International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:6, 2012

Data Gathering Protocols for Wireless Sensor
Networks

Dhinu Johnson and Gurdip Singh

Abstract—Sensor network applications are often data centric and
involve collecting data from a set of sensor nodes to be delivered
to various consumers. Typically, nodes in a sensor network are
resource-constrained, and hence the algorithms operating in these
networks must be efficient. There may be several algorithms available
implementing the same service, and efficient considerations may
require a sensor application to choose the best suited algorithm. In
this paper, we present a systematic evaluation of a set of algorithms
implementing the data gathering service. We propose a modular
infrastructure for implementing such algorithms in TOSSIM with
separate configurable modules for various tasks such as interest
propagation, data propagation, aggregation, and path maintenance.
By appropriately configuring these modules, we propose a number
of data gathering algorithms, each of which incorporates a different
set of heuristics for optimizing performance. We have performed
comprehensive experiments to evaluate the effectiveness of these
heuristics, and we present results from our experimentation efforts.

Keywords—Data Centric Protocols, Shortest Paths, Sensor net-
works, Message passing systems.

[. INTRODUCTION

Advances in wireless communication and electronics have
led to the development of low-cost, low-power, multi-
functional sensor nodes which are small sized and can com-
municate over short distances. Such sensing devices can
enable one to create wireless sensor networks (WSN) for
monitoring and tracking in different contexts [1], [2]. Many
sensor applications are data centric in nature where the main
task is that of collecting data from a set of sensors and
delivering them to interested consumers for possible actions.
Since most of the sensors are immobile and are required to
operate over long time intervals without any intervention, there
are severe constraints on energy consumption in sensor nodes.
Hence, techniques for efficient data propagation with minimal
resource requirements are needed. In traditional networks,
address-centric approaches are used to route data between two
end-points. These approaches excludes the possibility of sev-
eral types of optimizations such as those related to combining
messages based on their contents, and are therefore unsuitable
for wireless sensor networks. Rather, data-centric approaches
wherein data attributes are used to identify packets and to
perform routing are more appropriate for sensor networks [3],
[4].

In this paper, we study data-centric algorithms for data
collection in sensor networks. The main tasks in a data

Gurdip Singh is with the Department of Computing and Information
Sciences, Kansas State University, Manhattan, KS, 66506 USA e-mail:
gurdip@ksu.edu. Dhinu Johnson was with the Department of Computing and
Information Sciences, Kansas State University, Manhattan, KS 66506. She
now works for Qualcomm Corporation. Email: dhinu@ksu.edu.

gathering algorithm (DGA) include interest propagation, data
propagation, path maintenance and data correlation. We have
implemented a modular infrastructure in TOSSIM, a simula-
tor for TinyOS based systems, to implement each of these
tasks [5]. Our infrastructure is configurable in nature so that
each task can be configured with heuristics for optimizations.
Based on this infrastructure, we propose four algorithms for
data collection. The first algorithm, DGAI, is a basic data
collection algorithm with no optimization heuristics. The sec-
ond algorithm, DGA2, incorporates aggregation of messages
during the interest and data propagation phases. Algorithm
DGA3 includes a shortest path heuristic to reduce tree cost
and a greedy heuristic to incrementally add consumers to
existing paths. The final algorithm, DGA4, uses a cost division
technique that allows shared paths to be given preference over
other paths. We also show that existing algorithms can also be
cast as variants of DGALI.

We present a comprehensive experimental study of these
algorithms using TOSSIM to study the impact of various
optimization heuristics on the number of messages and the
quality of the data collection paths constructed (tree cost).
We evaluated several scenarios by varying factors such as
the number of consumers and producers, network size and
the aggregation limit. For example, in-network aggregation
has traditionally been used during data propagation to reduce
the number of messages. Our study shows that aggregation
of control messages during the tree construction phase not
only reduces the number of messages, but also results in
the construction of lower cost trees. The paths on which
aggregation is done are likely to be paths shared by different
consumers. We find that aggregation results in reduced traffic
and lower latency on these paths, which in turn, increases the
probability of these paths being selected in the tree. We also
find that although the shortest path and cost division heuristics
in DGA3 and DGA4 respectively result in lowering the tree
cost, they are more effective in networks with higher density
of consumers. Results from our experimental studies can be
used to develop rules to select the best set of heuristics for an
given application and a target topology.

II. PROBLEM DEFINITION

We model a sensor network as a graph G = (V, E), where
V' is the set of nodes and E is the set of edges connecting
nodes which can communicate directly. Let S be a subset of
V' denoting the data sources and D be a set of sink nodes.
We will refer to nodes not belonging to S and D as relays.
Let v.produce denote the set of data items produced by v and

547

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:6, 2012

Fig. 1. Examples of data gathering subgraphs

v.consume denote the set of items v is interested in. We define
the cost of a subgraph of V" as the total number of edges in the
subgraph. The goal of a data gathering algorithm (DGA) is to
find a minimal cost subgraph of G such that for each v € D,
the subgraph consists of a tree, tree,, consisting of v and at
least one source node for each data item in v.consume. Fig. 1
shows a network with nodes 6 and 10 as sinks and nodes 1
and 3 are sources. Node 6 is interested in data produced by
1 and node 10 is interested in data produced by 3. The bold
edges shows a possible subgraph for delivering data to 6 and
10. Although this subgraph consists of a shortest path tree for
each sink node, its overall cost (which is 6) is not minimal. The
dotted lines in Fig. 1 shows the minimal cost subgraph with
cost 5. The problem of constructing a minimal cost subgraph
is reducible to the Steiner Tree problem [6] which is NP-hard.
Hence, heuristics are needed to obtain suboptimal solutions to
the data aggregation problem.

III. INFRASTRUCTURE FOR DATA PROPAGATION
ALGORITHMS

To design and evaluate DGAs, we have implemented a
modular infrastructure in TOSSIM, a simulation environment
for TinyOS-based sensor network systems [5]. The execution
of a data collection algorithm can be decomposed into several
phases (which are inspired by the phases described in the diffu-
sion algorithms in [4]). The first phase involves the sink nodes
sending interest messages to indicate their interest in specific
data items and to locate the corresponding source nodes.
When a source node receives an interest message, it starts
transmitting data messages. These are sent along the paths
formed during the propagation of the interest messages. A sink
node, on receiving a data message, may choose to reinforce
one or more of these paths by transmitting a reinforcement
message. This execution pattern allows us to decompose an
algorithm into interest propagation, data propagation and rein-
forcement phases (although we must note that these phases are
not entirely sequential). We have implemented a configurable
module for each phase which can be configured with various
policies to optimize performance. In the following sections,
we first describe the basic phases of a DGA. Subsequently, we
will discuss how variations of the algorithms can be obtained
by configuring each module.

A. Interest Propagation phase

The algorithm is initiated by a sink node by sending interest
messages to potential source nodes. Since a sink may not

Fig. 2. Illustration of the Interest propagation phase

know the location of source nodes, it must propagate interest
messages throughout the network. The arrows in Fig. 2 shows
a possible propagation of interest messages initiated by node
10. As an interest message diffuses through the network, it
accumulates path cost (hop count) in a cost field. An interest
table is maintained at each node which has at most one entry
per data type for each sink. Each entry in the table is a tuple
(sink, data_name, cost, neighbor, timestamp, reinforced)

The fields sink and data_name uniquely identify each entry,
and the neighbor denotes the node from which the least cost
interest message has been received so far (other fields will be
explained later). Consider the case in Fig. 2 in which the first
interest message received by node 4 is from node 5. In this
case, a new entry is created in the interest table with sink =
10, data_name = X, and neighbor = 5, where X is the data
item requested by 10. The interest message is then forwarded
to the neighbors. Subsequent interest messages received by
4 with <source = 10, data = X> from other neighbors do
not result in the creation of a new entry. Thus, in the default
configuration of the interest propagation module, an interest
message is forwarded only once for each <sink, data_item>
pair. The interest table is periodically refreshed to remove
expired entries (using the timestamp field in the table).

B. Data Propagation phase

This section describes the operation of the data propagation
phase which starts when a source node receives an interest
message. If the interest message is the first request for a
<sink, data item>> pair or the interest message has a lower cost
than the one received earlier, then the source node responds
with a data message. For example, in 2, if node 1 receives
the first interest message from node 2 (with cost 3), then
it will reply with a data message. If node 1 subsequently
receives an interest message from node 3 (with cost 3), then
the message is ignored as it does not have a lower cost.
However, when the interest message from node 4 with cost 2 is
received, the source will reply with a data message. Thereafter,
the source will send data messages periodically, tagged with
increasing sequence numbers, to each neighbor from which
it has received a reinforcement message. As data messages
propagates through the network, they also accumulate the hop
count.

A data table is maintained at each relay whose format
is similar to the interest table except that it also contains a
sequence number. When a relay receives a data message for
item d from source s, it checks whether an entry for that data

548

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:6, 2012

item exists in the data table. If it is the first such message,
then a new entry is created in the table and the message
is forwarded to all neighbors with matching entries in the
interest table. If an entry already exists but with a smaller
sequence number, then the sequence number is updated and the
message is forwarded to only those neighbors whose entries
have already been reinforced in its interest table. Otherwise,
the data message is discarded. Thus, the first data message is
sent along all potential paths with matching interests, whereas
the subsequent data messages are sent only along selected
(reinforced) paths.

C. Path Reinforcement

The path reinforcement phase starts when a sink receives a
data message in response to its interest messages. In this case,
the sink selects one of its neighbors from which it has received
a data message to send a reinforcement message. In the default
case, the node selected is the first neighbor to deliver the data
message. At each relay node, on reception of a reinforcement
message, its parameters are compared with entries in the
interest table. If a matching entry is found, then the entry is
updated to indicate that it is reinforced and its expiry time
is extended. The reinforcement message is then forwarded
to the node from which the least cost data was received
from the source. On receiving a reinforcement message, a
source node updates its interest table in a similar fashion.
Thus, the reinforcement messages traverse the preferred path
from the sink to the source, reinforcing the entries on the
way. Subsequently, the source periodically sends out data
to neighbors that delivered reinforcements. As long as there
are reinforced entries in the interest tables on relay nodes
along a data path, the flow of data continues. If a sink does
not receive data it requested after a certain span of time, it
may recommence the interest cycle by propagating interest
messages.

We have described the basic functioning of the DGA phases.
There are additional mechanisms and data structures such
as those related to multiple data items, timers, refresh cycle
and interest cycle needed in the various phases. Overall, our
algorithm is organized in terms of three components: Sink
Node Algorithm, Relay Node Algorithm and Source Node
Algorithm. The Sink Node Algorithm describes the behavior
of the sink nodes. A sink node maintains two timers, one for
interest cycles and the another for refresh cycles. When the
sink starts up, it starts its interest timer and enters the interest
propagation phase when the timer times out. As discussed
above, this phase involves the sink node broadcasting interest
phases to locate potential sources. When the first data message
in response to the interest message is received, a sink node
starts its reinforcement timer. Again, as described above. the
reinforcement message (and phase) is started when this timer
times out. A relay node maintains an interest table to cache
interest messages, and a data table to cache data mesages.
When a data or an interest message is received, the appropriate
table is consulted (a new entry is made is one does not
exist) to generate a response as discussed in the description
of the phases above. Every source node maintains an interest

table similar to a relay node. When a source node receives
an interest message, it creates a new entry if one does not
exist. Otherwise, it updates the entry if the new message
provides a lower cost. Source nodes use timers to periodically
send data messages to reinforced data requests. This timer
is started when the node receives the first interest message.
When this timer expires, data is sent for requests which have
been reinforced. One such aspect is the sink correlation-logic.
Although a sink may be interested in more than one data item,
it may require all of them (And-correlation), any one of them
(Or-correlation) or some combinations of the data items. We
have added the mechanisms necessary to implement different
types of sink correlation.

IV. VARIANTS OF DATA GATHERING ALGORITHMS

In this section, we propose a set of data collection algo-
rithms. Our basic data collection algorithm, DGAI, corre-
sponds to the default configuration for each of the modules dis-
cussed in the previous section. Thus, DGA1 does not include
any optimizations. The variations discussed in the following
involve incorporation of heuristics in different phases to reduce
messages and tree cost.

A. Algorithm DGA2

This algorithm studies the impact of aggregation on the
performance of data collection protocols. Interest and data
aggregation is possible during the interest and data propagation
phases respectively. Aggregation can be done at the sources,
sinks or relay nodes. For example, several sink nodes may
be in the interest propagation phase at the same time. As a
result, a relay node may receive several interest messages to
be forwarded, which can be aggregated into a single message.
We refer to this a relay aggregation. The amount of relay
aggregation, however, is limited by the message size allowed
by the underlying protocol stack. Sink-aggregation can be done
at the sink nodes. If a sink node is interested in several data
items, then the interest messages for each of the data items can
be aggregated into a single message and propagated together
(rather than independent propagation of the interest messages).
Similarly, data aggregation can be done at the relays or at the
source nodes.

Algorithm DGA2 is a modified version of DGA1 with
support for both data and interest aggregation. Clearly, ag-
gregation is expected to reduce the number of messages trans-
mitted. However, it may also lower the tree cost. For example,
consider two source nodes s; and s, interested in data items
being produced by nodes in V; and V5 respectively, where V;
and V5, may overlap. In traditional aggregation techniques, the
trees to deliver data items to s; and so are first formed, and
then in-network aggregation is performed on edges common
to both trees. DGA3, however, performs aggregation of the
interest messages during the tree formation stage. This allows
us to exploit the overlap between V; and V, to construct
trees with more shared paths, thereby lowering the overall tree
cost. In particular, our experimentation results show that with
multiple consumers, aggregation reduces traffic along shared
paths resulting in faster interest and data propagation along

549

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:6, 2012

Fig. 3. Tllustration of the Cost division heuristic

these paths, which in turn increases the probability of such
paths being reinforced and selected to be part of the tree.

B. Algorithm DGA3

Algorithm DGA3 incorporates the following two heuristics
in addition to interest and data aggregation:
e Shortest path heuristic: This heuristic introduces rules for
more aggressive propagation of interest, data and reinforce-
ment messages to lower the tree cost. Hence, it lowers the tree
cost at the expenses of number of messages. As an example
of one such rule, in Fig. 2 where node 10 initiates the interest
propagation phase, node 4 may receive 10’s interest message
via multiple neighbors. Consider the case where 4 receives
the interest message from 7 after receiving the one from 5. In
both DGA1 and DGA2, the message from 7 is considered a
duplicate as a matching entry in the table is already present,
and is discarded. However, since this interest message has a
lower cost (shorter distance to 10), updating the interest table
entry will lead to a shorter path. In DGA3, node 4 updates
the interest table to reflect 7 as the new neighbor for sink
10, and then forwards this message. Thus, an interest message
for the same <sink,data_item> pair may be forwarded more
than once in DGA3. However, each subsequent propagation
contains a lower hop count.
o Greedy Heuristics: This heuristic is used to incremently
add consumers to already established paths between existing
producers and consumers. For example, consider the case in
Fig. 2 where node 9 starts an interest propagation phase for
the same data item as 10. If 4 receives 9’s interest message via
8, and 4 has already entered the data propagation phase with
respect to 10, then a matching entry for the data required by
9 will be found in node 4’s data table. In this case, in DGA3,
we do not propagate the interest message further and 4 simply
responds with the data message itself.

C. Algorithm DGA4

DGAA4 employs a cost-division heuristic which reduces the
tree cost by giving preference to shared paths in the presence
of multiple consumers and producers. We will explain this
heuristic via an example. Consider the scenario in Fig. 3
where both consumers C1 and C2 need data produced by P1.
The dashed arrows show a possible DGA graph with shortest
paths for each consumer. However, the solid arrows present
an alternative subgraph which has the same lengths for the
shortest paths between sources and sinks but has an lower

overall cost due to a shared path. We have incorporated a
heuristic which allows nodes to divide the cost of a shared path
when computing the distances. In Fig. 3, when node 7 sends
the first data message to C1 and C2 (which is a feedback on the
quality of the path), it divides the cost of the path accumulated
from the sink node to 7 by the number of interested consumers.
In this case, the cost is 2, which is divided among 2 consumers.
Hence, a cost of 1 is propagated to each consumer. Thus, C1
will compute the cost of sending via 7 as 2, which is lower
than the cost of the path via 8. A complete description of
DGA4 with additional details such as how to handle cost-
division when new consumers are added to existing paths are
given in the full paper.

V. DISCUSSION AND RELATED WORK

Many existing algorithms can be cast as variants in our
infrastructure, and new algorithms can be developed by in-
corporating new optimization heuristics. For example, we are
currently studying heuristics which optimize the tree cost
when the rates at which data is produced and consumed by
various nodes is taken into account. Diffusion algorithms for
data dissemination which perform in-network data aggregation
have been studied in [3], [4], [7], [8], For example, a two-
phase pull diffusion algorithm proposed in [4] can be cast
as a variant of DGA1. The main difference is that in the
two-phase pull algorithm, a gradient (interest table entry) is
maintained between each pair of neighbors for each data item
with a direction associated with it. This is different from our
basic algorithm which maintains a single entry for each pair
of data item and source. [8] presented a comparative study of
a set of data collection algorithms. However, the focus was
on comparing the data push-based technique to the data pull-
based technique. The focus of this paper is on a different set of
techniques for data collection. [9] studies the problem of data
collection in wireless sensor networks. However, their main
focus is to study the delay rates (ratio of data size and the
delay) and capacity of data collection protocols and provding
theorectical upper and lower bounds. An alternative strategy
in which a sink moves in a network and collect data from
sensors has been studied in [10]-[12].

VI. PERFORMANCE EVALUATION RESULTS

We evaluated the algorithms using TOSSIM. The evaluation
was done starting with a square grid of size 6x6 and increasing
the dimension in steps of 2 until size was 20x20 (total of
8 cases). Source and sinks are placed in the test topologies
at opposite ends of the square grid. We also varied the
number of consumers and producers. We will use xPyC to
refer to the case with = producers and y consumers. With
And-correlation, we assumed that each of the producers is
producing a distinct data item, and all consumers are interested
in all data items. For example in the case of 4P4C each of the
four sources generate four different data items and each of
the four consumers requests all of the four data types. The
possible values of = and y considered were 1, 2 and 4 (total
of 9 cases). Hence, 72 cases (8*9) were tested and results were
averaged over several runs for each case. For each case, we

550

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:6, 2012

measured the number of interest messages propagated and the
total cost of all trees constructed.

For Or-correlation, we assumed that all producers are pro-
ducing the same data item, and the consumers are interested
in receiving data from any one of them. We also assumed that
the underlying protocol stack imposes an aggregation limit of
4 (that is, at most 4 interest messages can be aggregated into
a single message).

A. And-correlation scenarios

1) Evaluation of DGA2: The performance of DGA2 which
supports interest and data aggregation is evaluated in this
section. For example, consider a network where a sink requires
two types of data, say temperature and humidity readings
and a source in the network generates both of these data.
When there is no network aggregation, each request by the
sink will be treated separately and may result in two in-
dependent paths between set up. With network aggregation,
the paths can be shared to lower the cost. Fig. 4 and Fig.
5 show the performance in terms of the number of interest

messages sent in the different algorithms. Fig. 4 shows
=1}
e M [l R
P
(U]
o a0
=
2
° an
S = oDGA2
£ ODGA3
@® 2
E
2w
g O
s ° T T T T T T T T)
E 1H1 1% 1PAC 2PIC 2P2C 2PAC 4P1C 4P2C 4P4AC
\2 -0
5
-
a0
Fig. 4. Comparison of number of messages
70
-
x
60 |
o
s
=
0 50 4
"
-
o
w0
-
E
o uDGA2
£*
s ODGA3
E
g
o
a
E
®
[1] —

[B 10 12 14 16 18 20
Dimension of the sensor node grid

Fig. 5. Evaluation with respect to network size

the percentage improvement of each algorithm over DGAI.

For each algorithm and each case (xPyC), the percentage
improvement for different network sizes was computed and
the average is presented in Fig. 4. As can be seen in Fig.
4, DGA2 outperforms DGAL1 in all cases as the number of
consumers and producers are varied. Note that for case 1P1C,
there is no scope for aggregation, and hence both DGA1
and DGA2 behave the same. As discussed earlier, interest
aggregation can take place at the sink nodes (where the interest
messages for different data types are aggregated) and at the
relay nodes (where aggregation happens when messages arrive
simultaneously to be forwarded over common links). For cases
2P1C and 4P1C, we see significant improvements of 48.33%
and 73% respectively, which is a result of sink aggregation
(no relay aggregation happens with one consumer). As we
increase the number of consumers, cases 2P2C and 2P4C
show an improvement of 53.72% and 56.32% respectively.
This incremental improvement is due to aggregation at the
relay nodes. In fact, for 4P2C and 4P4C, a drop from 73%
(for 4P1C) to 69.44% and 67% respectively was observed. In
these cases, since the aggregation is limited to 4 messages,
no aggregation at relay nodes is possible. Fig. 5 shows that
the relative performance of DGA2 over DGAL1 as the network
size increases for the case 2P4C. As the number of consumers
is kept constant and the network size is increased, there is
a reduced probability of relay aggregation and therefore, the
relative performance of DGA2 over DGA1 drops with network
size. A similar trend is observed in all other cases.

Fig. 6 shows the performance improvements in tree cost for
different algorithms (averaged over different network sizes).
As can be seen, DGA2 results in lower cost trees as com-
pared to DGA1 (except for test case 1P1C where no interest
aggregation is possible). This improvement is primarily due to
reduction in the traffic along shared paths on which aggregated
interest and data messages are sent. In particular, in the
single consumer cases, sink aggregation results in a significant
improvement. Since interest messages for different data items
for a sink v are aggregated at the sink itself, if a sub-path
is selected for one data item d1 in v.consume and it is also
a possible sub-path for another data item d2 in v.consume,
then that sub-path is also likely to be selected for d2 due
to simultaneous flow of interest messages. However, as the
number of consumers increase, we see a relatively lower
improvement due to the interest aggregation limit of 4. When
we repeated the experiments for the cases with 4 consumers by
increasing the aggregation limit to 8, we observed a continuous
increase in the performance of DGA2 over DGAI1 as the
number of consumers increase.

2) Evaluation of DGA3: In this section, we report the
results of our experiments evaluating the performance of
DGA3. As can be seen in Fig. 4 and Fig. 5, DGA3 uses
more messages as compared to DGA2 as it may propagate
additional interest messages. The comparison of DGA3 and
DGAL is more interesting. There are three factors impacting
the number of messages when comparing DGA1 and DGA3:
(a) increase due to propagation of lower cost interest messages,
(b) reduction due to aggregation, and (c) reduction due to the
greedy heuristics. For cases 1P1C and 1P2C (see Fig. 4), the
number of interest messages generated by DGA3 is higher (rel-

551

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:6, 2012

35 4

30

25

20

15

% improvement of tree cost over DGA1

o =

1P1C 1P2C 1P4C 2P1C 2P2C 2PAC 4P1C 4P2C 4PAC

Fig. 6. Comparison of tree cost

45 -
40

25 | EDGA3
ODGA4

30

25 A

20 A

% improvement of tree cost over DGA1

0 T T T T T T 1
6 8 10 12 14 16 13 20

Dimension of the sensor node grid

Fig. 7. Tree cost comparison for case 4P4C

ative improvement of -17% and -12.58% respectively). Here,
we find that factor (a) is dominant as not much aggregation is
possible. The results for other cases show the opposite: DGA3
outperforms DGA1 (for example, there is a 35% improvement
for 1P4C). In these cases, factor (b) dominates (a). However,
for the test cases 4P1C, 4P2C and 4P4C, the improvements
observed are 66.91%, 57.69% and 66.14% respectively. In
these cases, the aggregation reaches the saturation level as the
aggregation limit is 4. Here, factor (b) reaches its limit and
we see a drop in relative performance from 4P1C to 4P2C.
However, the greedy heuristic factor (c) offsets this drop when
number of consumers is increased to 4 in 4P4C.

As shown in Fig. 6, DGA3 outperforms both DGA1 and
DGA2 with respect to tree cost criteria. This was expected
as DGA3 attempts to reduce tree cost at the expense of more
messages. As the network size is increased by keeping the
number of consumers constant, the density of consumers de-
creases. This decreases the probability of receiving messages
over longer paths before those on shorter paths increases.
Hence, the relative advantage of DGA3 drops. This is reflected
in Fig. 7 which shows the tree cost for the case 4P4C for
different number of nodes. As can be seen, as the network size
increases, the percentage improvement of DGA3 over DGAL1
decreases.

= DGAZ
= DGAS3
O DGA4

3) Evaluation of DGA4: We did not evaluate DGA4 for test
cases with one sink (which includes the cases 1P1C, 2P1C
and 4P1C) as there is no room for cost division heuristic
with a single consumer. Furthermore, there is no change in
the number of interest messages sent as compared to DGA3.
Hence, we only evaluated the tree cost and not the number of
messages. As can be seen in Fig. 6, DGA4 results in lower
tree cost as compared to all other algorithms. We also find
that DGA4 is more effective when the density of consumers
is high.

For example, as the number of consumers increases, the
relative advantage of DGA4 over DGA3 in same sized net-
work improves (as more consumers imply more possibility of
shared paths). For a network with grid size of 20x20, DGA4
outperformed DGA3 by 2.85% for 2 consumers, and by 6.39%
for 4 consumers. Similarly, as the number of consumers is
kept constant and the network size increased, the possibility
of shared paths reduces, and hence, DGA4 becomes less
effective. This is reflected in Fig. 7 which shows a relative
decrease in the improvement of DGA4 over DGAI as the
network size increases.

4) Comparison of Steiner tree cost: For each of the test
cases, we also computed the optimal tree cost (which is the
cost of the Steiner tree for the graph). The percentage deviation
from the Steiner tree cost for the various algorithms is shown
in Fig. 8. Note that lower the deviation, the better is the
performance. It can be observed that the deviation from the
Steiner tree cost increases as the number of producers and
consumers is increased. This reflects the increased difficulty
of finding an optimal solution in more complex configurations.
It can also be observed that for each test case, the tree cost
deviation decreases as we move from DGA1 to DGA4.

B. Sinks with Or-correlation logic

We also experimented with Or-correlation logic at sinks. In
this case, the sink is interested in getting data from any one
of the sources (thus, a path has to be established for each sink
with respect to one source only). Test cases with one source
or one sink are not performed as they can be reduced to cases
already analyzed for And-correlation. The results for the test
cases for Or-correlation are shown in Fig. 9. The results
showed similar trends as observed in the And correlation case.

552

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:6, 2012

% difference from Steiner Tree
8

1ufm
I

m DGA1
0 DGA2
ODGS3
DGS4

1P1C 1P2C 1P4C 2P1C

Fig. 8. Difference from the Steiner tree cost

70 4
]
o
LE T
[}
[
=
50 4
[
=
8 40 g 2P2C
2 E2P4C
S 30 A o4P2C
= 54P4C
8
£ 204
[
3
E 0
h-]
=

0 4 . : !

DGAI DGAZ DGAS DGAd
Fig. 9. Tree cost for Or-correlation

VII. CONCLUSION

We have presented a configurable infrastructure for
implementation of data collection algorithms. We proposed
and implemented four algorithms for data collection in
this infrastructure. We performed a comprehensive set of
experiments to evaluate their performance by varying several
factors such as network size, number of producers and
consumers and aggregation limit. We presented several
conclusions from our experiments. For example, we showed
that aggregation not only reduces the number of messages,
but also lowers the tree cost when aggregation is performed
during the tree construction phase. We also showed that
various heuristics such as the shortest path and the cost-
division heuristics result in lower cost trees and are more
effective when the density of consumers is high.

ACKNOWLEDGEMENT

This work was supported by NSF grants CNS0615337 and
CNS0551626 and DARPA contract F33615-00-C-3044.

REFERENCES

[1] Y. Snakarasubramaniam, I. F. Akayildiz, W. Su, and E. Caryirci. A
survey of sensor networks. [EEE Communications, 40(8):102-114,
August 2002.

2P2C

[10]

[11]

[12]

4P1C 4P2C

Chee-Yee Chong and S.P. Kumar. Sensor networks: evolution, opportu-
nities and challenges. Proceedings of the IEEE, 91(8):1247-1256, 2003.
B. Krishnamachari, D. Estrin, and S. Wicker. Modeling data-centric
routing in wireless sensor networks. In Proceedings of the IEEE
INFOCOM, 2002.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
Proceedings of the ACM International Conference on Mobile Computing
and Networking, 2000.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and

scalable simulation of entire TinyOS applications. In Proceedings of

the First ACM Conference on Embedded Networked Sensor Systems,
2003.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory,
Algorithms and Applications. Prentice Hall, 1993.

B. Krishnamachari and J. Heidemann. Application-specific modelling of
information routing in sensor networks. In Proceedings of the Workshop
on Multiop Wireless Networks in conjunction with the Itnernational
Performance Computing and Communications Conference, 2004.

J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination
algorithms to application requirements. In Proceedings of the ACM
Conference on Embedded Networked Sensor Systems, 2003.

Siyuan Chen, Yu Wang, Xiang-Yang Li, and Xinghua Shi. Order-optimal
data collection in wireless sensor networks: Delay and capacity. In /EEE
Annual IEEE Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, 2009.

I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas. Sink mobility
protocols for data collection in wireless sensor networks. In Proceedings
of the 4th ACM International Workshop on Mobility Management and
Wireless Access, 2006.

G. Anastasi, M. Conti, and M. Di Francesco. Reliable and energy-
efficient data collection in sparse sensor networks with mobile elements.
Performance Evaluation, 66(12):791-810, December 2009.

L. He, J. Pan, and J. Xu. Reducing data collection latency in wireless
sensor networks with mobile elements. In Proceedings of the Interna-
tional Workshop on Sensor, Actuator and Robot Networks in conjunction
with IEEE INFOCOM, 2011.

553

