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Nonlinear analysis of shear wall using finite
element model
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Abstract—In the analysis of structures, the nonlinear effects due
to large displacement, large rotation and materially-nonlinear are
very important and must be considered for the reliable analysis. The
non-linear finite element analysis has potential as usable and reliable
means for analyzing of civil structures with the availability of
computer technology. In this research the large displacements and
materially nonlinear behavior of shear wall is presented with
developing of finite element code using the standard Galerkin
weighted residual formulation. Two-dimensional plane stress model
was carried out to present the shear wall response. Total Lagrangian
formulation, which is computationally more effective, is used in the
formulation of stiffness matrices and the Newton-Raphson method is
applied for the solution of nonlinear transient equations. The details
of the program formulation are highlighted and the results of the
analyses are presented, along with a comparison of the response of
the structure with Ansys software results.

The presented model in this paper can be developed for nonlinear
analysis of civil engineering structures with different material
behavior and complicated geometry.

Keywords—Finite element, large displacements, materially
nonlinear, shear wall

I. INTRODUCTION

In many analysis of civil engineering structures it is discussed quite
generally linear problems of elasticity and of field equations. But,
in many practical applications the limitation of linear elasticity or
more generally of linear behavior precludes obtaining an accurate
assessment of the solution because of the presence of nonlinear
effects or geometry having a thin dimension in one or more
directions. Nonlinear behavior of solids takes two forms: material
nonlinearity and geometric nonlinearity. The form of nonlinear
material behavior is that of elasticity for which the stress is not
linearly proportional to the strain. More general situations are those
in which the loading and unloading response of the material is
different. Typical here is the case of classical elasto-plastic behavior.
When the deformation of a solid reaches a state for which
the undeformed and deformed shapes are substantially
different a state of finite deformation occurs. In this case it is
no longer possible to write linear strain-displacement or
equilibrium equations on the undeformed geometry.
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In this study, the analysis of shear wall is considered as an
example to show the effect of nonlinearity. To formulate the
problem and develop the numerical model, finite element
method is selected because of its capability in analysis of
structures with complicated geometry and materially nonlinear
behavior.

Finite element procedures are now an important and
frequently indispensable part of engineering analysis and
design and the finite element programs are widely used in
practically all branches of engineering for the analysis of
structures. In the linear finite element formulation, it is usually
assumed that the displacements of the finite element
assemblage are infinitesimally small and that the material is
linearly elastic. In addition, it is also assumed that the nature
of the boundary conditions remains unchanged during the
application of the loads on the finite element assemblage.
With these assumptions, the finite equilibrium equations were
derived for static analysis as following
KU =R (1)

This equation corresponds to a linear analysis of a structural
problem because the displacement response U is a function
of the applied load vector R . If the loads are aR instead of
R, where & is a constant, the corresponding displacements
are U . When this is not the case, the analysis will be
nonlinear.

The linearity of a response prediction rests on the
assumptions just stated and it is instructive to identify in detail
where this assumptions have entered the equilibrium equation
in equation (1). The fact that the displacements must be small
has entered into the evaluation of the matrix K and load
vector R because all integrations have been performed over
the original volume of the finite elements and the strain-
displacement matrix B of each element was assumed to be
constant and independent of the element displacements. The
assumption of a linear elastic material is implied in the use of
a constant stress-strain matrix C and finally the assumption
that the boundary conditions remain unchanged is reflected in
the use of constant constrain relations for complete response.
If during loading a displacement boundary condition should
change, a degree of freedom which was free becomes
restrained at a certain load level, the response is linear only
prior to the change in boundary condition. This situation
arises, for example, in the analysis of a contact problem [3].
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The above discussion of the basic assumptions used in a linear
analysis defines a nonlinear analysis and its categorizations.
In a materially-nonlinear-only analysis, the nonlinear effect
lies only in the nonlinear stress-strain relation. The
displacements and strains are infinitesimally small; therefore
the usual engineering stress and strain measures can be
employed in the response description. Considering the large
displacements but small strain conditions, in essence the
material is subjected to infinitesimally small strains measured
in a body-attached coordinate frame while this frame
undergoes large rigid body displacements and rotations. The
stress-strain relation of the material can be linear or nonlinear
[4].

In actual analysis, it is necessary to decide whether a problem
falls into one or the other category of analysis, and this
dictates which formulation will be used to describe the actual
physical situation. Conversely, it may be said that by use of a
specific formulation, a model of actual physical situation is
assumed, and the choice of formulation is part of the complete
modeling process. Surely, the use of the most general large
strain formulation will always be correct; however, the use of
a more restrictive formulation may be computationally more
effective and may also provide more insight into the response
prediction.

II. NONLINEAR FINITE ELEMENT FORMULATION

The basic problem in a general nonlinear analysis is to find the state
of equilibrium of a body corresponding to the applied loads.
Assuming that the externally applied loads are described as a
function of time, the equilibrium conditions of a system of finite
elements representing the body under consideration can be expressed
as
'R-'F=0 2)

Where ‘R lists the externally applied nodal point forces in

the configuration at time ¢ and the vector 'F lists the nodal
point forces that correspond to the element stresses in this
configuration [3].

Considering the solution of the nonlinear response, it is
recognized that the equilibrium relation in equation (2) must
be satisfied throughout the complete history of load
application and the time variable # may take on any value from
zero to maximum time of interest. In a static analysis without
time effects other than the definition of the load levels, time is
only a convenient variable which denotes different intensities
of load applications and correspondingly different
configurations. However, in a dynamic analysis and in static
analysis with material time effects, the time variable is an
actual variable to be properly including in the modeling of the
actual physical situation. Based on these considerations, it is
realized that the use of time variable to describe the load
application and history of solution responses is a very general
approach and corresponds to assertion that a “dynamic
analysis is basically a static analysis including inertia effects”.

The basic approach in an incremental step-by-step solution
is to assume that the solution for the discrete time # is known

and that the solution for the discrete time £+ At is required,

where Af is a suitably chosen time increment. Hence,

considering equation (2) at time  + Af we have

A p_ A () 3)
where the left superscript denotes “at time # + A7 . Assume

that MR is independent of the deformations. Since the
solution is known at time ¢, it can be written

CNF='F+F )

In which F is the increment in nodal point forces
corresponding to the increment in element displacements and
stresses from time ¢ to timef+ Af. This vector can be
approximated using a tangent stiffness matrix ‘K which

corresponds to the geometric and material conditions at
time?,

F='KU %)
where U is a vector of incremental nodal point
displacements and
o'F
'K =— (6)
o'u

Hence, the tangent stiffness matrix corresponds to the
derivative of the internal element nodal point forces 'F with

respect to the nodal point displacements'U . Substituting

equations (4) and (5) into equation (3), we obtain

'KU=""R-'F (7)
and solving for U , we can calculate an approximation to

the displacements at time ¢ + A?,

"MU='U+U (8)
The exact displacements at time ¢+ Af are those that

correspond to the applied loads MR . We calculate in
equation (8) only an approximation to these displacements
because equation (5) was used.

Having evaluated an approximation to the displacements
corresponding to time ¢+ Af, we could solve for an
approximation to the stresses and corresponding nodal point
forces at time 7+ Af and then proceed to the next time
increment calculations. However, because of the assumption
in equation (5), such a solution may be subject to very
significant errors and depending on the time or load step size
used, may indeed be unstable. In practice, it is therefore
necessary to iterate until the solution of equation (3) is
obtained to sufficient accuracy.

The widely used iteration methods in finite element analysis
are based on the Newton-Raphson iteration and closely related
technique. So in this research, the solution process is
proceeding by using a Newton-Raphson scheme. A
characteristic of this iteration is that a new tangent stiffness
matrix is calculated in each iteration.

To obtain the matrix equation, we consider the motion of a
general body in a stationary Cartesian coordinate system and
assume that the body can experience large displacements,
large strain and a nonlinear constitutive response. The aim is
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to evaluate the equilibrium positions of the complete body at
the discrete time points 0,A?,2At,3A¢,... where Afis an

increment in time. To develop the solution strategy, assume
that the solutions for the static and kinematic variables for all
time steps from time O to time £, inclusive, have been
obtained. Then the solution process for the next required
equilibrium position corresponding to time #+ Af is typical
and is applied repetitively until the complete solution path has
been solved for. Hence, in the analysis we follow all particles
of the body in their motion, from the original to the final
configuration of the body, which means that we adopt a total
Lagrangian formulation of the problem and we used it in the
finite element model. Considering the analysis of solids and
structures, a Lagrangian formulation usually represents a more
natural and effective analysis approach than other formulation.

III. GENERAL MATRIX EQUATIONS

The basic steps in the derivation of the governing finite element
equations are the same as linear analysis. So, it should be selected the
interpolation functions and the interpolation of the element
coordinates and displacements with these functions in the governing
continuum mechanics equations. By invoking the linearized principle
of virtual displacements for each of the nodal point displacements in
turn, the governing finite element equations are obtained. As in linear
analysis, we need to consider only a single element of a specific type
in this derivation because the governing equilibrium equations of an
assemblage of elements can be constructed using the direct stiffness
procedure.

Using of a standard Galerkin weighted residual and total
Lagrangian formulation in developed finite element model, we
derive the governing equations for this formulation and obtain
the matrix form of equations used in present finite elements
model. The stiffness matrix and load vector will be as
following:

K=K, +Ky, Q)
iK,a=\[ /Bl ,CiBdV) (10)
iKyi=([ (Bl S B,dV) (1
o F = oB]Sd (12)

In which /K, and K, are the linear and nonlinear
strain incremental stiffness matrices. |F is the vector of
nodal point force equivalent to the element stresses at time 7.
sS and O’S' are the matrix and vector of second Piola-
Kirchhoff stresses and ,C is the incremental stress-strain

material property matrices.

IV. TWO-DIMENSIONAL PLANE STRESS ELEMENTS

For the derivation of the required matrices and vectors for nonlinear
analysis of shear wall, we consider a typical two dimensional plane
strain element in its configuration at time 0 and at time t. The global

. . . 0_k
coordinates of the nodal points of the element are at time 0, "X, ,

0_k . k k
X, and at time 7, le , ’xz , where K =1,2,..,N, and N

denotes the total number of element nodes. Using the interpolation
concepts, we have at time 0:

N
°x, =Y h xf 13)
k=1
N
x, =) 1 x5 (14)
k=1
And at time #:
N
xp =) by xf 15)
k=1
N
xy= ) x5 (16)
k=1

In which, the hk are the interpolation functions.

Since we use the isoparametric finite element discretization,
the element displacements are interpolated in the same way as
the geometry. So we can write:

N

=" h'uf a7
k=1
N

u, =D by ul (18)
k=1

The evaluation of strains requires the following derivatives:

ou, (o),
= u.
8°xj aox.f 1

k=1

i=12 (19)

The derivatives are calculated in the same way as in linear
analysis using a Jacobian transformation. The chain rule

. t t - - . .
relating” X, , X, to r, s derivatives is written as:

0

ar (Lo, 9 (20)
0 0
Os o'x,
In which
o'x, 0'x,
ty=| or or 21
o'x, 0'x,
os 0Os
Inverting the Jacobian operator J, we obtain:
0 0'x, o'x, || O
; 2
Ox |__1 | s or | or 22)
0 detJ| 0'x, 0% || &
0'x, 0Os or | os
where the Jacobian determinants is
t t t t
det'y =00 0% 0% 0%y 23)

and the derivatives of the coordinates with respect to  and s
are obtained using equation (15):
t N
8 X i %txik (2 4)
or o or
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N
ik 27 ,. (29)

In which i =1,2.

With all required derivatives defined, it is now possible to
establish the strain-displacement transformation matrices for
the elements in total Lagrangian formulation. The linear
strain-displacement transformation matrix is obtained as
following:

otBL :()IBL()+OrBLI (26)
In which
Ohl.] OhZI 0h3,1 0 Oh’V 0 (27)
rBL() 0 0h12 0722 O ﬂh3.2 N,2
0h12 01,1 0h22 0721 0h3.2 0h3l Oh’\Z Oh\/l
llthl,l lZthl,l llthZ,l
0B = Ly ohy Lohi, hoohs,
llthl,Z +l]20hl,] ]210h1.2 +122 Oh],] l]thZ,Z +112 OhZ,l
lZthZ‘l l]thN.l lZthN,l (28)
122 OhZ,Z l12 0 hN,Z l22 0 hN,Z
121 0 h2,2 + 122 OhZ,] lll 0 hN,Z + 112 0 hN,l lZ] 0 hN,Z + 122 0 hN.]
where
= k
t
Iy= Z Ohk,] U (29)
k=1
S k
t
ly= Z ofy Uy (30)
k=1
- k
t
= Z Ohk,l U, (3D
k=1
N
l,= ohk,z tu1k (32)
k=1

The nonlinear strain-displacement transformation matrix
will be as following:

0:1.1 g OZZ,I g 0:3.1 g DZN.I g (33)
/B' _ 0712 0722 0732 0N 2
0 0 b, O ok, 0  hy .. 0 h

O OhLZ O OhLZ 0 0h3.2 O oh,\r.z

It is required to second Piola-Kirchhoff stress matrix and
vector to obtain linear and nonlinear stiffness matrix and
nodal load vector. These matrices can be written as

0’S11 (;Slz 0 0
'S 'S 0 0

OtS: 0Pz 02 ’ l (34)
0 0 051 oSn

0 0 0Su oS

and
oSh
S=|/s, (35)
051

A fundamental observation comparing elastic and inelastic
analysis is that in elastic solutions the total stress can be
evaluated from the total strain alone, whereas in an inelastic
response calculation the total stress at time # also depends on
the stress and strain history. The solution process can be
interpreted to consist of, first, an elastic prediction of stress
and then, if this stress prediction lies outside the yield surface,
a stress correction. Using the Gauss numerical integration,
obtained matrices are evaluated at the Gauss integration
points.

V. ANALYSIS OF MODEL

To describe and validate the accuracy of numerical
procedures for nonlinear analysis an example has been solved
using developed model and compared with Ansys results.

To analyze the model, a steel shear wall with 4 m height

and 0.5 m length subjected to uniform pressure with QOL%
cm

value, was considered as an example. The model was analyzed
for nonlinear behavior of material and large displacement. 4-
node isoparametric elements were used to represent the finite
element modeling of the shear wall. Bilinear elastoplastic
material model has been selected for steel non-linear behavior.
Fig. 1 and 2 show the finite element meshing of model and
strain-stress curve for selected materially-nonlinear behavior.

Fig. 1 Finite element discretization of the shear wall model
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Fig. 2 Bilinear elastoplastic material model
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After analyzing the model, the results were obtained for
different cases. The responses of the shear wall displacements
versus height are shown in Fig. 4 at different times.
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Fig. 3 Horizontal displacement response at different time

The developed model results also have been analyzed for
two cases: the large displacement-only case and large
displacement with materially-nonlinear behavior. Obtained
results of these cases were compared to show the effect of
materially non-linearity. Fig. 4 shows this comparison.
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Fig. 4 Comparison of results for large displacement
and materially nonlinear behavior

Furthermore, it is worth paying attention to the result that
the response of materially nonlinear behavior is large in
comparison with the large displacements-only.

Finally, to show the accuracy and efficiency of the
developed model, the results were compared with Ansys
software results. Fig. 5 and 6 show the comparison of
numerical model and Ansys results.

—— Ansys Results
—a— Numerical model results

0 T T T T T
0 0.5 1 1.5 2 25 3

Horizontal displacement (cm)

Fig. 5 Comparison of the model and Ansys results
for large displacement-only case

Height (cm)

—— Ansys results
®  Numerical model results

0 ‘ ; ;
0 1 2 3 4
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Fig. 6 Comparison of the model and Ansys results for large
displacements and materially-nonlinear case

Obtained results show excellent agreement between the
response obtained from the proposed numerical model and the
Ansys model.

VI. CONCLUSION

A numerical model for a transient nonlinear analysis of
shear wall was presented in this paper. For numerical
modeling, the finite element formulation for plan stress
elements has been reviewed to include a standard Galerkin
weighted residual formulation more general and concise than
those existing in the literature. The technique is an enhanced
represented for analysis with materially nonlinear behavior
and large displacements. An example was considered to
describe and validate the accuracy of numerical procedures
and show the nonlinear transient behavior in such structures.
The comparisons in the model testing with software results
show excellent agreements. This work can provide the further
understanding of the characteristics of nonlinear behavior in
structures and may be taken for a quantitative comparison to
various analysis and numerical solutions.
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