some notations and definitions
and state some preliminary results needed in later sections.
In Section 3, by using the method of coincidence degree, we
obtain the existence of the anti-periodic solutions of system
(2). In Section 4, we give the criteria of global exponential
stability of the anti-periodic solutions of system (2). In Section
5, an example is also provided to illustrate the effectiveness
of the main results in Sections 3 and 4. The conclusions are
drawn in Section 6.

Throughout this paper, we assume that
(H1) Ckl

ij (t + ω
2 ) = Ckl

ij (t), τij(t + ω
2 ) = τij(t), Iij(t +

ω
2 ) = −Iij(t), i = 1, 2, . . . , n, j = 1, 2, . . . ,m;
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(H2) aij(u) are even continuous functions, i.e. aij(u) =
aij(−u), and there exist positive constants aij and
aij such that 0 < aij ≤ aij(t) ≤ aij , u ∈ R, i =
1, 2, . . . , n, j = 1, 2, . . . ,m;

(H3) bij(t, u) ∈ C(R2, R), bij(t + ω
2 ,−u) = −bij(t, u).

There is a positive constant μij such that ∂bij(t,u)
∂u ≥

μij , u ∈ R, bij(t, 0) = 0, i = 1, 2, . . . , n, j =
1, 2, . . . ,m;

(H4) fij(t, u) ∈ C(R2, R), fij(t + ω
2 ,−u) = fij(t, u)

and there are ω-periodic functions γij(t) such that
γij(t) = supu∈R |fij(t, u)|, i = 1, 2, . . . , n, j =
1, 2, . . . ,m;

(H5) there are positive ω-periodic solutions βij(t) such
that |fij(t, u)−fij(t, v)| ≤ βij(t)|u−v| for all u, v ∈
R, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

II. PRELIMINARIES

In this section, we shall first recall some basic definitions,
lemmas which are used in what follows.

From (H2), the antiderivative 1/aij(uij) exists. We choose
an antiderivative hij(uij) of 1/aij(uij) that satisfies hij(0) =
0. Obviously, (d/duij)hij(uij) = 1/aij(uij). By aij(uij) >
0, we obtain that hij(uij) is strictly monotone increasing
about uij . In view of derivative theorem for inverse function,
the inverse function h−1

ij (uij) of hij(uij) is differential and
(d/duij)h−1

ij (uij) = aij(h−1
ij (uij)). By (H3), composition

function bij(t, h−1
ij (z)) is differentiable. Denote xij(t) =

hij(uij(t)). It is easy to see that x′ij(t) = u′ij(t)/aij(uij(t))
and uij(t) = h−1

ij (xij(t)). Substituting these equalities into
system (1), we get

x′ij(t) = −bij(t, h−1
ij (xij(t)))

−
∑

ckl∈Nr(i,j)

Ckl
ij (t)fij(t, h−1

kl (xkl(t− τkl(t))))

×h−1
ij (xij(t)) + Iij(t),

i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

which can be rewritten as

x′ij(t) = −dij(t, xij(t))xij(t)

−
∑

ckl∈Nr(i,j)

Ckl
ij (t)fij(t, h−1

kl (xkl(t− τkl(t))))

×h−1
ij (xij(t)) + Iij(t), (2)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m, dij(t, xij(t)) �
∂bij(t, h−1

ij (z))/∂z|z=ξij
, ∂bij(t, h−1

ij (z))/∂z|z=ξij
denotes

the partial derivative of bij(t, h−1
ij (z)) at point z = ξij , z ∈ R,

ξij is between 0 and xij(t).
By (H2), (H3) and the definition of hij(xij), we obtain

bij(t, h−1
ij (t)) is strictly monotone in creasing about xij .

Hence, dij(t, xij(t)) is unique for any xij(t) and continuous
about xij(t). Moreover, dij(t, xij(t)) ≥ aijμij .

From the definition of h−1
ij (u), use the Lagrange mean-value

theorem, one gets

|h−1
ij (x)− h−1

ij (y)| = |(h−1
ij )′(ξ)(x− y)| ≤ aij |x− y|

for all x, y ∈ R, where ξ is between x and y, i = 1, 2, . . . , n,
j = 1, 2, . . . ,m.

Let x(t) = (x11(t), . . . , x1m(t), . . . ,xn1(t),. . . ,xnm(t))T ∈
C(R,Rnm). The initial conditions associated with system (2)
are of the form

xij(s) = hij(φij(s)) = ϕij(s), s ∈ [−τ, 0],

where ϕij(t), i = 1, 2, . . . , n, j = 1, 2, . . . ,m are continuous
functions on [0, ω].

Definition 1. Let x∗ be an ω
2 -anti-periodic solution of (2) with

initial value ϕ∗. If there exist constants α > 0, P ≥ 1 such
that, for every solution x(t) of (2) with initial value ϕ, the
following inequalities hold for i = 1, . . . , n, j = 1, . . . ,m,

|xij(t)− x∗ij(t)| ≤ P‖ϕ− ϕ∗‖e−αt, t > 0,

where ‖ϕ − ϕ∗‖ = max(i,j) sup−τ≤s≤0{|ϕij(s) − ϕ∗
ij(s)|}.

Then x∗(t) is said to be global exponentially stable.

The following fixed point theorem of coincidence degree is
crucial in the arguments of our main results.

Lemma 1. [21] Let X, Y be two Banach spaces, Ω ⊂ X

be open bounded and symmetric with 0 ∈ Ω. Suppose that
L : D(L) ⊂ X → Y is a linear Fredholm operator of index
zero with D(L) ∩ Ω̄ 	= ∅ and N : Ω̄ → Y is L-compact.
Further, we also assume that
(H) Lx−Nx 	= λ(−Lx−N(−x)) for all x ∈ D(L) ∩ ∂Ω,

λ ∈ (0, 1].
Then equation Lx = Nx has at least one solution on D(L)∩
Ω̄.

For the sake of convenience, we introduce some notations

Iij = max
t∈R
|Iij(t)|, C

kl

ij = max
t∈R
|Ckl

ij (t)|,
γij = max

t∈R
|γij(t)|, βij = max

t∈R
|βij(t)|,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

III. EXISTENCE OF ANTI-PERIODIC SOLUTIONS

In this section, by Lemma 1, we will study the existence of
at least one anti-periodic solution of (1).

Theorem 1. Assume that (H1)-(H5) hold. Suppose further
that

(H6) 1−A ∑
Ckl∈Nr(i,j)

C
kl

ijγijaijω > 0, where

A =
eaijμijω

eaijμijω − 1
.

Then system (1) has at least one ω
2 -anti-periodic solution.

Proof: We first prove that system (2) has at least one
ω
2 -anti-periodic solution. Take

X = Y = {x ∈ C(R,Rnm) : x(t+
ω

2
) = −x(t), t ∈ [0,

ω

2
]}

be two Banach spaces equipped with the norms

‖x‖X = ‖y‖Y =
n∑

i=1

m∑
j=1

|xij |0 for all x ∈ X,
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where |xij |0 = max
t∈[0,ω]

|xij(t)|, i = 1, 2, . . . , n, j =

1, 2, . . . ,m.
In system (2), let

Fij(t, x)

= −
∑

ckl∈Nr(i,j)

Ckl
ij (t)fij(t, h−1

kl (xkl(t− τkl(t))))

×h−1
ij (xij(t)) + Iij(t), (3)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Then we have(
xij(t)e

∫ t
0 dij(s,xij(s))ds

)′
= e

∫ t
0 dij(s,xij(s))dsFij(t, x), (4)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Integrating (4) from t
to t+ ω leads to

xij(t+ ω)e
∫ t
0 dij(s,xij(s))ds − xij(t)e

∫ t
0 dij(s,xij(s))ds

=
∫ t+ω

t

e
∫ s
0 dij(r,xij(r))drFij(s, x)ds,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. So

xij(t)
(
e
∫ t+ω
0 dij(s,xij(s))ds − e

∫ t
0 dij(s,xij(s))ds

)

=
∫ t+ω

t

e
∫ s
0 dij(r,xij(r))drFij(s, x)ds,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Hence

xij(t)e
∫ t
0 dij(s,xij(s))ds

(
e
∫ t+ω

t
dij(s,xij(s))ds − 1

)

=
∫ t+ω

t

e
∫ s
0 dij(r,xij(r))drFij(s, x)ds,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Thus

xij(t) =
e
∫ s

t
dij(r,xij(r))dr

e
∫ t+ω

t
dij(s,xij(s))ds − 1

∫ t+ω

t

Fij(s, x)ds

=
∫ t+ω

t

Gij(t, s)Fij(s, x)ds, (5)

where

Gij(t, s) =
e
∫ s

t
dij(r,xij(r))dr

e
∫ ω
0 dij(s,xij(s))ds − 1

≤ e
∫ ω
0 dij(s,xij(s))ds

e
∫ ω
0 dij(s,xij(s))ds − 1

≤ eaijμijω

eaijμijω − 1
� A, (6)

in which i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Set

L : DomL ∩ X→ Y, x→ x′, Lxij = x′ij(t),

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

DomL = {x ∈ C1(R,Rnm) : x(t+
ω

2
) = −x(t), t ∈ [0,

ω

2
]},

and N : X→ Y

Nxij = −dij(t, xij(t))xij(t) + Fij(t, xij(t)),

where Fij(t, xij(t)) are defined as (3), i = 1, 2, . . . , n, j =
1, 2, . . . ,m.

It is easy to see that

KerL = {0} and ImL = {y ∈ Y :
∫ ω

0

y(s) ds = 0} ≡ Y.

Thus dim KerL = 0 = codim ImL, and L is a linear Fredholm
operator of index zero.

Define the continuous projector P : X → KerL and the
averaging projector Q : Y→ Y by

Px =
∫ ω

0

x(s) ds = 0 and Qy =
∫ ω

0

y(s) ds = 0.

Hence ImP = KerL and KerQ = ImL=Im (I−Q). Denoting
by L−1

P : ImL→ Dom(L)∩KerP the inverse of L|D(L)∩KerP ,
we have

L−1
P y =

∫ t

0

y(s) ds− 1
2

∫ ω
2

0

y(s) ds.

It is not difficult to show that QN(Ω̄), L−1
P (I − Q)N(Ω̄)

are relatively compact for any open bounded set Ω ⊂ X.
Therefore, N is L-compact on Ω̄ for any open bounded set
Ω ⊂ X.

In order to apply Lemma 1, we need to find an appropriate
open bounded subset Ω in X. Corresponding to the operator
equation Lx−Nx = λ(−Lx−N(−x)), λ ∈ (0, 1], we have

x′ij(t) =
1

1 + λ
[−dij(t, xij(t))xij(t) + Fij(t, xij(t))]

− λ

1 + λ
[dij(t,−xij(t))xij(t) + Fij(t,−xij(t))]

= −dij(t, xij(t))xij(t) +
1

1 + λ
Fij(t, xij(t))

− λ

1 + λ
Fij(t,−xij(t)),

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
Set

Hij(t, xij(t)) =
1

1 + λ
Fij(t, xij(t))

− λ

1 + λ
Fij(t,−xij(t)),

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n. So we have

x′ij(t) = −dij(t, xij(t))xij(t) +Hij(t, xij(t)),
i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

As (5), we have

xij(t) =
∫ t+ω

t

Gij(t, s)Hij(s, xij(t)) ds,

where Gij(t, s) are defined as (6), i = 1, 2, . . . , n, j =
1, 2, . . . ,m.
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So we get for i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

∣∣xij(t)
∣∣ ≤

∫ t+ω

t

∣∣Gij(t, s)
∣∣∣∣Hij(s, xij(s))

∣∣ds

≤ A

∫ t+ω

t

∣∣Hij(s, xij(t))
∣∣ds

≤ A

∫ t+ω

t

1
1 + λ

∣∣Fij(s, xij(s))
∣∣ds

+A
∫ t+ω

t

λ

1 + λ

∣∣Fij(s,−xij(s))
∣∣ds

≤ A

1 + λ

∫ t+ω

t

{∣∣∣∣
∑

Ckl∈Nr(i,j)

Ckl
ij (s)

×fij(s, h−1
kl (xkl(s− τkl(t))))h−1

ij (xij(s))
∣∣∣∣
}

ds

+
λA

1 + λ

∫ t+ω

t

{∣∣∣∣
∑

Ckl∈Nr(i,j)

Ckl
ij (s)

×fij(s, h−1
kl (xkl(s− τkl(s))))h−1

ij (xij(s))
∣∣∣∣
}

ds

+A
∫ t+ω

t

|Iij(s)|ds

≤ A

1 + λ

∫ t+ω

t

∑
Ckl∈Nr(i,j)

C
kl

ijγijaij

∣∣xij(s)
∣∣ds

+
λA

1 + λ

∫ t+ω

t

∑
Ckl∈Nr(i,j)

C
kl

ijγijaij

∣∣xij(s)
∣∣ds

+A
∫ t+ω

t

|Iij(s)|ds

≤ A
∑

Ckl∈Nr(i,j)

C
kl

ijγijaijω|xij |0

+A
∫ t+ω

t

|Iij(s)|ds.

Set C = max
s∈[0,ω]

A
∫ ω

0
|Iij(s)|ds. So we have

|xij |0 ≤ A
∑

Ckl∈Nr(i,j)

C
kl

ijγijaijω|xij |0 + C,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
From (H5), we get

|xij |0 ≤ C

1−A ∑
Ckl∈Nr(i,j)

C
kl

ijγijaijω
= Mij ,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Let

M =
n∑

i=1

m∑
j=1

Mij .

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Clearly, M is independent of λ. Take

Ω = {x ∈ X : ‖x‖X < M + 1}.
It is clear that Ω satisfies all the requirement in Lemma 1 and
the condition (H) is satisfied. In view of all the discussions

above, we conclude from Lemma 1 that system (2) has at least
one ω

2 -anti-periodic solution. That is, system (1) has at least
one ω

2 -anti-periodic solution. This completes the proof.

IV. GLOBAL EXPONENTIAL STABILITY OF ANTI-PERIODIC
SOLUTIONS

Suppose that x∗(t) = (x∗11(t), . . . , x
∗
1m(t), . . . , x∗n1(t), . . . ,

x∗nm(t))T is an ω
2 -anti-periodic solution of system (1). In this

section, we will construct some suitable Lyapunov functions
to study the global exponential stability of this anti-periodic
solution.

Theorem 2. Assume that (H1)-(H6) hold. Suppose further
that

(H7) For i = 1, 2, . . . , n, j = 1, 2, . . . ,m,∑
ckl∈Nr(i,j)

C̄kl
ij āij(γ̄ij +Mβ̄ij ākl) < qij .

Then the ω
2 -anti-periodic solution of system (1) is globally

exponentially stable.

Proof: According to Theorem 1, we know
that system (1) has an ω

2 -anti-periodic solution
x∗(t) = (x∗11(t), . . . , x

∗
1m(t), . . . , x∗n1(t), . . . , x

∗
nm(t))T

with initial value ϕ∗(t) =
(ϕ∗

11(t), . . . , ϕ
∗
1m(t), . . . , ϕ∗

n1(t), . . . , ϕ
∗
nm(t))T and ‖x∗‖ ≤

M . Suppose that x(t) = (x11(t), . . . , x1m(t), . . . , xn1(t), . . . ,
xnm(t))T is an arbitrary solution of system (1) with initial
value ϕ(t) = (ϕ11(t), . . . , ϕ1m(t), . . . , ϕn1(t), . . . , ϕnm(t))T .
Set z(t) = (z11(t), . . . , z1m(t), . . . , zn1(t), . . . , znm(t))T =
x(t)− x∗(t). Then it follows that

z′ij(t) =
(
xij(t)− x∗ij(t)

)′
= −[bij(t, h−1

ij (xij(t)))− bij(t, h−1
ij (xij(t)))]

−
∑

ckl∈Nr(i,j)

Ckl
ij (t)

[
fij(t, h−1

kl (xkl(t− τkl(t))))

×h−1
ij (xij(t))

−fij(t, h−1
kl (x∗kl(t− τkl(t))))h−1

ij (x∗ij(t))
]
, (7)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. By (H7), we have

−qij +
∑

ckl∈Nr(i,j)

C̄kl
ij āij(γ̄ij +Mβ̄ij ākl) < 0, (8)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Set

hij(λ) = λ− qij +
∑

ckl∈Nr(i,j)

C̄kl
ij āij(γ̄ij + eλτMβ̄ij ākl).

Clearly, hij(λ), i = 1, 2, . . . , n, j = 1, 2, . . . ,m are continu-
ous functions on R. Since hij(0) < 0,

dhij(λ)
dλ

= 1 + λeλτ
∑

ckl∈Nr(i,j)

C̄kl
ij āijMβ̄ij ākl > 0

and hij(+∞) = +∞, hence hij(λ), i = 1, 2, . . . , n,
j = 1, 2, . . . ,m are strictly monotone increasing functions.
Therefore, for any i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m},
there is a unique λij > 0 such that

λij − qij +
∑

ckl∈Nr(i,j)

C̄kl
ij āij(γ̄ij + eλijτMβ̄ij ākl) = 0.
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Let α = min{λ11, λ12, . . . , λ1m, . . . , λn1, . . . , λnm}. Obvi-
ously, we have from (8) that

hij(α) = α− qij +
∑

ckl∈Nr(i,j)

C̄kl
ij āij(γ̄ij + eατMβ̄ij ākl)

≤ 0, (9)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
It is obvious that

|zij(t)| ≤ ‖ϕ− ϕ∗‖ ≤ ‖ϕ− ϕ∗‖e−αt for t ∈ [−τ, 0],

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m, ‖ϕ − ϕ∗‖ is defined
as that in Definition 1.

Define a Lyapunov functional V =
(V11, V12, . . . , V1m, . . . , Vn1 . . . , Vnm)T by Vij(t) =
eαt|zij(t)|, i = 1, 2, . . . , n, j = 1, 2, . . . ,m. In view of
(7), we get

d+Vij(t)
dt

= eαtsgnzij

{
− [bij(t, h−1

ij (xij(t)))

−bij(t, h−1
ij (xij(t)))]

−
∑

ckl∈Nr(i,j)

Ckl
ij (t)

[
fij(t, h−1

kl (xkl(t− τkl(t))))

×h−1
ij (xij(t))

−fij(t, h−1
kl (x∗kl(t− τkl(t))))h−1

ij (x∗ij(t))
]}

+αeαt|zij(t)|
≤ eαt

{
(α− qij)|zij(t)|

+
∑

ckl∈Nr(i,j)

Ckl
ij (t)

[∣∣fij(t, h−1
kl (xkl(t− τkl(t))))

×h−1
ij (xij(t))

−fij(t, h−1
kl (xkl(t− τkl(t))))h−1

ij (x∗ij(t))
∣∣

+
∣∣fij(t, h−1

kl (xkl(t− τkl(t))))h−1
ij (x∗ij(t))

−fij(t, h−1
kl (x∗kl(t− τkl(t))))h−1

ij (x∗ij(t))
∣∣]}

≤ eαt

{(
α− qij +

∑
ckl∈Nr(i,j)

C̄kl
ij āij γ̄ij

)
|zij(t)|

+
∑

ckl∈Nr(i,j)

C̄kl
ij āijMβ̄ij ākl|zkl(t− τkl(t))|

}

≤
(
α− qij +

∑
ckl∈Nr(i,j)

C̄kl
ij āij γ̄ij

)
Vij(t)

+
∑

ckl∈Nr(i,j)

C̄kl
ij āijMβ̄ij ākle

ατVkl(t− τkl(t)). (10)

We claim that

Vij(t) = |zij(t)|eαt ≤ ‖ϕ− ϕ∗‖, t > 0, (11)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Contrarily, there must
exists i0 ∈ {1, 2, . . . , n}, j0 ∈ {1, 2, . . . ,m} such that

Vi0j0(t̃) = ‖ϕ− ϕ∗‖, d
+Vi0j0(t̃)

dt
> 0, Vij(t) ≤ ‖ϕ− ϕ∗‖, (12)

t ∈ [−τ, t̃], i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Together with
(10) and (12), we obtain

0 <
d+Vi0j0(t̃)

dt

≤
(
α− qi0j0 +

∑
ckl∈Nr(i0,j0)

C̄kl
i0j0 āi0j0 γ̄i0j0

)
Vi0j0(t̃)

+
∑

ckl∈Nr(i0,j0)

C̄kl
i0j0 āi0j0M

¯βi0j0 ākle
ατVkl(t̃− τkl(t̃))

≤ ‖ϕ− ϕ∗‖
{
α− qi0j0 +

∑
ckl∈Nr(i0,j0)

C̄kl
i0j0 āi0j0 γ̄i0j0

+
∑

ckl∈Nr(i0,j0)

C̄kl
i0j0 āi0j0M

¯βi0j0 ākle
ατ

}
.

Hence,

0 < α− qi0j0 +
∑

ckl∈Nr(i0,j0)

C̄kl
i0j0 āi0j0(γ̄i0j0 + eατM ¯βi0j0 ākl),

which contradicts (9). Hence, (11) holds. It follows that

|zij(t)| ≤ ‖ϕ− ϕ∗‖e−αt,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. In view of Definition
1, the ω

2 -anti-periodic solution x∗ of system (1) is globally
exponentially stable. This completes the proof.

V. AN EXAMPLE

In this section, we give an example to illustrate that our
results are feasible.

Example 1. Consider the following Cohen-Grossberg shunt-
ing inhibitory neural networks with delays:

u′ij(t) = −aij(uij(t))
{
bij(t, uij(t))

+
∑

ckl∈Nr(i,j)

Ckl
ij (t)fij(t, ukl(t− τkl(t)))

×uij(t)− Iij(t)
}
, (13)

where i, j = 1, 2 a11(u) = 1 − 1
2 | sinu|, a12(u) =

1 − 1
2 | cosu|, a21(u) = 1 − 1

2 | sin
√|u||, a22(u) = 1 −

1
2 | cos

√
3|u||, bij(t, u) = u, Ckl

11(t) = Ckl
22(t) = 1− 1

4 | cos t|,
Ckl

12(t) = Ckl
21(t) = 0, τkl(t) = 1, f11(t, u) = f22(t, u) =

eπ−1
4πe2π+1 sinu2, f12(t, u) = f21(t, u) = eπ−1

4πe2π+1 cosu,
Iij(t) = eπ−1

4πe4π−e2π cos t, ω = 2π, system (13) has at least
one globally exponentially stable π-anti-periodic solution.

Proof: By calculation, we have
∑

ckl∈Nr(i,j)

C
kl

ij = 2, γ̄ij =
eπ − 1

4πe2π + 1
,

β̄ij =
eπ − 1

4πe2π + 1
, aij = 1, aij =

1
2
,

dij(t, x) =
∂bij(t, u)

∂u
· ∂h

−1
ij (z)
∂z

|z=ξ = aij(ξ) ≤ aij(ξ) = 1,
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dij(t, x) ≥ aij(ξ) =
1
2
, A ≤ e

∫ 2π
0 aij(ξ)ds

e
∫ 2π
0 aij(ξ)ds − 1

≤ e2π

eπ − 1
,

qij =
1
2
.

It is obvious that (H1)-(H5) are satisfied. Furthermore, we
can easily calculate that

A
∑

Ckl∈Nr(i,j)

C
kl

ij γ̄ijaijω ≤ 4πe2π

eπ − 1
· eπ − 1
4πe2π + 1

< 1,

∑
ckl∈Nr(i,j)

C̄kl
ij āij(γ̄ij +Mβ̄ij ākl) < qij .

So (H6)-(H7) hold. By Theorem 1 and Theorem 2, system
(13) has at least one globally exponentially stable π-anti-
periodic solution. This completes the proof.

VI. CONCLUSION

In this letter, Cohen-Grossberg shunting inhibitory cellular
neural networks with delays have been studied. Some sufficient
conditions for the existence and global exponential stability
of the anti-periodic solutions have been established by using
the method of coincidence degree theory and constructing
suitable Lyapunov functional. Moreover, an example is given
to illustrate the effectiveness of our results.
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