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Abstract—This is the second part of the paper. It, aside from the 

core subroutine test reported previously, focuses on the simulation of 
turbulence governed by the full STF Navier-Stokes equations on a 
large scale. Law of the wall is found plausible in this study as a model 
of the boundary layer dynamics. Model validations proceed to 
include velocity profiles of a stationary turbulent Couette flow, pure 
sloshing flow simulations, and the identification of water-surface 
inclination due to fluid accelerations. Errors resulting from the 
irrotational and hydrostatic assumptions are explored when studying 
a wind-driven water circulation with no shakings. Illustrative 
examples show that this numerical strategy works for the simulation 
of sloshing-shear mixed flow in a 3-D rigid rectangular base tank. 
 

Keywords—potential flow theory, sloshing flow, space-time 
filtering, order of accuracy. 

I. INTRODUCTION 
S shown in the first part of the paper, the hydrostatic 
assumption has been modified into a dynamic one and all 

eddy viscosity terms have been retained in order to relax the 
restrictions of potential flow theory.  Equations have been also 
discretized explicitly in the horizontal direction, and the terms 
of the horizontal derivatives have been grouped together to 
form a forcing function regarding the scale of shallow fluid 
flows in the horizontal direction, which was relatively larger 
than in the vertical direction. Following the numerical models 
developed in the first part, this study has dealt with the strategy 
of numerical calculations, such as setting boundary conditions 
close to a solid wall and deciding solution procedures for the 
target variables. The possibility that the Smagorinsky-Lilly 
“constant” employed by different researchers varied with flow 
cases and could be much smaller than that determined by Lilly 
[1] has been estimated as well. More than five flow cases were 
investigated in this study, not only for model validation but 
also for robustness. It is then possible to realize how the 
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hydrostatic assumption and the restriction of potential flow 
theory affect the turbulent flow behavior in our simulations. 
Model applicability was finally tested by simulating a 
sloshing-shear mixed water flow where the viscous forces and 
the dynamic pressure acted simultaneously and were of the 
same importance. In the present study, all water flows were 
restricted in a rigid prismatic tank without a roof. 

II. STRATEGY OF NUMERICAL CALCULATIONS 

A. Prescription of Boundary Conditions 
At solid walls, the non-slip boundary condition is not 

necessarily obeyed. Furthermore, the imposition of a non-slip 
boundary condition would require the resolution of the viscous 
sub-layers, which would translate into an unbearable 
computational burden. Since detailed boundary layer 
dynamics are not of interest for most large eddy simulations, 
solid wall boundary conditions are specified by employing an 
approach similar to the one applied by Deardorff [2] and 
Mason and Callen [3] , which is based on the use of the law of 
the wall. Strictly speaking, the law of the wall is only valid for 
ensemble averaged values of steady velocity fields. 
Nevertheless, as argued by Mason and Callen [3], inertia terms 
are negligible in the neighborhood of the wall. Departures 
from ensemble averaged to space-time filtered velocities will 
be small. Consequently, the law of the wall was plausible in 
this study as a model of the boundary layer dynamics. A little 
effort leads to a Robin-type expression of the following form 
at the bottom of the lake: 
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with the roughness coefficient being: 
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where 0z = roughness height, κ = von-Karman’s constant = 
0.41, and Δ = the outer edge of boundary layer, i.e., a distance 
from the wall which is sufficiently larger than the viscous 
sub-layer thickness and sufficiently small for the law of the 
wall to hold as a good approximation [4]. After taking a finite 
difference discretization, Eq. (1) can be reformed as an explicit 
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function of 
Δ=zu  being obtained without iteration. 

Expressions similar to Eq. (1) can be rewritten for vertical 
walls. 

B. Selection of CSL 
The Smagorinsky-Lilly turbulence model contains two 

important parameters, the eddy constant CSL and the filtering 
length sλ . Since eddy viscosity estimated by the model is 
proportional to the squared product of CSL and sλ , calibration 
of the two parameters has its importance. Lilly [1] pointed out 
that, analogous to the von Karman’s constant in the viscous 
sub-layer, CSL is a constant ( ≈ 0.17) in the inertia sub-range 
where fluid flow is essentially homogeneous and isotropic, 
and the balance between eddy production and viscous 
dissipation is expected. Thus, grid size cannot be too large or 
small such that the corresponding wave number falls outside 
the inertia sub-range. It is also well known that for shear flows 
the value has to be smaller [2] and that for wall-bounded flows 
the value has to be a function of the distance from the wall [3]. 
In practice, the CSL value is adjusted, however, by 
trial-and-error until reasonable numerical solutions result. For 
example, Bedford and Babajimopoulos [5] selected a CSL 
value of 0.005 so that the computed eddy viscosity smoothly 
transmitted and reached a steady state without causing 
numerical divergence. Schmidt and Schurmann [6] set CSL 
=0.165 to perform a large-scale simulation of the atmospheric 
boundary layer. The difference between the two values was 
large in spite of minor variations being given to sλ . Liao et al. 
[7] suggested that CSL  ranged between 0.1 and 0.5, and 
adopted 0.17 to simulate the vertical jets in a cross flow field. 
Chung [8] showed that CSL was constant in the inertia 
sub-range, but possibly varied for wind-induced shear flows 
with 0=Ψi . Therefore, it seemed reasonable to adopt a CSL 
value different from 0.17 in engineering practices, but to view 
0.17 as typical (refer to the Appendix of Part I). 

C. Numerical Analysis Procedures 
After setting the SLC  value and boundary conditions, the 

resulting (fully discrete) algebraic system was manipulated to 
yield a linear system of pentadiagonal matrix equations, each 
corresponding to a specific position on a horizontal plane. In 
other words, each matrix equation was composed of the 
vertically aligned grid nodes associated with the same (x,y) 
coordinate. Equations were thus decoupled in the horizontal 
direction, along which nodal values could be borrowed from 
those of the previous time steps. An efficient, direct back 
substitution solver was implemented for the solution of these 
systems. 

The fully discretized version of Eqns. (10), (11), (13) and 
(16) resulted in a system of nonlinear algebraic equations 
which, in the Picard iteration environment, could be solved 
according to the following procedures: i) solving the 
horizontal momentum, Eq.(10), for knu ,1+  and knv ,1+  with k 
representing the iteration number, and the pressure 

information lagging by one iteration; ii) solving the modified 
continuity, Eq.(13), for knw ,1+ , which proceeds as step i) on 
uncoupled vertical lines; iii) determining the total water depth 

knH ,1+  from Eq. (16); and iv) finally solving the vertical 
momentum, Eq.(11), for knP ,1+  by integration. For step i), 
since the horizontal dynamics were treated explicitly in Eq. 
(10), coupling only existed for nodal values that were 
vertically aligned. Procedures i) - iv) were repeated until the 
preset convergence criteria for all target variables were 
satisfied. Computations were then advanced to the next time 
step. It is noteworthy that a rigorous criterion 

nnn www /1 −+ <0.00001 was set for w, regarding w as the 

most sensible variable to iterations. Before satisfying the 
criterion, five to seven iterations were generally required for 
each time step. The solution strategy thus avoided the 
constitution of the Poisson equation for the calculation of 
pressure, which involves a significant mathematical burden. 

III. MODEL VERIFICATIONS 
Wave computations have been organized into figures in this 

section. Each figure consists of several subfigures, to which 
letters (a), (b), (c) and so on are assigned in left-to-right, 
up-to-down order. 

A. Validation of Shear Flow 
As a diagnostic test for the above developed numerical 

models involving wind shears, simulations of a stationary 
turbulent Couette flow governed by 
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were performed in a wide channel with a depth of h and a flat 
bottom. Eq. (3) was obtained from Eq. (2) by dropping all the 
acceleration terms, pressure gradients, and iΨ , if the flow in x 
and y was uniform. Eq. (3) implies the total shear stress 

ρτ / ( zuG ∂∂= / ) is constant in z and so is the shear velocity 

ρτ /* =u  for an incompressible flow. Assume now that the 
flow consists of three parts in the channel: sub-layer, wall 
layer, and velocity defect layer, in which the velocity 
distributions are usually described, respectively, by 

ν/~/ 2
*uzu ∂∂ , ( )zuzu κ/~/ *∂∂ , and ( ) Gzu //~/ ρτ∂∂ . 

Let the sub-layer range from 0 to Δ ( 0→ ), and the wall layer 
occupy a thickness of zd. Eventually, )*/(* dzshzuG =  and 

shuG /*= , with s being a proportional constant, is plausible 
in the wall layer and the velocity defect layer, respectively. 
Using s=17, the velocity distribution is expressed by: 
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in the wall layer, and 
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in the velocity defect layer. Eqs. (4) and (5) are obtained also 
by directly integrating Eq. (3) using the specified G. Thus, for 

hzd 145.0= , the velocity at the free water surface (z=h) is 
given by: 
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Let the channel have a length of 1000 m (x-direction), width 

of 1000 m (y-direction), and mean depth of 2 m (z-direction). 
The following discretization characteristics were used: 

100=Δ=Δ yx  m, 2.0=Δz  m, 10=Δt  sec., and 01.00 =z m. 
Boundary conditions at x=0 m and x=1000 m were zero 
x-gradients, while the boundary conditions at the bottom of the 
lake and at y=0 and y=1000 m were the simulated law of the 
wall applied at a distance of 02.0=Δ  m. On the free water 
surface, there was assumed to be a constant wind shear stress. 
By experience, wind shear stress is often expressed as 

rraw VVC ρτ 10=  [9] with aρ  the air density, 10C  the drag 
coefficient referring to the conventional anemometer height of 
10 m, and rV  the relative velocity of the wind speed to the 
fluid at the water surface. Recent data [10] has suggested that 
the 10C  given by  106.1 3

10
−×=C  for smVr /7≤  and 

 105.2 3
10

−×=C  for smVr /10 ≥ . Thus, a typical wind stress 

of 2/1.0 mN  resulting from a wind speed of sm /7  was 
obtained. 

Since Kt was decomposed into several terms when 
discretizing Eq. (3), the model validation proceeded with the 
presets of 0=SLC  and G=ν  in our program code. By doing 
so, what we solved turned out to be Eq .(3), and Eq. (5) was 
then used to compare with the numerical solution. Figure 4 
shows the time evolution of the u profile associated with the 
channel center. The flow profile was being produced by a 
constant wind shear stress of 0.5 N/m2 ( τ= ) applied to 
initially quiescent water. The solid line represents the 
analytical solution (6). As expected, the computed results 
(symbols) at various time levels gradually matched the steady 
state solution (solid line). Changing the Δ  and τ  values 
yielded different velocity profiles that all approached the 
corresponding analytical solution as time passed, attesting 
again to the model’s accuracy. 

Fig. 4 Time evolution of the x-component velocity profiles 
(symbols). Solid line represents the analytical solution 

associated with the steady state Couette flow. 
 

B. Validation of Sloshing Flow 
In this subsection, the flow dimensions chosen were L=100 

m, B=50m and D=10 m, with L, B, and D as the length, width, 
and water depth, respectively. The grid node numbers equaled 
11 in both x and y directions and 31 in the z-direction. Other 
related parameters were 1000=ρ  kg/m3, 01.00 =z  cm, 

03.0=Δ  cm, 2.0=Δt  second, and 01.0/ 0 =sLsL CC , where 

0sLC  corresponded to a theoretically determined value (refer 
to Chung [11]). 

When a rectangular rigid water tank shifts only along the x 
direction, and the shift can be defined as ( )tctx ωsin)( = , a 
one-dimensional change in the water level can occur over 
time. Many scholars, such as Faltinsen [12], Okamoto and 
Kawahara [13] and Chen et al. [14], have discussed this 
phenomenon. Wu et al. [15] cited the linear solution of 
velocity potential found from the results of Faltinsen [12] to 
validate their own models. The linear solution of water 
elevation reads (there is a typo for En in Wu et al. [15]): 
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As admitted by Faltinsen et al. [16], the linear theory itself 

describes only qualitatively well the measured elevation of 
swirling waves frequently appearing close to tank walls and 
turning potentially in a rotational motion. Though their 
solutions in general were limited by several factors, Eq. (7) has 
been employed here for solution validation, as cited by Wu et 
al. [15]. 

Figure 5 with a c value of 0.00183 shows the comparison 
between the linear solution and the simulated water level of the 
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water tank during the shift at 9.0/ 0 =ωω , 1.1, and 0.99. It 
was found that in Figure 5 all the numerical solutions 
compared favorably with Faltinsen’s linear solutions [13]. 
Using smaller time intervals or grid sizes, or adopting a tank 
ten times smaller, did not reduce solution differences 
significantly. Adjusting 0z , Δ , and CSL values led to the 
same result, indicating the presently adopted grid mesh was 
sufficient for numerical convergence and the viscosity terms 
could be ignored as for most sloshing flows. To identify if the 
sloshing flows were irrotational, as assumed by Faltinsen et al. 
[16], [17] for their analytical solution, Figure 6 shows the 
temporal variation of the normalized vorticity defined as 

( )2/ ων LcΩ , where vorticity xwzu ∂∂−∂∂=Ω // . In Figures 
6(a) and (b), which correspond to the 0/ωω  values of 0.9 and 
0.583, respectively, the time history of the normalized 
vorticity had a mean value of zero. Also, in spite of higher 
amplitudes, the curve in Figure 6(a) intersects with the 
abscissa more frequently than in Figure 6(b) within a given 
time period, implying that water flows with higher 0/ωω  
values were more likely to return to irrotation ( 0=Ω ). 
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Fig. 5 Comparisons of the numerical results with the analytical 
solution based on Faltinsen’s linear theory. 9.0/ 0 =ωω , 1.1, 

0.99 for subfigures (a), (b),and (c), respectively. 
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Fig. 6 A check on flow vorticities at 
1,5.0/,0/ === σByLx  for various frequencies. 

 

IV. APPLICATIONS 
Following the essential tests mentioned above, the 

numerical method proposed in this paper was applied to 
further analyses of water flows confined in a rigid tank. The 
numerical experiment was broken down into six cases for 
discussion. The parameters applied to each case are recorded 
in Table V, and the calculation results or graphs derived are 
labeled as shown in Column 2, Table V.  

Case 1 in Table V studied the water flow behavior in a tank 
moving horizontally at a constant acceleration. The results in 
Figure 7 show where each major variable (u, w, p, H) 
fluctuated with time after the water tank experienced such 
acceleration. Subfigure (a) indicates that the water flow in the 
center of the water tank gradually moved simultaneously with 
the water tank, and the relative velocity became zero at the 
end, which conformed to the fact. Subfigure (b) reveals that 
the vertical velocity at the sides of the tank was not high and 
became zero at the end, so the water flow became a 
steady-state flow. In subfigure (c), the maximum dynamic 
pressure was about 35000 N/m2, equivalent to an hydrostatic 
pressure of 3.5 m (refer to subfigure (d)). This accounted for 
35% of the total water depth, and therefore had a 
non-negligible influence on the nature of the overall water 
flow. Hence, the traditional hypothesis regarding hydrostatic 
pressure did not apply to this case, suggesting that this 
hypothesis be taken out of consideration during the simulation 
of a sloshing flow for this paper. Moreover, when ∞→t , 

dxdHgax // = , the final water level in the side middle of the 
tank was obtained as -500*1/250=-2.0 (m). This result 
conformed to the result obtained from the simulation shown in 
subfigure (d), thus confirming the accuracy of the numerical 
method. From this case, it was clear that the water level tended 
to stabilize through up-down oscillations, even in the case of 
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constant horizontal acceleration. 
In Case 2, sloshing flows induced by a horizontal force 

equally imposed on the tank in the x and y directions were 
simulated. The force was represented by a sine wave-like 
horizontal acceleration which lasted three seconds, a situation 
similar to earthquakes. Since xadtdu =/ , the maximum u 
value in the center of the water tank should be 

=maxu =− )2/5.0*3(2 πg -4.68 (m/s), which was the same as 
the result obtained from the simulation. Figure 8(a) shows the 
result and presents a complete sine wave which formed within 
the first three seconds, thus implying the accuracy of the 
numerical method. In subfigure (b), although a sine wave 
pattern formed within the first three seconds, the pattern was 
slightly squeezed because the reflection waves interfered with 
the wave pattern at the sides of the tank. Afterwards, the wave 
alternated reasonably between positive and negative values. 
Subfigure (c) shows that the water levels at the middle of both 
sides of the tank were symmetrical on the time axis, simply 
proving the law of conservation of mass and the expected 
calculation results. It was discovered at the same time that the 
horizontal force caused a 10m high wave, approximately equal 
to an earthquake-induced tsunami. Subfigure (d) reveals that 
the dynamic pressure on the central surface of the tank was 
almost zero and did not vary with time. However, its absolute 
value gradually increased with depth. At the bottom of the 
tank, since w=0, the momentum equation on the z plane could 
be simplified as 0/ =∂∂ zp , meaning that the dynamic 
pressure distribution curve was parallel to the vertical axis at 
any given time. This also conformed to the simulation results. 

To further test the robustness of our numerical algorithms, 
two large wind stresses of 1 and 8 2/ mN  were adopted for 
simulating wind-induced shear flows. The results are shown in 
Figures 9 and 10, corresponding to Cases 3 and 4, 
respectively. 

The time-dependent profile in Figure 9 reflects the water 
level changes along the central line (y/B=0.5) of the water 
tank. Each subfigure shows the profile only one second away 
from that in its previous and next subfigures. It was observed 
that the water level near the sides of the water tank first rose 
over time (refer to subfigures (a) and (b)), and then decreased 
about 2.5 seconds later (refer to subfigure (c)). The decrease 
was attributed to the lack of sufficient vertical support for the 
continually accumulating water flow at the sides and its 
consequent collapse. In fact, as with previous cases, there was 
no other external force to make the water level rise in this case, 
except for the inertial force of the water flow itself. As a 
limited inertial force cannot support a constantly inclining 
water surface, the continually downward pulling force, 
resulting from gravity, caused the water level to descend at the 
end. The increase and decrease of the two forces resulted in 
complicated fluctuations on the surface, though no obvious 
change was seen in the center of the tank (refer to subfigure (b) 
in Figure 7), only a constantly inclining water surface (refer to 
the last three subfigures). This conformed to expectations, thus 
making shear flow different from sloshing flow. The overly 

inclining water surface resulted in a reverse-phase wave form, 
due to the pulling force of gravity; as a result, the water level 
alternated between positive and negative inclining angles. 

The calculation results shown in Figure 9 have been applied 
in Figure 10. In subfigure 10(a), the possibility of water 
circulation was examined, with each curve representing the 
x-component velocity profile in the center of the water tank. 
As the water surface velocity was positive and the internal 
velocity was negative, circulation appeared during the 20 
seconds when shear stress was applied. The circulation 
followed a clockwise direction, which conformed to the real 
situation. In addition, as shown in subfigure (b), it was 
apparent that the water surface was not flat but uneven, with 
risings and fallings occurring alternately. This resulted in a 
transverse secondary flow that moved in the y-direction. As in 
subfigures (c) and (d), when the velocity v was negative for 
0-10 seconds where y/B<0.5, the secondary flow moved to the 
center of the tank; when the velocity v was positive where 
y/B>0.5, the secondary flow moved to the center of the tank as 
well. Both curves were completely symmetrical, so it was 
natural that the water surface rose. About 10 seconds later, the 
secondary flow weakened, and then moved in a reverse 
direction, so water flowed from the center to both sides of the 
tank. Consequently, the water surface in the center descended 
between 10.5 seconds and 13.5 seconds, as in subfigure (b). 

As in Figure 11, the shear stress applied, as in Figure 9, was 
increased from 1.0 N/m2 to 8.0 N/m2, and at the same time 
changes of the major variables (u, v, w, p & H) over time were 
drawn up. In this case, the shear stress was assumed to be the 
same in both x and y directions, and u & v in the center of the 
square tank would also be the same because of symmetry. In 
subfigure (a), the solid line (u) completely overlaps the dotted 
line (v), which responded to the aforesaid results and once 
again validated our numerical algorithms. Moreover, the speed 
reached 2 m/s, which was about three times the speed applied 
as in Figure 9 (0.7 m/s, but not shown). After a further look at 
the figure, the steady state had not been shown yet despite a 
period of 1,200 seconds. In subfigure (b), the maximum 
dynamic pressure was approximately 30 N/m2, which was 
about equal to a hydrostatic pressure of 0.3 cm, showing that 
the dynamic pressure of any point at the corners was 
unimportant despite a high shear stress of 8 N/m2. Subfigures 
(c) and (d) show the time-dependent profiles of H and w at the 
tank corners, respectively, which are much smaller than those 
in subfigures (e) and (f) in terms of figures, indicating that 
changes in the water level in the center of the tank sides were 
more rapid. The subfigure at the bottom left shows the 
longitudinal curve of the dynamic pressure in the center of the 
tank sides where the maximum value was about -1280 N/m2, 
which was equal to an hydrostatic pressure of 13 cm. As this 
value was likely to be the highest dynamic pressure in the tank, 
the hypothesis regarding the hydrostatic pressure was possibly 
supported by shear flow, generally speaking. The subfigure at 
the bottom right shows changes in the water level at x/L=0.5 
over time, and asymmetry between the curves was observed, 
which again indicated that the conservation of mass and 
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numerical calculations were correct. 
Based on the above-mentioned results, it was reasoned that 

compared with sloshing flow, the water level would rise only a 
little by means of high shear force (lower than 60 centimeters). 
Thus, wind setup alone was not worrisome. What would be a 
concern was the combination of wind shear with explosion, 
earthquakes, or moon gravity to form resonance, thus 
magnifying the existing wave (e.g. gravity wave) and, leading 
to disasters, as shown in Figure 12. 

Subfigure (a) in Figure 12 shows the water level 
fluctuations caused by simple shear flows and sloshing flows. 
Subfigure (b) retains Faltensin’s linear solution curve for the 
sloshing flow as in subfigure (a) for comparison purposes. It 
was thus found that when a wind shear of 8 N/m2 and the 
horizontal acceleration in Case 1 were both applied to the 
water tank at the same time, the water level fluctuations were 
similar to the combined curves in subfigure (a). Since the shear 
effect was far greater than the sloshing effect within a short 
period of time (t<50 seconds) in terms of the mixed flow, the 
solid lines (representing mixed flow) in subfigure (b) similar 
to the dotted lines (representing shear flow) in subfigure (a) 
appeared. However, after 180 seconds, it was discovered that 
the water level had doubled because the solid and dotted 
curves in subfigure (a) were almost in-phase, leading to a 
higher water level than that between 70~150 seconds. 
Between 70~150 seconds, the reversed phase between the 
shear flow and sloshing flow made the water level of the 
mixed flow lower than that of a simple sloshing flow. In 
practice, the sloshing force chosen for this case was 
insignificant, as compared with a wind shear of 8 N/m2 in real 
life. Both forces however, made about the same contribution to 
the change of water elevation. Thus, wind shears must be large 
enough in order to interfere with a small sloshing wave, unless 
a much smaller CSL is adopted. 

Now, it could be inferred that the numerical model and 
method adopted in this paper were reasonable. The possible 
range of the major parameters was determined to effectively 
simulate the mixed flow which occurred when wind shear and 
sloshing force both applied. The key hypotheses regarding 
hydrostatic pressure and irrotational flow were not considered, 
so as to make the numerical method as general as possible. In 
this paper, the bottom of the water tank served as the horizon. 
Because the numerical method adopted was under initial 
testing and the higher order system differential equation was 
quite complicated, an irregularly changing bed was unsuitable 
for the current phase, to avoid loss of focus on the core of the 
question. In the future, the coordinate transformation formula 
will be revised, and the temporal and special variation of the 
bed will be included for a more complete method. 
Comparatively speaking, the numerical method used in this 
paper obtained good results in the case of coarse grids (with 
only 11*11 nodes in the horizontal direction), with a larger 
time interval. The matrix equation used in this paper was 
penta-diagonal, and could be immediately solved using back 
substitution. Unlike high-dimensional matrix equations in 
x-y-z geometry, this equation was easily constructed and 
efficiently solved. However, due to horizontal decoupling of 
the numerical model, the numerical structure proposed in this 
paper was only applicable to shallow water areas where the 
water depth was far lower than the horizontal dimension of the 
water area (for example, L/D<0.1 and B/D<0.1). Fortunately, 
shallow water areas are very common, so this limitation would 
not be problematic in actual situations. 
 
 

 
TABLE V CONVERGENCE STUDY 

Cas
e 

for flow dimensions (m) node number tΔ  
(sec) L B D x y z 

1 fig.7 1000 1000 100 21 11 31 1.0 
2 fig.8 1000 1000 100 11 11 31 0.3 
3 fig.9, 10 1000 500 100 31 21 31 0.5 
4 fig.11 1000 1000 100 11 11 31 1.0 
5 fig.12 100 100 10 11 11 31 0.15 

 
 

TABLE V CONVERGENCE STUDY (CONT.) 
Case 0/ sLsL CC  xa  ya  xτ  yτ  0/ ωω  Dc /  

1 0.05 250/g−  0 0 0 -- -- 
2 0.05 

⎟
⎠
⎞

⎜
⎝
⎛−

3
2sin5.0 tg π , 3≤t , 0 , 3>t  

= xa 0 0 -- -- 

3 0.05 0 0 1.0 0 -- -- 
4 0.05 0 0 8.0 8.0 -- -- 
5 0.01 tc ωω sin2  0 8.0 0 0.9 0.00183 
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Fig. 7 History of the target variables under the action of a constant horizontal acceleration; the position of each subfigure: 
(a) 1,5.0/,5.0/ === σByLx ; (b) 1,5.0/,1/ === σByLx ; (c) 0,5.0/,1/ === σByLx ; (d) 5.0/,1/ == ByLx . 
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Fig. 8 History of the target variables due to a sine wave-like horizontal acceleration lasting three seconds; the position of each 

subfigure: (a) 1,5.0/,5.0/ === σByLx ; (b) 1,5.0/,1/ === σByLx ; and (d) 5.0/,5.0/ == ByLx  
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1

6

11
16

21

26

31

-0.03 0.07 0.17 0.27 0.37 0.47 0.57

u (m/s)

no
de

 n
um

be
r

t=0.5 sec
t=12.5 sec
t=23.5 sec

-2.E-05

-1.E-05

0.E+00

1.E-05

2.E-05

3.E-05

1 6 11 16 21

node number

H 
(m

)

t=4.5
t=7.5
t=10.5
t=13.5  

-8.E-06
-6.E-06
-4.E-06
-2.E-06
0.E+00
2.E-06
4.E-06
6.E-06
8.E-06

0 5 10 15 20 25 30

t (sec)

v 
(m

/s)

y/B=3/20
y/B=17/20

-6.E-06

-4.E-06

-2.E-06

0.E+00

2.E-06

4.E-06

6.E-06

0 5 10 15 20 25 30

t (sec)

v 
(m

/s)

y/B=6/20
y/B=14/20

 
Fig. 10 Test of the existence of secondary flows due to a wind shear of 1.0 N/m2; the position of each subfigure: (a) 
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V. CONCLUSIONS 
This part of study validated of our models through the 

comparisons of numerical and analytical solutions. Involved 
mathematic manipulations became much less after 
transforming the full 3-D STF Navier-Stokes equations into a 
group of horizontally “decoupled” 1-D equations. This not 
only rendered parallel computations amenable, but also allows 
the inclusion of those well-developed 1-D algorithms that 
avoided node-to-node spurious numerical oscillations. All the 
benefits made it potentially superior to other methods ready 
for solving the 3-D fluid flow problems. 

It was found possible for CSL to become much smaller than 
0.17, as adopted by several researchers, when waters were 
very shallow and grids were coarse. For the present tank 
scales, water elevation rose less than one meter when 
subjected to wind shears alone. It was achieved easily, 
however, by shaking the tank with a small horizontal 
acceleration, implying the danger for people standing next to a 
dam during an earthquake. With only a small deviation from 
the hydrostatic assumption, the wind-induced shear flow had a 
strong correlation with the CSL value. The sloshing flow, 
however, was independent of it and showed significantly large 
dynamic pressure when the water moved back and forth. In 
sloshing-shear mixed flows, the resulting amplitude of the 
water elevation was found to be suppressed or amplified, as 
compared with the sloshing force alone. Shear forces were 
therefore not always negligible in shallow fluid bodies. In 
spite of the sparsely distributed grid nodes, competitively 
accurate results were obtained for the model validation and 
robustness test. The numerical strategy proposed in the paper 
worked well, especially for very shallow waters (L/D<0.1 and 
B/D<0.1) on a large scale. 
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