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A Fast Cyclic Reduction Algorithm for A Quadratic
Matrix Equation Arising from Overdamped Systems

Ning Dong and Bo Yu

Abstract—We are concerned with a class of quadratic matrix
equations arising from the overdamped mass-spring system. By
exploring the structure of coefficient matrices, we propose a fast
cyclic reduction algorithm to calculate the extreme solutions of the
equation. Numerical experiments show that the proposed algorithm
outperforms the original cyclic reduction and the structure-preserving
doubling algorithm.
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I. INTRODUCTION

IN a quadratic eigenvalue problem (QEP) [17], the eigen-
values λ and eigenvectors x are to be find to satisfy

Q(λ)x = (λ2M + λD +K)x = 0, M,D,K ∈ C
n×n. (1)

In this paper, we are interested in a QEP arising from the
mass-damped system, that is,

M = mIn,
D = Pndiag(d, . . . , d, 0)PT

n + τIn,
K = Pndiag(k, . . . , k, 0)PT

n + κIn

(2)

and Pn = (δij − δi,j+1)
n
i,j=1 with δij the Kronecker delta, i.e.

δij = 1 for i = j and δij = 0 for i �= j. The parameters in (2)
have the following physical meaning. The i-th mass weight
m is connected to its (i + 1)-th neighbour by a spring and a
damper with constants k and d, respectively. The i-th mass is
also connected to the ground by a spring and a damper with
constants κ and τ , respectively. We refer to [16] for more
details.

The overdamped case of system (1) often need to be
detected in many applications and has the following definition
[6].

Definition 1.1. If M > 0, D > 0, K ≥ 0 and D > μM +
μ−1K for some μ > 0, the QEP (1) from mass-spring system
is called overdamped.

Here and hereafter, the matrix inequality M1 ≥ M2(M1 >
M2) for Hermitian matrices M1 and M2 means that matrix
M1 −M2 is positive semidefinite (definite).

Guo and Lancaster [7] recently showed that the overdamp-
ing condition can be checked efficiently by computing two
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eigenvalues of the extremal solutions1 of the quadratic matrix
equation (QME)

Q(S) =MS2 +DS +K = 0 (3)

with M,D,K ∈ R
n×n the same as those in (2). Therefore,

the detection of a overdamped system (1) relies on obtaining
the extremal solution of (3) efficiently.

Generally, the fixed-point methods [11], Newton’s method
[11], [12], cyclic reduction (CR) [2] and different structure-
preserving doubling algorithms (SDA) [4, 14, 18–20] are
efficient algorithms for computing the extreme solutions of the
QME (3). Although they all share the complexity of O(n3)
flops per iteration, fixed-point methods are linearly convergent
and latter three in general provide quadratic convergence.
Moreover, the CR algorithm and the SDA algorithm are con-
sidered more effective than Newton’s method since a matrix
decomposition and several matrices multiplications are only
required [14], [20].

In this paper, we reconsider the CR algorithm applied
into (3). By taking full advantage of the special structure
of coefficient matrices in (2), we extend them to a class of
centrosymmetric Toeplitz-plus-Hankel (T +H) matrices, and
then devise an algorithm for performing the CR iteration with
O(n2) flops per step. This algorithm is based on a suitable
modification of the fast inverse formula for T + H matrices
developed in [10]. The numerical experiments show that the
proposed fast CR algorithm outperforms the CR algorithm [2]
and the SDA [4].

The rest of this paper is organized as follows. We extend
the coefficient matrices of the overdamped QME (3) to a
class of centrosymmetric T +H matrices in the next section.
In Section 3, we review the CR algorithm in [2], [6] and
develop a fast CR algorithm based on the recursively fast
inverse formula. We obtain a similar fast inverse formula for
another class of overdamped QMEs in Section 4. Section 5
is devoted to test the proposed algorithm and compare its
numerical performance with the CR algorithm [2], [6] and
the SDA [4]. We conclude the paper by discussion in Section
6.

II. PRELIMINARIES

In this section, we do some preliminaries. We first introduce
some properties on T +H matrices. Let T = (ti−j)

n
i,j=1 and

H = (hi+j−2)
n
i,j=1 be Toeplitz matrix and Hankel matrix,

1The extreme solutions are two solutions S(1) and S(2) which have as
their eigenvalues the n largest eigenvalues and the n smallest eigenvalues in
the corresponded quadratic eigenvalue problems [7].
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respectively. The next lemma gives an equivalent description
of T +H matrix [9].

Lemma 2.1. A matrix M is a T + H matrix if and only if
the (n − 2) × (n − 2) submatrix in the center of the matrix
∇Wn

(M) = WnM −MWn is the zero matrix, where Wn =⎡⎢⎢⎢⎢⎣
1 1
1 0 1

. . .
. . .

. . .
. . . 0 1

1 1

⎤⎥⎥⎥⎥⎦.

Note that the matrix Wn such that the (n − 2) × (n − 2)
submatrix of ∇Wn(M) is zero matrix is not unique [9]. We
use Wn of the form in Lemma 2.1 so that it is convenient to
derive a fast inverse formula in the next section.

It follows from Lemma 2.1 that the T+H matrix N satisfies
the following displacement structure (see also [10], [9])

WnN −NWn = GF, (4)

where G = (g1, g2, g3, g4) and F = (f1, f2, f3, f4)
T with

gi, fi ∈ R
n, i = 1, 2, 3, 4. That is, the Wn displacement

rank of T + H matrix does not exceed 4. Specially, if the
RHS of (4) equals zero matrix, the matrix M is called Wn-
commutable T+H matrix. The following lemma describes the
Wn-commutable T +H matrix in the component-wise sense.

Lemma 2.2. Let M = T +H = (tij)
n
i,j=1 + (hi+j−2)

n
i,j=1.

M is a Wn-commutable T +H matrix if and only if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t1 = t−1, hn = hn−2,
t1−i + hi−1 = t−i + hi−2,
ti−1 + h2n−1−i = ti + h2n−i, i = 2, · · · , n− 1.
ti−1 + hi−1 = ti + hi−2,
t1−i + h2n−1−i = t−i + h2n−i,

(5)

Proof. It follows from Lemma 2.1 that the nonzero entries
of M can only appear in its first and last rows and its first
and last columns. Direct computations and the definition of
Wn-commutable T +H matrix complete the proof. �

Denote by J = (δi,n+1−j)
n
i,j=1 the counter-identity matrix.

A T +H matrix M is called centrosymmetric if JMJ =M .
Evidently, if the Toeplitz part of the matrix M is symmetric
and the Hankel part of M is persymmetric2, then M is a
centrosymmetric T +H matrix, but the inversion is not true.

The following lemma indicates some interesting properties
about (cenrtosymmetric) Wn-commutable T +H matrices.

Lemma 2.3. (a) Let A ∈ R
n×n be nonsingular, A is a

(centrosymmetric) Wn-commutable T +H matrix if and only
if A−1 is a (centrosymmetric) Wn-commutable T +H matrix.

(b) Let A, B, C and D ∈ R
n×n be (centrosymmetric)

Wn-commutable T + H matrices, then AB + CD is a
(centrosymmetric) Wn-commutable T +H matrix.

Proof. Since the inverse, product and sum of centrosymmet-
ric matrices are all centrosymmetric, the conclusion is direct
by the definition of Wn-commutable T +H matrix. �

2A matrix A ∈ R
n×n is persymmetric if it symmetric about its northeast-

to-southwest diagonal[5].

The above lemma shows that the inverse, product, sum and
their combinations of Wn-commutable T+H matrices are still
Wn-commutable T + H matrices. This structure-preserving
property provides the base for designing a fast CR algorithm
for QME (6) in the next section.

III. FAST CR ALGORITHM

A. The CR algorithm

The cyclic reduction (CR) algorithm is a very efficient
algorithm for solving some nonlinear matrix equations (see [2],
[15] for example). Attractive properties of the CR algorithm
include its quadratic convergence rate, low computational
cost per iteration and nice numerical reliability. The general
iteration scheme for finding the extremal solutions of QME

Q(X) = AX2 +BX + C = 0 (6)

is as follows:

Algorithm 3.1. The Cyclic Algorithm.

step 0 : S0 = B, A0 = A, B0 = B, C0 = C.
step 1 : For k = 0, 1, 2 . . . , until convergence, do

Sk+1 = Sk −AkB
−1

k Ck,
Ak+1 = AkB

−1

k Ak,
Bk+1 = Bk −AkB

−1

k Ck − CkB
−1

k Ak,
Ck+1 = CkB

−1

k Ck.

When the QEP corresponding to the QME (6) is a over-
damped, Guo, Higham and Tisseur [6] showed that the matrix
inequalities

Ak > 0, Ck ≥ 0, Bk ≥ μ2
k

Ak + μ−2
k

Ck, k ≥ 0 (7)

hold with some positive real constant μ. Thus the iterations
(7) are well defined.

The convergence of iteration (7) in this case are summarized
as follows [6, Theorem 3.1, Corollary 4.7].

Theorem 3.1. Let QME (6) be overdamped. Consider the
iteration (7). We have

(a) ‖Ak‖‖Ck‖ converges quadratically to zero with any
matrix norm ‖ · ‖.

(b) {Sk} converges quadratically to a nonsingular matrix
Ŝ. Moreover, the two extreme solutions of QME (6) are given
by

S(1) = −Ŝ−1C, S(2) = −A−1ŜT . (8)

(c) {Bk} converges quadratically to a nonsingular matrix
B̂ = A(S(1) − S(2)).

As far as the complexity at each iteration is concerned,
Algorithm 3.1 requires one matrix inverse and several matrix
multiplications. The computational cost can be specified as
follows [7]. Let

Bk = LkL
T
k (9)

be the Cholesky factorization. Let

Vk = L−1

k Ak and Uk = L−1

k Ck. (10)

Then AkB
−1

k Ck = V T
k Uk, CkB

−1

k Ak = (AkB
−1

k Ck)
T ,

AkB
−1

k Ak = V T
k Vk, and CkB

−1Ck = UT
k Uk. Therefore, the

computational work required for one iteration is about 19n3/3.
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B. The fast algorithm

In this subsection, we shall give a fast implementation of
Algorithm 3.1 by the use of special structures of coefficient
matrices in (2).

It is not difficult to see that coefficient matrices M , D and
K in (2) fall in a class of T +H matrices

R =
(
r|i−j|+

{
ri+j−1 i+ j ≤ n+ 1,
r2n+1−i−j i+ j > n+ 1,

)n

i,j=1

. (11)

In fact, we have R = M with r0 = m, r1 = · · · = rn = 0,
R = D with r0 = 2d + τ, r1 = −d, r2 = · · · = rn = 0 and
R = K with r0 = 2k + κ, r1 = −k, r2 = · · · = rn = 0.

Note that the Toeplitz part and the Hankel part of the
matrix R are symmetric and persymmetric, respectively, thus
by Lemma 2.2, R is a centrosymmetric Wn-commutable T+H
matrix. It is well known that the inverse and the Schur
complement of displacement structure matrices can preserve
the low rank property [13], so does R.

Let A = M , B = D and C = K in Algorithm 3.1, It
follows from Lemma 2.3 that iteration sequences {Ak}, {Bk},
{Ck} and {Sk} are all centrosymmetric Wn-commutable T +
H matrices and, thereby, the limit matrices Ŝ and B̂ (hence
the extreme solutions S(1) and S(2)) are centrosymmetric Wn-
commutable T + H matrices due to Theorem 3.1. With this
observation, we can develop a fast algorithm with O(n2) to
fulfill the CR iteration as follows.

Algorithm 3.2. Fast cyclic reduction algorithm.

step 0 : S0 = B, A0 = A, B0 = B, C0 = C.
step 1 : For k = 0, 1, 2 . . . , until convergence, do

1.1. Compute fast inverse B−1

k with O(n2).
1.2. Compute products AkB

−1

k Ck, AkB
−1

k Ak and
CkB

−1

k Ck with O(n2).
1.3. Fulfill step 1 in Algorithm 3.1.

It is clear that the fast implementation of Algorithm 3.2
depends on the fast inversion of matrix Bk. Moreover, we
notice that each Bk is of the form (11), so that the fast
inversion can be done by a suitable modification of the
algorithm proposed by Heinig, Jankowski and Rost [10]. Let
R be nonsingular, from (4) one obtains

WnR
−1 −R−1Wn = −

4∑
i=1

xiy
T
i ,

where xi, yi are the solutions of equations

Rxi = gi, RT yi = fi (i = 1, 2, 3, 4).

Since R is a centrosymmetric T + H matrix, the above
equations are reduced to

Rx1 = e1, Rx2 = en, Rx3 = Rx4 = 0 (12)

and
y1 = x3, y2 = x4, y3 = x1, y4 = x2,

where e1 and en are the first and the last column of identity
matrix In.

The following lemma gives the inverse formula of the matrix
R by using the solution in (12).

Lemma 3.2. Let R in (11) be nonsingular. Then the columns
uj(j = 1, . . . , n) of R−1 can be determined by the solution
of Rx2 = en and the recursion

un = x2, uj−1 =

{
Wnun − un, j = n
Wnuj − uj+1, 2 ≤ j ≤ n− 1

(13)

Proof. We prove the lemma by induction. It is clear that
un = x2 for j = n. Assume that Ruj = ej(j ≤ n), where ej
is the j-th column of the identity matrix. By WnR−RWn = 0,
we have

Wnej −RWnuj = 0.

This together with

Wnej =

{
en−1 + en, j = n
ej−1 + ej+1, 2 ≤ j ≤ n− 1

yields R(Wnun − un) = en−1 and R(Wnuj − uj+1) =
ej−1(2 ≤ j ≤ n). The proof is complete. �

The computation of formula (13) is 2n2. Since R−1 is
centrosymmetric, the cost can be reduced to n2/2.

To complete the computation of R−1, we need to solve the
equation Rx2 = en in (12) with O(n2). This can be done by
a recursion procedure. Rewrite R in (11) as R = (r|i−j| +
ri+j−1)

n
i,j=1 and consider the sequence of principal sections

of order m of R

R(m) = (r|i−j| + ri+j−1)
m
i,j=1 (1 ≤ m ≤ n).

Let u(m) and v(m) be vectors with the dimension m such that

R(m)v(m) = −g(m), R(m)u(m) = e(m)
m , (14)

where

g(m) = (rm + rm+1 − rm−1 − rm,

rm−1 + rm+2 − rm−2 − rm+1, . . . ,

r1 + r2m − r0 − r2m−1)
T ∈ R

m (15)

and e(m)
m is the last column of identity matrix of the dimension

m.

Lemma 3.3. Assume R to be strongly nonsingular. Then the
solutions v(m) of (14) have the recursion

v(m+1) =
(
W (m+1) − (1 +

γm
δm

− λm
δm−1

)Im+1

)
·
[
v(m) − e

(m)
m

1

]
− δm
δm−1

⎡⎣ v(m−1) − e
(m−1)

m−1

1
0

⎤⎦ , (16)

where

δm = (f (m))T (v(m) − e(m)
m ) + r0 + r2m+1 �= 0,

γm = (g(m+1))T
[
v(m) − e

(m)
m

1

]
,

λm = (f (m+1))T
[
v(m) − e

(m)
m

1

]
with

f (m) = (rm + rm+1, rm−1 + rm+2, . . . , r1 + r2m)T ∈ R
m
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and W (m) ∈ R
m×m has the same structure with Wn in

Lemma 2.1.

Proof. The definition of δm implies it is nonzero, otherwise
(v(m)−e(m)

m , 1)T would be a nontrivial vector of the kernel of
R(m+1). It follows from the equality g(m) = f (m)−R(m)e

(m)
m

that

R(m+1)

[
v(m) − e

(m)
m

1

]
=

[
0(m)

δm

]
(17)

and

R(m+1)

⎡⎣ v(m−1) − e
(m−1)

m−1

1
0

⎤⎦ =

⎡⎣ 0(m−1)

δm−1

λm−1

⎤⎦ . (18)

Rearranging (17) and (18) yields

R(m+1)(1− λm−1

δm−1

)

[
v(m) − e

(m)
m

1

]

+ R(m+1) δm
δm−1

⎡⎣ v(m−1) − e
(m−1)

m−1

1
0

⎤⎦
=

⎡⎣ 0(m−1)

δm
δm

⎤⎦ . (19)

On the other hand, we have the following displacement
equation

W (m+1)R(m+1) −R(m+1)W (m+1)

= g(m+1)(e
(m+1)

m+1 )T − e
(m+1)

m+1 (g(m+1))T (20)

with g(m) defined in (15). A postmultiplying (20) by[
v(m) − e

(m)
m

1

]
yields

R(m+1)

{
(W (m+1) − γm

δm
Im)

[
v(m) − e

(m)
m

1

]}

−
⎡⎣ 0(m−1)

δm
δm

⎤⎦
= −g(m+1).

This together with (19) completes the proof. �
Lemma 3.3 and (17) directly yield the following theorem.

Theorem 3.4. The solution of linear system Rx2 = en in (12)
is given by

x2 =
1

δn−1

[
v(n−1) − e

(n−1)

n−1

1

]
. (21)

The computational cost of the formula (21) is about 13n2/2.
Thus with (13) and (21), the fast inverse of B−1

k in step 1.2
of Algorithm 3.2 can be derived in about 7n2.

We now turn to the products in step 1.3 of Algorithm 3.2.
Consider two matrices R1 and R2 of the structure (11), their
product can be obtained as follows.

1. Compute the last column of the product R1R2. The cost
is 2n2.

2. The elements of R1R2 (denote by rij) with the subscript
satisfying i+ j ≥ n+ 1 and j ≥ i can be recovered by

rij = ri−1,j+1 + ri+1,j+1 −
{
ri,j+1, j = n− 1
ri,j+2, j < n− 1

. (22)

The cost is n2/2.
3. The remainder elements in R1R2 can be recovered by

the symmetry and persymmetry.
With the above scheme, the computational cost of products

AkB
−1

k Ck, AkB
−1

k Ak and CkB
−1

k Ck in step 1.3 of Algorithm
3.2 is about 25n2/2. Hence the whole complexity of fast CR
algorithm per step is about 45n2/2.

IV. ANOTHER SPECIAL OVERDAMPED QME

In this section, we consider another special case as an
example in [16]. The springs (dampers) connect each mass
to its neighbor and to the ground have the same constant κ
(τ ), except the first and last ones for which κ1 = κn = 2κ
(τ1 = τn = 2τ ). It is easy to see that such coefficient matrices
fall in another class of T +H matrices

R̃ = r̃|i−j| −
{
r̃i+j i+ j ≤ n+ 1
r̃2n+2−i−j i+ j > n+ 1

.

Let W̃n = (δi+1,j + δi,j+1)
n
i,j=1 ∈ R

n×n. We can similarly
define the W̃n-commutable matrix if a matrix M satisfies
MW̃n = W̃nM . Analogous to the Lemma 2.2, the following
result gives the equivalent conditions of a W̃n-commutable
T +H matrix.

Lemma 4.1. Let M = T +H = (tij)
n
i,j=1 + (hi+j−2)

n
i,j=1.

M is a W̃n-commutable T +H matrix if and only if{
t1 = t−1, hn = hn−2

−ti = −t−i = hi−2 = h2n−i, i = 2, · · · , n− 1.
(23)

Different with Wn-commutable T + H matrix, a W̃n-
commutable T + H matrix is definitely centrosymmetric.
Indeed, Lemma 4.1 shows that the Toeplitz part and the Hankel
part of a W̃n-commutable T + H matrix is symmetric and
persymmetric, respectively. Thus it is centrosymmetric.

By Lemma 4.1, R̃ defined in (23) is a W̃n-commutable
T+H matrix. Following the same way with the above section,
we can similarly develop a fast CR algorithm which is based
on the next fast inverse formula. Since the proof is similar to
that of Lemma 3.2 and Lemma 3.3, we omit it.

Lemma 4.2. Let R̃ in (23) be nonsingular. Then the columns
ũj(j = 1, . . . , n) of R̃−1 can be determined by the solution
of R̃ũn = en and the recursion

ũj−1 = W̃nũj − ũj+1, 2 ≤ j ≤ n. (24)

Theorem 4.3. The solution ũn in Lemma 4.2 can be obtained
by

ũn =
1

δ̃n−1

[
ṽ(n−1)

1

]
, (25)
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where ṽ(n−1) ∈ R
n−1 has the recursion

ṽ(m+1) =
(
W̃ (m+1) + (

λ̃m−1

δ̃m−1

− λ̃m

δ̃m
)Im+1

)[
ṽ(m)

1

]

− δ̃m

δ̃m−1

⎡⎣ ṽ(m−1)

1
0

⎤⎦ (26)

with
δ̃m = (g̃(m))T ṽ(m) + r̃0 + r̃2(m+1) �= 0,

λ̃m = (g̃(m+1))T
[
ṽ(m)

1

]
and

g̃(m) = (r̃m − r̃m+2, r̃m−1 − r̃m+3, . . . , r̃1 − r̃2m+1)
T ∈ R

m.

V. NUMERICAL EXPERIMENTS

The purpose of this section is to show the effectiveness of
the proposed fast CR algorithm. We compared the numerical
performance of Algorithm 3.2 (FCR) with that of Algorithm
3.1 (CR) and SDA (see SDA-2 in [4]). Our experiments
were implemented in Fortran 90 and tested on a PC with
AMD 3600+ processor and 512M memory, which had unit
roundoff u = 2−53 ≈ 1.1× 10−16. In CR algorithm and SDA
algorithm, we used Fortran subroutines DSPTRF and DTRSM
in LAPACK [1] to compute the Cholesky factorization in (9)
and solve the triangular matrix equation for Uk and Vk in (10),
respectively. The stop criterion of all three algorithms is

‖Sk+1 − Sk‖1
‖Sk‖1 ≤ nu, (27)

where n is the dimension of the problem. When (27) was
satisfied, we took Sk+1 as an approximation to Ŝ.

Example 5.1 Consider the QME (3) with

M = I,
D = β · tridiag(−10, 30,−10),
K = tridiag(−5, 15,−5),

where β > 0 is a real parameter to determine the overdamped
degree of (3) [6].

Following the detecting method proposed in [6], QME (3)
is weakly overdamped for some β ∈ (0.447213, 0.447214).
We took the dimension n varying from 500 to 3000 and
β = 1, 0.4473 (i.e different overdamped degrees) to test all
algorithms. We reported the CPU time elapsed for obtaining
S(2) in Figure 1 and the relative residual, calculated as

Res =
‖Q(Sk)‖F

‖A‖F ‖Sk‖2F + ‖B‖F ‖Sk‖F + ‖C‖F ,

in Figure 2.
We can see from Figure 1 that all algorithms need more

CPU time to obtain the solvent when the overdamped degree
of the QME (3) is weaker (i.e. β is smaller). However in any
case, the FCR algorithm outperforms the CR algorithm and
SDA algorithm in CPU time. We also note that the used time
of FCR algorithm increase largely when n > 2000, this may
be caused by the insufficient memory in our PC. In terms

500 1000 1500 2000 2500 3000
10
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10
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10
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10
3

10
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 Demension for problem

 C
P

U
 t
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e
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s
) 

 FCR
 CR
 SDA

 − β=1
⋅ ⋅ β=0.4473

Fig. 1. CPU time for different algorithms and μ in Example 5.1.
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e
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v
e
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e
s
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u
a
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 − β=1
⋅ ⋅ β=0.4473

Fig. 2. Relative residual for different algorithms and μ in Example 5.1.

of accuracy, Figure 2 shows that the CR algorithm and SDA
algorithm perform better than FCR algorithm.

Example 5.2 We consider the QME (6) with A and C of
the form R defined in (2), where rm (1 ≤ m ≤ n) are random
numbers distributed in (−1, 0) and r0 = 2n. Let B = μA +
μ−1C + 10−3In with μ > 0. It follows from Definition 1.1
that such QME is overdamped.

We took μ = 1, 0.5 to test the CPU time used for different
algorithms. The stop criterion and the computation of the
relative residual are the same with Example 5.1. Figure 3 and
4 give the total time to obtain S(2) and the calculated relative
residual, respectively.

We can see from Figure 3 that the CPU time used by
FCR algorithm was less than the CR algorithm and the SDA
algorithm for different μ. The same with Example 5.1, Figure
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Fig. 3. CPU time for different algorithms and μ in Example 5.2.
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Fig. 4. Relative residual for different algorithms and μ in Example 5.2.

4 shows that the relative residual of FCR algorithm is larger
than the other two non-structured algorithms.

VI. CONCLUSION

We have presented a fast cyclic reduction algorithm for
obtaining extremal solutions of quadratic matrix equations
arising from the overdamped mass-spring system. This method
is based on recursive formula derived by exploring the struc-
ture of the coefficient matrices. The preliminary numerical
results show that the proposed method outperforms the non-
structured CR algorithm and SDA algorithm. At the moment,
we are not aware if it is possible to devise a more general
fast CR algorithm when the damper (spring) constants are
different. We leave it as a topic for further study.
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