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Abstract—Support Vector Machine (SVM) is a statistical 

learning tool developed to a more complex concept of 
structural risk minimization (SRM). In this paper, SVM is 
applied to signal detection in communication systems in the 
presence of channel noise in various environments in the form 
of Rayleigh fading, additive white Gaussian background noise 
(AWGN), and interference noise generalized as additive color 
Gaussian noise (ACGN). The structure and performance of 
SVM in terms of the bit error rate (BER) metric is derived and 
simulated for these advanced stochastic noise models and the 
computational complexity of the implementation, in terms of 
average computational time per bit, is also presented. The 
performance of SVM is then compared to conventional binary 
signaling optimal model-based detector driven by binary 
phase shift keying (BPSK) modulation. We show that the 
SVM performance is superior to that of conventional matched 
filter-, innovation filter-, and Wiener filter-driven detectors, 
even in the presence of random Doppler carrier deviation, 
especially for low SNR (signal-to-noise ratio) ranges. For 
large SNR, the performance of the SVM was similar to that of 
the classical detectors. However, the convergence between 
SVM and maximum likelihood detection occurred at a higher 
SNR as the noise environment became more hostile. 

 
Keywords—Colour noise, Doppler shift, innovation filter, 

least square-support vector machine, matched filter, Rayleigh fading, 
Wiener filter.  

I. INTRODUCTION 
UPPORT Vector Machine (SVM) is a recent class of 
statistical classification and regression techniques getting 

an increased attention on its application to classification 
problems in various engineering areas. SVM is based on the 
statistical learning theory initially developed by Vapnik [1] in 
1979 and later developed to a more complex concept of 
structural risk minimization (SRM). SVM is formulated on the 
structural risk minimization (SRM) principle which minimizes 
an upper bound on the generalization error, as opposed to the 
classical empirical risk minimization (ERM) approach which 
minimizes the error on the training data and is embodied in 
statistical learning. 
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In a broad sense, two classes of classifiers are widely used 
in the literature: (1) model-based classifiers such as the 
maximum likelihood (ML) and maximum aposteriory (MAP) 
detectors and (2) boundary-based classifiers such as support 
vector machine, neural networks and fuzzy logic. 

SVM claims to guarantee generalization, i.e., the decision 
rules reflect the regularities of the training data rather than the 
incapabilities of the learning machine. 

SVM has been widely used in solving classification and 
function estimation problems due to its many attractive 
features and promising empirical performance with many 
successful applications in synthetic aperture radar image 
classification and pattern recognition [2]. Recently, SVM has 
been introduced to digital communication systems as a new 
method for channel equalization [3] – [5] and has proved to 
be very effective in overcoming intersymbol interference (ISI) 
and co-channel interference (CCI). SVM was also applied for 
the equalization of burst time division multiple access 
(TDMA) transmission [6]. To the best of our knowledge, 
SVM has not been implemented yet for receiver detection in 
digital communication systems in the presence of advanced 
additive colour interference noise and multiplicative channel 
fading noise in the presence of random Doppler shift. Notable 
exceptions are the diverse work of Dubois and Abdel-Latif [7] 
who first applied SVM to OOK-infrared channels in a local 
fading environment with partially developed multipath fading 
and additive white Gaussian interference noise (AWGN), then 
analysed MPSK detection in additive colour noise and fully 
developed Rayleigh fading [8], and then applied SVM 
detection to microwave radar and ultrasound images corrupted 
by partially developed speckle noise [9, 10]. Other notable 
exception is the initial work of Mokbel and Hashem [11] who 
applied SVM to a specific BNRZ detector (sampler and 
comparator) using multiple samples per binary period in the 
presence of AWGN in wire-line communication systems.  

II. THE SYSTEM: MODULATION, NOISE, AND DETECTION 

A. Modulation 
When making a decision on the choice of model-based or 
boundary-based classifiers, we must take into consideration 
the driving modulation scheme. Binary phase shift keying 
(BPSK) is increasingly being adopted as a physical layer 
modulation technique for existing and future wireless 
technologies due to its simplicity, particularly when compared 
with its competitor quadrature amplitude modulation (QAM). 
Most notably, the most popular wireless LAN standard, IEEE 
802.11b [12], uses a variety of different PSKs depending on 
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the data-rate required. At the basic-rate of 1 Mbit/s, it uses 
DBPSK (differential BPSK). The higher-speed wireless LAN 
standard, IEEE 802.11g, uses BPSK for the lowest of its eight 
data rates (6 and 9 Mbit/s modes). BPSK is also used in RFID 
standards such as ISO 14443 (which has been adopted for 
biometric passports, credit cards, and many other applications) 
because it is simple and appropriate for low-cost passive 
transmitters. In addition, ZigBee (a similar technology to 
bluetooth, also known as IEEE 802.15.4) employs BPSK in 
the frequency band 868–915MHz. 

Since SVM is essentially a binary classifier, it is only 
logical to apply SVM to BPSK to improve its BER 
performance.  

B. Stochastic Noise Modeling 
Rayleigh fading: The Rayleigh fading channel is widely 

assumed in the literature for wireless systems, especially for 
mega- and marco-cells in the absence of dominant line of 
sight [13]. The fading envelope obeys the scattering stochastic 
model 
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with fading power being 2

L Lν γ= . Ak is the random amplitude 
of the kth scatterer, kφ  is the random phase of the kth scatterer 
assumed to be uniformly distributed between [0, 2π), and L is 
the random number of scatterers in the channel. When L is 
sufficiently large so that the central limit theorem (CLT) holds 
and the scattered field is approximately a circular complex 
Gaussian random variable, we say that the fading is fully 
developed. Even for statistically dependent scatterers, the 
scattered field would still be asymptotically circularly 
Gaussian hinging on the fact that the sequence of scattering 
random variables satisfies the α-mixing property or the 
conditions of the Lindeberg-Feller CLT. A simple random 
variable transformation results in the fading envelope γL 
asympotically Rayleigh distributed (with parameter 

( )2
dif LP E γ= ), and the fading power νL exponentially 

distributed (central chi-square with 2 degrees of freedom). 
Colour noise: In general, the received wireless BPSK signal 

is corrupted by two types of noises: (1) multiplicative channel 
fading noise Lγ  and (2) additive background colour Gaussian 
noise (ACGN) which characterizes more complicated noise 
interference. This stochastic model is widely used in wireless 
optical communication systems [14] in the presence of 
interfering ambient or incandescent/fluorescent light and non-
ideal photo-detectors. Technically, these noise models 
respectively correspond to shot noise and “random telegraph 
signal” or laser-phase noise. Most commonly, ambient light 
induces shot noise in the photo-detector of optical receivers.  

By studying colour noise, we are assuming a more  severe 
noise environment. Without loss of generality, we will 
consider the autocorrelation function of a random telegraph 
signal (or bi-phase laser noise) 

 

 2( ) exp( 2 ),NR τ ε λ τ= −  (2) 
 
where 2ε is the peak-to-peak noise amplitude and λ is the rate 
of the influencing underlying Poisson point process [14]. The 
power spectral density (PSD) of the noise is given by 
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which has a de-emphasis filter-like characteristics. 

In addition to optical systems, receiver performance in time 
division multiple access (TDMA) wireless systems such as 
Global System for Mobile Communications (GSM), Enhanced 
Data GSM Evolution (EGDE), and Digital Advanced Mobile 
Service (DAMPS), is often interference-limited. Interference 
is statistically characterized as colour noise and occurs in the 
form of (1) co-channel interference (CCI) caused by other 
users operating on identical carrier frequencies in neighboring 
cells, and (2) adjacent-channel interference (ACI) caused by 
users operating on adjacent carrier frequencies. ACI is 
typically dominated by interference from first adjacent 
channels since interference from secondary adjacent channels 
is usually filtered out. A receiver demodulator based on 
matched filter-driven maximum likelihood detector is optimal 
only in the presence of white noise. Therefore, colored noise 
can significantly degrade the performance of the receiver if it 
is not compensated for. 

Doppler shift: Random Doppler shift is caused by the 
relative motion between the transmitter and receiver. Local 
scattering typically comes from many angles randomly 
distributed around the mobile causing a range of random 
Doppler shifts, known as the Doppler spectrum. Different 
arrival angles ψk  from each k-th scattered wave will cause the 
transmitted signal to be received at different frequencies. The 
Doppler shift of each wave component is 

( / ) cos( )
kd c kV c fξ ψ= , V being the relative velocity between 

target and sensor and c = 3(108) m/s is the speed of light. The 
maximum Doppler shift corresponds to the received local 
scattering component whose direction exactly opposes the 
mobile's trajectory, that is, ψk = π , and is given by the 
expression = /D cf V f c . 

The expression of the received faded signal must also 
include the effects of motion induced frequency and is 
expressed as ( ) cos(2 ), , .c c c D cs t t fγ πν φ ν ξ γ φ ν= + = + ⊥ ⊥(  
In a separate paper, we derived the statistical distribution of 
Doppler shift and proved it to be consistent with the classical 
Clark’s model [15]. 

The Doppler shift may appear to be insignificant. For 
example, if fc= 1 GHz, and V = 60 km/hr (16.7 m/s), then the 
Doppler shift will be 55.5 Hz. This shift of 55 Hz in the 
carrier will, in general, not affect the transmission for most 
modulation schemes. However, Doppler shift can cause 
significant problems in BPSK driven OFDM because this 
modulation technique is sensitive to carrier frequency offsets 
(a slight shift in frequency will cause carriers to become non 
orthogonal). Doppler shift can also be significantly large when 
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the relative speed is higher (for example in air force planes 
moving at the speed of sound and in low earth orbiting 
satellites). 

C. Model-Based Detection Schemes 
Classical filters: Matched filters (correlator structure) and 

wiener filters have received widespread attention in the 
literature and have been extensively explained [13]. In this 
section we will highlight a novel filter, termed innovation, and 
also discuss the process of whitening the colour noise. 

Innovation filter: The generalized matched filter (GMF) has 
the same structure and behavior as the matched filter but is 
used when the signal is random. The general expression for 
the GMF is given by 
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for signals with power spectral density (PSD) separable as 

*
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for non separable PSD, in which case the GMF is sub-optimal. 
For optimal binary signal detection, 

1 0( ) ( ) ( ) ( )ds t s t s t s t= = −( ( , where ( )is t(  is the random 
scattered faded signal for bit i (i = 0, 1). Tb is the bit period 
and is equal to the reciprocal of the incoming bit rate (Tb = 1/ 
Rb). 

The resulting signal-to-noise ratio at the output of the GMF 
is given by 
 

 0,max
( )
( )

S

N

P f
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P f

∞

−∞

= ∫ . (6) 

 
When the noise is white, the GMF has a structure identical 

to an innovation filter: 
 

 
0

2( ) ( )o SH f P f
N

+= , (7) 

 
where ( )SP f+  is an innovation filter for the signal s(t), and 
hence the association of the nomenclature “innovation” with 
the generalized matched filter. 

Whitening filter: The primary role of the whitening filter is 
to whiten the coloured noise ( that is, transform its PSD to a 
constant) since the matched filter cannot process coloured 
noise. There are two primary approaches to whitening 
coloured noise: 1) implicit whitening, and 2) explicit 
whitening.  

The implicit whitening approach incorporates a whitening 
function in a so-called pre-filter with length that is much 
longer than a span of a corresponding channel when a 

decision feedback equalizer (DFE) or a decision feedback 
sequence estimator (DFSE) are employed. The drawback of 
implicit whitening is that an ideal pre-filter (i.e., a whitened 
matched filter) is anti-causal, unlimited in time, and can only 
be approximated. In addition, it is computationally complex 
and expensive to setup and process the pre-filter because it 
involves spectrum factorization of the propagation channel 
and inversing the maximum/phase factor of the channel. 

On the other hand, explicit whitening involves employing a 
whitening filter with the structure 
 

 1( ) ,
( )

N

wH f
P f+

=  (8) 

 
with ( ) ( ) ( )N N NP f P f P f+ −= , 

*
( ) ( )N NP f P f− += , or 

( ) ( ) ( )N N NP s M s M s= − , ( ) ( 2 )N NM s P s j fπ+= = . 
For the colour noise whose PSD is given in (3), the 

whitening filter is given by 
 

 ( ) ,w
j fH f λ π

ε λ
+

=  (9) 

 
or, in time domain, 

 

 '1 1( ) ( ) ( )
2wh t t tλδ δ

ε λ
⎛ ⎞= +⎜ ⎟
⎝ ⎠

. (10) 

III. SUPPORT VECTOR MACHINE 
In this section, we provide a succinct introduction to the 

SVM approach. The reader is referred to the initial work of 
Vapnik [1] and the book of Christianini [16] for more in-depth 
treatment of the SVM theory. 

The relation between the capacity of a learning machine and 
its performance is ruled by a set of boundaries, which is 
referred to as the bound on the generalization performance. 
Statistical pattern recognition techniques face two problems: 
the identification problem and the parameters estimation 
problem. The identification problem is the problem of 
determination of the degree of freedom or complexity of the 
model and is generally the more complex problem [17]. The 
estimation problem is how to get an optimal estimate of the 
model parameters regarding the training data set. 

Let us consider a mapping d HΦ � a: , which maps the 
training data from d�  to a higher Euclidean space H, that 
may have an infinite dimension. In this high dimension space, 
the data is linearly separable, hence linear SVM formulation 
above can be applied for any type of data [2]. In the SVM 
formulations, the training data only appear in the form of dot 
products x.x. These can be replaced by dot products in the 
Euclidean space H, i.e., ϕ(.).ϕ (.). 

The dot product in the high dimension space can also be 
replaced by a kernel function. By computing the dot product 
directly using a kernel function, one avoids the mapping Φ(x). 
This is desirable because H has possibly infinite dimensions 
and Φ(x) can be tricky or impossible to compute. Using a 
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kernel function, a SVM that operates in infinite dimensional 
space can be constructed [16].  

Given a training set of N data points {yk, xk)N, where xk 
denotes the kth input pattern and yk the kth output pattern, the 
SVM aims at constructing a decision function or classifier 
 

 ( ) ( )Tf x sign x b⎡ ⎤= +⎣ ⎦w ϕ   

 
1

( ) ,
N

k k k
k

sign y K x x bα
=

⎡ ⎤
= +⎢ ⎥
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∑ ,  (11) 

 
where w is the weight vector in the reproducing kernel Hilbert 
space (RKHS), αk are support values (Lagrangian multipliers), 
b is the bias term, and the kernel function 
 

 ( , ) ( ) ( ).k kK x x x xϕ ϕ=  (12) 
 
For every new test data, the kernel functions for each SV 
(support vector) need to be recomputed. 

For any kernel function suitable for SVM, there must exist 
at least one pair of {H, Φ}, such that (12) is satisfied. The 
kernel that has these properties is said to obey the Mercer’s 
condition, i.e., for any g(x) with finite L2 norm, 

 
 2( )g x dx < ∞∫ ,  (13) 

 ( ) ( ) ( ) 0K x y g x g y dxdy ≥∫∫ ,  (14) 

 
By choosing different kernel functions, the SVM can emulate 
some well known classifiers [18], as shown in Table I. 
 

TABLE I 
KERNEL FUNCTIONS’ CLASSIFIERS 

Kernel Function Type of Classifier 
( , )K x y xy=  Linear 

( )2 2
2( , ) exp /K x y x y σ= −  Gaussian radial bias 

function (RBF) 

( , ) ( )dK x y xy τ= +  Polynomial of degree d 

( , ) tanh( )K x y xyκ θ= +  Multi layer perceptron  

 
While standard SVM solutions involve solving quadratic or 

linear programming problems, the least square version of 
SVM (LS-SVM), which has been adopted for this research, 
corresponds to solving a set of linear equations. In LS-SVM, 
the Mercer’s condition is still applicable. Hence several types 
of kernels can be used, yet the RBF is the adopted one since it 
gives a Gaussian distribution for the errors in the feature space 
yielding an optimal estimate of the support values [19]. Many 
reasons could be stated for preferring LS-SVM over other 
models of SVM, yet the most important one is that LS-SVM is 
an iterative method that could be used to solve large scale 
problems with robustness in the sense of the choice of the 
regularization and smoothing parameters. Moreover, it offers 
a fast method for obtaining classifiers with good 
generalization performance in many real life applications [20]. 

So far, the formulation of SVM was based on a two-class 
problem (SVM is essentially a binary classifier). Various 

schemes can be applied to the basic SVM algorithm to handle 
the M-class pattern classification problem. Such schemes are 
useful when applying SVM to M-ary signaling (such as 
QPSK), a study we have already published in [8]. 

IV. SVM-BASED BPSK DETECTOR 
The BPSK SVM-based detector is illustrated in Fig. 1. The 

received noisy signal is processed through a simple correlator, 
where it is mixed with locally generated reference signal and 
then integrated over each bit period. This has the effect of 
enhancing the received SNR. 

 

 
Fig. 1 BPSK SVM-based receiver 

 
The output of the correlator becomes input to the support 

vector machine, which classifies the received data and 
produces a stream of bits representing the received message. 

V. SIMULATION, RESULTS, AND DISCUSSIONS 
For simulation purposes, Matlab is used due to its enhanced 

mathematical capabilities and engineering based structure. 
The LS-SVM model was simulated using Matlab code on a 
1.7 GHz Pentium IV computer with 256 MB RAM. 

Without loss of generality (wlg) and for the purpose of 
simulation, we assumed Pdif = 1 (average diffuse power-
Rayleigh driving parameter), λ = ε = 1 (color noise 
parameters), fD = 240 Hz for fc = 2.4 GHZ (maximum Doppler 
shift). To take full advantage of the SVM scheme, we consider 
several samples of the BPSK signal in the bit period. This 
offers a generalization since SVM is applied in a wider space. 

The results of the simulated LS-SVM-based BPSK system 
in the presence of Rayleigh fading and AWGN are shown in 
Fig. 2. We observe that the SVM-based detector outperforms 
(in terms of bit error rates) all the ML-based detector for low 
SNR. For high SNR, the SVM and the best of the ML-based 
detectors, namely the Wiener-ML scheme, produce close 
results and converge at SNR = 16.18 dB. 

Yet this superior performance occurs at the cost of 
processing time as shown in the Table II. This drawback is 
expected because SVM is a block-data based method. 
 

TABLE II 
PROCESSING TIME FOR THE VARIOUS BPSK SCHEMES IN AWGN 

Adopted Scheme Processing Time (micro secs/bit) 
Matched filter 0.0255 

Innovation filter 0.0312 
Wiener filter 0.1025 

SVM 0.6023 
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Fig. 2 Comparison of BPSK performance for different detection schemes in 

multipath Rayleigh fading channel with AWGN 
 
Fig. 3 illustrates the results of the simulated LS-SVM-based 

BPSK system in the presence of Rayleigh fading and ACGN. 
We make the same observation that the SVM-based detector 
outperforms (in terms of bit error rates) all the ML-based 
detector for low SNR. For high SNR, the SVM and the 
Wiener-ML scheme produce close results and converge at 
slightly higher SNR  (17.72 dB) than communication in an 
AWGN environment. 

 

 Fig. 3 Comparison of BPSK performance for different detection schemes in 
multipath Rayleigh fading channel with ACGN 

 
This superior performance also occurs at the cost of 

processing time as shown in the Table III.  
 

TABLE III 
PROCESSING TIME FOR THE VARIOUS BPSK SCHEMES IN ACGN 

Adopted Scheme Processing Time (micro secs/bit) 
Matched filter 0.0253 

Innovation filter 0.0314 
Wiener filter 0.1025 

SVM 0.6023 
 

Fig. 4 illustrates the results of the simulated LS-SVM-based 
BPSK system in a more severe mobile noisy environment 

consisting of Rayleigh fading, AWGN, and the presence of 
random Doppler shift in the carrier caused by the relative 
motion between transmitter and receiver. We notice that the 
SVM-based detector outperforms (in terms of bit error rates) 
the wiener filter, the best of the ML-based detectors, for low 
SNR. For high SNR, the SVM and the Wiener-ML scheme 
produce close results and converge at a higher SNR  (19.64 
dB) than communication in non mobile environment. We also 
observe from Fig. 4 that the performance deteriorates when 
the communication environment is mobile with a Doppler 
shift. 

 

 
Fig. 4 Comparison of BPSK performance for Wiener and SVM schemes in  
a wireless (mobile) environment with Rayleigh fading and AWGN with and  

without Doppler shift 
 

Expectedly, this superior performance occurs at the cost of 
processing time as shown in the Table IV.  
 

TABLE IV 
PROCESSING TIME FOR BPSK SCHEMES IN AWGN WITH DOPPLER SHIFT 

Adopted Scheme Processing Time (micro secs/bit) 
SVM 0.721 

Wiener filter 0.1045 
 
When we consider the results of Figs. 2 – 4 cumulatively, 

we make the important observation that for large SNR, there 
are diminishing differences in the BER curves between all 
detection schemes. For high SNR, the BER is very weak and 
cannot be measured with sufficient precision for model based- 
and SVM-based methods, so a much larger training data block 
must be used. The converging dB levels of the SNR for both 
SVM and Wiener-ML detectors are displayed in Table V. We 
notice that the convergence between SVM and Wiener-ML 
occurred at a higher SNR as the noise environment became 
more hostile. 
 

TABLE V 
WORKING REGION OF SVM-BASED DETECTOR FOR BPSK SYSTEM 

Noise Environment SNR Value  (dB) 
Rayleigh fading and AWGN 16.18 
Rayleigh fading and ACN 17.72 

Rayleigh fading, AWGN, and Doppler 19.64 
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VI. CONCLUSION 
In this paper, we applied SVM to BPSK detection in 

wireless systems with severe noise conditions modeled by 
Rayleigh fading channel noise, additive white Gaussian noise, 
additive colour noise, and random Doppler shift. SVM was 
found to be a learning machine suitable for wireless 
communication with the ability to handle data coming out 
from a relatively hostile wireless channel at a low SNR with a 
considered superiority to the classical ML-based detector 
schemes at the cost of relatively longer processing time (this is 
expected because SVM is a block-data based method). For 
large SNR, the performance of the SVM detector was similar 
to that of the best of the ML-based detectors, namely the 
Wiener-ML scheme. However, the convergence between 
SVM and Wiener-ML occurred at a higher SNR as the noise 
environment became more hostile. The fact that SVM 
outperformed the Wiener filter can be justified by noting that 
the Wiener filter, being the theoretical optimal filter in the 
mean square sense, is a linear filter whereas SVM is non 
linear. We also note that the BER can be significantly reduced 
if the signaling order is increased (as shown in [8]) and if 
channel coding is employed. Detection of channel coded 
signals is a possible immediate extension of our work.  

One major weakness of SVM is that it needs excessive 
training before implementation. Furthermore, the training of 
SVM is not as straightforward as it seems; numerical 
problems will cause the training to give non-optimal decision 
boundaries due to the formulation of the SVM training. In 
other words, the selection of the user-defined parameters, 
which has a significant effect on the generalization 
performance of the classifier, should be related to the Vapnik 
Chervonenkis (VC) dimension of SVM.  

Since BPSK is widely used in existing wireless systems 
(e.g. IEEE 802.11 WLAN and RFID ISO 14443) and 
proposed for future technologies, we expect this research to 
give a clear insight of the performance of the new SVM-based 
system, thus triggering a newer generation of SVM-based 
wireless systems. 

As future work, we propose to adopt one of the many pre-
designed SVM chips [21] and implement a real-time system to 
compare results with the simulation outputs. As processors 
technology becomes faster SVM will be able to meet real-time 
computational requirement of high speed data communication.  

We also propose to apply relevance vector machine (RVM) 
[22] to BPSK detection. RVM has an identical functional form 
to SVM and has been demonstrated to have a comparable 
generalization performance to SVM while requiring 
dramatically fewer kernel functions, thus enjoying faster 
computation. 
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