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Abstract—Median filters with larger windows offer greater 

smoothing and are more robust than the median filters of smaller 
windows. However, the larger median smoothers (the median filters 
with the larger windows) fail to track low order polynomial trends in 
the signals. Due to this, constant regions are produced at the signal 
corners, leading to the loss of fine details. In this paper, an algorithm, 
which combines the ability of the 3-point median smoother in 
preserving the low order polynomial trends and the superior noise 
filtering characteristics of the larger median smoother, is introduced. 
The proposed algorithm (called the combiner algorithm in this paper) 
is evaluated for its performance on a test image corrupted with 
different types of noise and the results obtained are included. 
 

Keywords—Image filtering, detail preservation, median filters, 
nonlinear filters, order statistics filtering, Rank order filtering. 

I. INTRODUCTION 
EDIAN smoother is a simple and an efficient point 
estimator that has been extensively used in signal and 

image processing applications since it was first described by 
Tukey in 1971. It is well known for being able to filter out 
impulses and preserve edges [1]. Although several robust 
estimators exist in the literature, running medians have the 
virtue of being simple and easy to implement [2-5]. Median 
smoothers have been applied in several areas of digital signal 
processing, which include speech processing [6,7] and image 
enhancement [8,9], where the signals of interest often contain 
edges immersed in high frequency noise. The window length 
of the median smoother determines the degree of smoothing of 
non-impulsive noise components and robustness. Greater 
smoothing and better robustness can be achieved by using 
larger windows [8]. However, when the window length is 
enlarged, the smoother loses its ability to follow low order 
polynomial trends [6] (see Fig.1).  

It can be observed from Fig.1 that the 3-point smoother is 
superior to the larger smoother in preserving signal corners. 
The 3-point smoother clips only one sample at the most 
(exactly the corner samples A, B, C, D) to constitute a 
constant region having a maximum number of three samples. 
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The 7-point smoother clips a maximum of three samples and 
forms a constant region consisting of a maximum number of 
five samples. To generalize, let us define N=(ws-1)/2, where 
ws is the window length of the median smoother. Then, the 
maximum number of samples that form the constant region is 
N+2, out of which the maximum number of samples that are 
clipped (from their actual values) to become members of this 
constant region is N. It is now evident that when ws is 
increased, more and more samples are clipped about the 
corners and therefore, the length of the constant region 
increases. Consequences of smoothing of the corners are two 
fold: i) the loss of fine details and ii) the manifestation of 
constant regions as streaks or as amorphous blotches 
depending upon the geometry of the filter window.  

These side effects of the median filters are highly 
undesirable, because they are perceived as lines or contours 
that do not exist in the original image [10]. Rabiner et al. [6] 
used a series combination of linear and median filters for 
smoothing speech signals and demonstrated the improved 
performance of the combination smoother in preserving the 
signal corners. However, the combination smoother is not able 
to preserve signal boundaries (edges) as faithfully as median 
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filters, because the linear filters lower the high frequency 
content of edges. Computationally, it is more complex, since it 
contains two median and two linear smoothers. Lee and 
Kassam [11] suggested the use of the Double Window 
Modified Trimmed Mean (DW MTM) filter, which slides two 
windows over the signal samples. This filter chooses the 
median from the small signal window to retain fine details and 
arrives at the average of those data samples inside the large 
signal window whose values are close to the median for 
suppressing non-impulsive noise components. The averaging 
operation tends to reduce the high frequency content of edges 
and therefore, edge blurring is quite possible.  

Several variations of median filters such as max/median 
[12], FIR-median hybrid [13,14], multistage median [13,15] 
and adaptive median [16,17] filters have been proposed in the 
literature for recovering images without blurring fine details; 
but all of these filters retain the details only at the expense of 
noise suppression. Weighted median filters [18] and, 
particularly, center weighted median filters [19] are important 
extensions of median smoothers suitable for detail 
preservation and noise filtering. However, there exists a clear 
trade-off between detail preservation and noise removal 
properties of these filters. Moreover, the weights to be 
assigned to the samples inside the window should be carefully 
selected depending on the characteristics of both the input 
image and noise, which is not an easy task. A variety of 
nonlinear filters reported in the literature recently are effective 
in removing impulse noise [20-24]; but they do not exhibit 
satisfactory performance in the presence of multiple noise. 

The 3-point median smoother follows polynomial trends 
quite well; but it is insufficient in attenuating non-impulsive 
noise components and also fails to remove more than single 
point outliers. In this paper, an algorithm called the combiner 
algorithm is introduced. The combiner algorithm combines the 
detail preserving ability of the 3-point smoother and the better 
noise filtering characteristics of the larger smoother. The 
proposed scheme, referred to as the combination smoother, 
consists of a 3-point median smoother and a larger median 
smoother of desired window length in parallel; besides, it has 
a combiner for appropriately combining the outputs of these 
two smoothers. The combination smoother will be shown to 
suppress non-impulsive noise, eliminate impulses and 
preserve fine details satisfactorily. 

II. APPROACH 
The scheme of the proposed combination smoother is 

shown in Fig.2. Median filtering is a discrete-time signal 
smoothing technique, in which a (2N+1) point wide window 
is slid over the input signal sequence {x(.,.)}. At each point, 
the samples inside the window are sorted out (arranged in 
ascending order) and the middle value is used as the filter 
output, and associated with the time sample at the center of 
the window. The filtering procedure is denoted as: 

m(i,j) = median(x(i,j+k)), -N ≤ k ≤ N and k ∈ Z     (1) 

where x(i,j) and m(i,j) are the (i,j)th samples of the input and 
output sequences of the median filter, respectively. The 
equation (1) describes median filtering of an image sequence 

as an one-dimensional window moves along the rows. The 
deterministic, as well as the statistical properties of median 
filters have been analyzed in [1,10,25]. 

The combiner algorithm slides a time-ordered window of 
length 5 over the larger smoother output samples and 
identifies the constant regions, which precede/follow the 
rising/falling low order polynomials. It compares the 
amplitudes of constant region samples of larger smoother 
output with the corresponding samples of the 3-point 
smoother output and finds out whether these constant region 
samples are the clipped ones. If so, the algorithm replaces the 
clipped N samples of the larger smoother output with the 
corresponding samples of the 3-point smoother output. 
Therefore, the output of the combination smoother resembles 
the output of the 3-point smoother for N samples at the signal 
corners and the output of the larger smoother elsewhere. 

III. ALGORITHM 
Step 1: Let {x(i,j)}, {m3(i,j)} and {mx(i,j)}, respectively, 
represent the input image, the 3-point median filtered image 
and the larger median filtered image of u rows and v  columns  
(see Fig.2). The combiner algorithm, in step 2, slides a 5-point 
wide time-ordered window over {mx(i,j)}, horizontally (i.e., 
along the rows), for identifying constant regions. In order for 
the window to reach the front and rear ends of {mx(i,j)}, two 
samples each are appended in the beginning and the end of 
each row.  The front endpoints appended to each row take the 
value of the first sample of that row, while the rear endpoints 
assume the value of the last sample. Due to this appending 
strategy, the output samples of the larger smoother are 
actually stored from the locations{mx(i,3)} to {mx(i,v+2)}. 

Step 2: Low order polynomials in the input, when passed 
through the larger smoother, are transformed as shown in 
Fig.3. These transformed polynomials are categorized into 
four types. They are i) constant region following low order 
polynomial rise: Type-1 (see Fig.3(a)), ii) constant region 
following polynomial fall: Type-2 (see Fig.3(b)), iii) constant 
region preceding polynomial fall: Type-3 (see Fig.3(c)) and 
iv) constant region preceding polynomial rise: Type-4 (see 
Fig.3(d)). The combiner algorithm, by sliding a 5-point time
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Fig. 2 Combination smoother for improving the median 
smoother performance on low order polynomials. 

 

 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:9, 2007

1289

 

 

ordered window, horizontally, over {mx(i,j)}, identifies and 
distinguishes each of the four types of transformed 
polynomials for appropriately combining the outputs of the 
median filters. Arrays {t1(i,j)} and {t2(i,j)}, respectively, 
store the first samples of all constant regions of Type-1 and 

Type-2. Arrays {t3(i,j)} and {t4(i,j)} contain the last samples 
of all constant regions of Type-3 and Type-4, respectively. 
The pseudo-code description of the segment of the algorithm, 
which performs this task, is given below: 
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Fig. 3 Transformation of low order polynomial corners, when passed through 

larger median smoother. a) Type- 1  b) Type-2, c) Type-3 d) Type-4 
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/* for the given value of column index j, 5 samples are taken 
from the larger smoother output along the ith row and placed 
inside the time-ordered window*/ 
for i = 1 to u 

for j = 1 to v 
p ← mx(i,j) 
q ← mx(i,j+1) 
r ← mx(i, j+2) 
s ← mx(i,j+3) 
t ←  mx(i,j+4) 

/*constant region which follows low order polynomial is 
detected (see Figs.3(a),(b))*/ 

if ((s-r)=0 AND (t-s)=0)  
/*Type-1 transformed polynomial is detected and the first 
sample of constant region is stored in t1(i,j) (see Fig.3(a))*/                 

if ((q-p)>0 AND (r-q)>0) 
t1(i,j) ← mx(i,j+2) 
end 

/*Type-2 transformed polynomial is detected and the constant 
region’s first sample is stored in t2(i,j) (see Fig.3(b))*/ 

if((q-p)<0 AND (r-q)<0) 
t2(i,j) ← mx(i,j+2) 
end 

end 
/*constant region that precedes low order polynomial is 
detected (see Figs.3(c),(d))*/ 

if ((q-p)=0 AND (r-q)=0)  
/*Type-3 transformed polynomial is detected and the last 
sample of constant region is stored in t3(i,j) (see Fig.3(c))*/  

if ((s-r)<0 AND (t-s)<0) 
t3(i,j) ← mx(i,j+2) 
end 

/*Type-4 transformed polynomial is detected and the constant 
region’s last sample is stored in t4(i,j) (see Fig.3(d))*/ 

if ((s-r) >0 AND (t-s) >0) 
t4(i,j) ← mx(i,j+2) 
end 

end 
end 

end 
The locations of arrays {t1(i,j)}, {t2(i,j)}, {t3(i,j)} and 
{t4(i,j)} that do not store the first/last samples of constant 
regions are initialized with zero. 

Step 3: The algorithm scans the array {t1(i,j)} row by row 
and in the increasing order of column index j, starting from 1 
to v. When it encounters a non-zero element, it indicates the 
beginning of Type-1 constant region (see Fig.3(a)). The non-
zero element, which is the same as mx(i,j+2), is compared 
with its corresponding sample of the output of the 3-point 
smoother i.e., m3(i,j). If both of them are not equal, then 
mx(i,j+2) is a clipped sample and therefore, starting with the 
present value of j, N horizontal samples (where N=(ws-1)/2 
and ws is the window length of the larger smoother) are 
removed from {m3(i,j)}; these N samples replace the 
corresponding N samples of {mx(i,j)} in the increasing order 
of j (starting from the position r as shown in Fig.3(a)). On the 
other hand, if both of them are equal, then mx(i,j+2) is not a 

clipped sample and therefore, no replacement is required for 
that sample. Hence, j is incremented and then N samples are 
removed from {m3(i,j)} and these N samples are used to 
replace 
the corresponding samples of {mx(i,j)} in the increasing order 
of j. This procedure is repeated for all non-zero elements of 
{t1(i,j)} as illustrated below using the pseudo-code: 

for i=1 to u 
 for j = 1 to v 
  if (t1(i,j) ≠ 0) 
   if (t1(i,j) = m3(i,j)) 
   j ←  j+1 
   end 
   for k = j to (j+N-1) 
   mx(i,k+2) ← m3(i,k)  
   end 
   j ← j+N-1 
  end 
 end 
end 

The array {t2(i,j)} contains the first samples of Type-2 
constant regions (see Fig.3(b)). Therefore, for the array 
{t2(i,j)}, the algorithm repeats the procedure it followed for 
{t1(i,j)}. 

Next, the algorithm scans {t3(i,j)} row by row in the 
decreasing order of column index j, starting from v to 1. A 
non-zero element, encountered during the scan, marks the end 
of Type-3 constant region (see Fig.3(c)). This non-zero 
element of {t3(i,j)}, which is same as mx(i,j+2), is compared 
with the corresponding sample of {m3(i,j)}. If they are not 
equal, it indicates that mx(i,j+2) is a clipped sample and 
therefore, from the current value of j, N samples are removed 
from {m3(i,j)}, and the corresponding samples of {mx(i,j)} 
are replaced with these samples in the decreasing order of j 
(starting from the position r in Fig.3(c)). On the other hand, if 
they are equal, then mx(i,j+2) is not a clipped sample and 
therefore, it is left undisturbed; then j is decremented, and N 
samples of {m3(i,j)} are removed and these N samples replace 
the corresponding samples of {mx(i,j)}, in the decreasing 
order of j. This procedure is repeated for all non-zero elements 
of {t3(i,j)} as described below: 

for j = 1 to u 
 for j = v to 1 
  if (t3(i,j) ≠ 0) 
   if (t3(i,j) = m3(i,j)) 
   j ← j-1 
  end 
   for k = j to (j-N+1) 
   mx(i,k+2) ← m3(i,k)  
   end 
   j ← j-N+1 
  end 
 end 
end 

The array {t4(i,j)} contains the last samples of Type-4 
constant regions (see Fig.3(d)). Therefore, for the array 
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{t4(i,j)}, the algorithm repeats the procedure it followed for 
{t3(i,j)}. 

IV. RESULTS AND DISCUSSION 
The performance of the combination smoother is evaluated by 
applying it to a test image degraded by i) mixed impulses 
(both positive and negative impulses), ii) non-impulsive noise 
(e.g., Gaussian noise) and iii) impulsive and non-impulsive 
noise. The test image used is a picture of Bacteria (178x178 
pixels, 8 bits/pixel). The window length of the larger smoother 
is chosen to be 9. 

A quantitative comparison is performed on the basis of an 
objective quality measure, called enhancement factor Fe, 
which is defined as the ratio of mean square error before, and 
after filtering all the image pixels. This yields:  
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where s(i,j), x(i,j) and f(i,j), respectively, are the (i,j)th samples 
of original (noise-free) image, noisy input image and the 
filtered output image. The enhancement factors achieved by 
applying the median, and combination smoothers on the test 
image contaminated by different levels of mixed impulse 
noise and Gaussian noise, respectively, are plotted in Fig.4 
and Fig.5.It can be observed that when the noise level is very 
low, the 3-point smoother enhances the images better than the 
combination smoother. However, its performance deteriorates 
rapidly with increasing noise level and becomes much inferior 
to that of the combination smoother (see Fig.4).  

The 9-point smoother is consistently outperformed by the 
combination smoother (see Fig.4 and Fig.5). Fig.6 depicts the 
image enhancement factors obtained by applying the median, 
and combination smoothers on the images corrupted by 
multiple noise (5% mixed impulses and different levels of 
zero mean Gaussian noise). The combination smoother 

outperforms both the 3-point and the 9-point smoothers, due 
to its greater smoothing capability, better robustness and detail 
preserving characteristics. 
The performance of the combination smoother is also 
examined and compared with that of conventional smoothers 
on the basis of subjective criterion, that is, human visual 
perception. Fig.7, Fig.8 and Fig.9, respectively, show the 
results of filtering of test image corrupted by i) 5% mixed 
impulses, ii) Gaussian noise (mean=0 and variance=100) and 
iii) 5% mixed impulses and Gaussian noise (mean=0 and 
variance=100). The 3-point smoother fails to remove the 
impulses completely (see Fig.7(c) and Fig.9(c)) and provides 
insufficient attenuation in the presence of Gaussian (non-
impulsive) noise (see Fig.8(c) and Fig.9(c)). The 9-point 
smoother, as can be seen from Fig.7(d), Fig.8(d) and 
Fig.9(d),exhibits good noise cleaning properties; but the filter 
smears image corners resulting in the loss of fine details. The 
combination smoother is seen to be superior to the 3-point 
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Fig. 4 Comparison of image enhancement factor when applied 
to Bacteria image corrupted by different levels of mixed 
impulses. 
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Fig. 6 Comparison of image enhancement factor when applied 
to Bacteria image corrupted by 5% mixed impulses and different 
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Fig. 5 Comparison of image enhancement factor when applied 
to Bacteria image corrupted by different levels of zero mean 
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smoother in noise filtering, because it discards the impulses 

completely and attenuates Gaussian noise satisfactorily (see 

Fig.7(e), Fig.8(e) and Fig.9(e)). Further, the better space  

 

Fig. 9 Performance illustration using Bacteria image 
contaminated by impulsive and non-impulsive noise: 
a) Test image Bacteria; (b) Test image corrupted with 5% mixed 
impulses and zero mean Gaussian (non-impulsive) noise of 
variance 100; (c) 3-point median filtered image; (d) 9-point 
median filtered image; (e) Combination smoother output. 

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

250

300

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200
(a) (b) (c)

(d) (e) 
 

Fig. 10 Performance illustration of combination smoother on the 
row 122 of Bacteria image corrupted by impulsive noise:
(a) Plot of row 122 of Bacteria image; (b) Plot of row 122 of 
Bacteria image corrupted by 5% mixed impulses; (c) 3-point 
median smoother output – fails to remove more than single 
point impulses, while preserving the signal corners; (d) 9-point 
median smoother output – discards impulses completely, but 
smears the signal corners resulting in loss of fine-details; 
(e) Combination smoother output – removes impulses as well as 
9-point smoother and preserves signal corners as effectively as 
the 3-point median. 

 
Fig. 7 Performance illustration using Bacteria image in the 
presence of impulsive noise: (a) Test image Bacteria; (b) Test 
image corrupted with 5% mixed impulses; (c) 3-point median 
smoother output;(d) 9-point median smoother output; 
(e) Combination smoother output. 

 
Fig. 8  Performance illustration using Bacteria image corrupted 
by non-impulsive (Gaussian) noise: (a) Test image Bacteria; 
(b) Test image corrupted by zero mean Gaussian (non-
impulsive) noise of variance 100; (c) 3-point median filtered 
image; d) 9-point median filtered image; (e) Combination 
smoother output. 
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resolution of the combination smoother output indicates that 
the combination smoother is better than the 9-point smoother 
in preserving the image details. Fig.10 and Fig.11, 
respectively, present the results of filtering of row 122 of 
Bacteria image corrupted by i) 5% mixed impulses and ii) 5% 
mixed impulses and Gaussian noise (mean=0 and 
variance=100). These results are shown for a close 
examination of the effectiveness of combination smoother in 
noise filtering and detail preservation from the point of view 
of visual perception. It can be noted that the combination 
smoother output resembles the output of the 3-point smoother 
at the signal corners and the output of the 9-point smoother 
elsewhere. The output of the combination smoother, as 
observed from these illustrations, is seen to inherit the merits 
of both the 3-point smoother (detail preservation) and the 9-
point smoother (greater smoothing and better robustness). 

However, the proposed combination smoother suffers from 
a drawback. The combiner algorithm searches for constant 
regions preceding/following the polynomials in the output of 
the larger smoother and replaces N samples of those constant 
regions with the corresponding N samples of the 3-point 
smoother output. The signal may, actually, have some 
constant regions (not flattened due to filtering) 
preceding/following polynomials, such as ramp edges; N 
samples of these actual constant regions are also replaced as 
described earlier. The combination output retains the 
robustness and smoothing ability of larger smoother in all the 
regions except where the larger smoother output samples are 
replaced. Therefore, the robustness and noise suppression 

characteristics of the combination output tend to deteriorate as 
those of the 3-point smoother in the regions of the replaced 
samples.   

We have attempted to reduce the severity of this drawback 
in the regions of the replaced samples by imposing signal 
dependent conditions. Consider the transformed low order 
polynomial of Type-1 shown in Fig.12. When {t1(i,j)} is 
scanned, the algorithm may come across a non-zero element 
indicating the beginning of a constant region as shown in 
Fig.12. Let us define: 

u = r - q = mx(i,j+2) - mx(i,j+1)          (3) 

It can be observed from Fig.12 that u denotes the slope of 
the polynomial computed just prior to the beginning of a 
constant region. The combiner algorithm will replace N 
samples one after another subject to the satisfaction of the 
following condition: 

m3(i,j) > mx(i,j+2) AND m3(i,j) < (mx(i,j+2) + N*u) (4) 

If the constant region is a smoothed corner as shown in 
Fig.12, then the above condition will be satisfied for the entire 
N samples and therefore, the replacement will be carried out. 
If negative impulses are present among those N samples of the 
output of the 3-point smoother output, then the first part of the 
condition, i.e., m3(i,j) > mx(i,j+2) cannot be satisfied and 
therefore, negative impulses will not be allowed to replace the 
corresponding samples of the larger smoother output. Thus the 
first part of Equation (4) improves the robustness of the 
combination output against negative impulses in the regions of 
the replaced samples. For the positive impulses, whose signal 
magnitude is greater than N*u, the second part of the 
condition fails and therefore, the robustness of the 
combination output in the regions of replaced samples will be 
as good as that of the larger smoother. However, if the 
amplitude of positive impulses, which appear within the 
replacing N samples, is less than N*u, then such impulses will 
also appear at the combination output. But, it should be noted 
that the probability of occurrence of an impulse of small 
magnitude is quite low. For the other three types of 
transformed polynomials also, such signal dependent 
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Fig. 12 Output of 3-point and larger median smoothers at a 
sharp corner. 
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Fig. 11 Performance illustration of combination smoother on the 
row 122 of Bacteria image confounded by impulsive, and non-
impulsive noise: (a) Plot of row 122 of Bacteria image; (b) Plot 
of row 122 of Bacteria image corrupted by 5% mixed impulses 
and zero mean Gaussian noise of variance 100; (c) 3-point 
median smoother output – fails to remove impulses completely 
and does not attenuate Gaussian noise adequately; (d) 9-point 
median smoother output – eliminates impulses completely and 
suppresses Gaussian noise quite well, but blurs the signal 
corners; (e) Combination smoother output – removes impulses 
completely, reduces Gaussian noise satisfactorily and preserves 
signal corners effectively. 
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conditions are imposed to improve the robustness of the 
combination smoother in the regions of the replaced samples. 
Table I compares the 3-point, 9-point and combination 
smoothers in terms of robustness, noise filtering and detail 
preserving characteristics. 

V CONCLUSION 
In this paper, a technique for improving the performance of 

median smoothers at the corners characterized by low order 
polynomials is proposed. An algorithm called the combiner 
algorithm, which imbibes the positive features of both the 3-
point median smoother (detail preservation) and the larger 
median smoother (greater smoothing and better robustness) is 
described. The combination smoother, built using a 3-point 
median smoother, a larger median smoother and the combiner 
algorithm, is shown to be effective in eliminating impulses 
and suppressing non-impulsive noise; besides, it has good 
detail preserving characteristics. It is an all-median scheme 
and therefore, edge preservation properties and the 
computational simplicity of the median filter are retained.  
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TABLE I 
PERFORMANCE COMPARISON OF 3-POINT MEDIAN, 9-POINT 

MEDIAN AND COMBINATION SMOOTHERS 
        Type of smoother 

 
Characteristics 

3 
Point 

Median 

9 
Point 

Median 
Combination

Robustness Fair Better Good 
Noise-filtering Fair Better Good 

Detail preservation Better Poor Better 

 

 


