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Some results of sign patterns allowing simultaneous
unitary diagonalizability

Xin-Lei Feng, Ting-Zhu Huang

Abstract—Allowing diagonalizability of sign pattern is still an
open problem. In this paper, we make a carefully discussion about
allowing unitary diagonalizability of two sign pattern. Some sufficient
and necessary conditions of allowing unitary diagonalizability are
also obtained.
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I. INTRODUCTION AND PRELIMINARIES

THE origins of sign pattern matrix are the need to solve
certain problems in economics and other areas based only

on the signs of the entries of the matrices. Now this matrix
branch has been widely developed. The eigen-problem is an
important research field in both the tradition and sign pattern
matrix, and this often establish relationships with the diago-
nalizability of matrix. In this paper, we mainly consider sign
patterns that allow simultaneously unitary diagonalizability.
The question of characterizing sign patterns that allow diag-
onalizability is an open problem(see [1]). Here we introduce
some definitions and notations.

A sign pattern (matrix) is a matrix whose entries are in the
set {+,−, 0}. The set of all n × n sign patterns is denoted
by Qn. For A = (aij) ∈ Qn, associated with A is a class
of real matrices, called the qualitative class of A, defined by
Q(A) = {B = (bij) ∈ Mn(R) | signbij = aij for all i and
j} and S(B) = A, for any B ∈ Q(A).

A generalized sign pattern (matrix) is a matrix whose
entries are in the set {+,−, 0,#}, where # indicates an
ambiguous sum (the result of adding + with −). In this
paper, we mainly study sign pattern. Although the matrices
we study are sign patterns, the product of sign patterns may
be generalized. In this paper, for generalized sign pattern, we
say, two matrix is equal to, if the corresponding entries whose
are in the set {+,−, 0,#} are uniform in the two matrix.

Let P be a property referring to a real matrix. For a sign
pattern A, if there exists a real matrix B ∈ Q(A) such that B
has property P , then we say A allows P . The signed digraph
of an n× n sign pattern A = (aij), denoted by D(A), is the
digraph with vertex set {1, 2, · · · , n}, where (i, j) is an arc if
only and if aij �= 0. Let A = (aij) be an n× n sign pattern.
A nonzero product of the form

P = ai1i2ai2i3 · · · aikik+1 ,
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in which the index set {i1, · · · ik+1} consists of distinct indices
is called a path of length k (or k-path). i1 and ik+1 are called
initial vertex and terminal vertex of P . A nonzero product of
the form

γ = ai1i2ai2i3 · · · aiki1 ,
in which the index set {i1, · · · ik} consists of distinct indices
is called a simple cycle of length k (or simple k-cycle). Each
im(m = 1, · · · , k) is called a vertex of γ. A composite k-
cycle is a product of simple cycles whose total length is k
and whose index sets are mutually disjoint.

Let A ∈ Qn. We define MR(A), the maximal rank of A
by

MR(A) = max{rankB |B ∈ Q(A)} .
Similarly, the minimal rank of A, mr(A), is

mr(A) = min{rankB |B ∈ Q(A)} .
A sign pattern A is called normal, if AAT = ATA.

II. ALLOWING SIMULTANEOUSLY UNITARY
DIAGONALIZABILITY OF SIGN PATTERNS

In this section, we consider two sign patterns allowing
simultaneous unitary diagonalizability.

Definition 2.1. Let A ∈ Qn. If there exists a real matrix
B ∈ Q(A) such that B has property BBT = BTB, then we
say A allows unitary diagonalizability.

Lemma 2.1. A,B ∈ Qn are sign patterns allowing
simultaneous unitary diagonalizability if and only if there
exist A0 ∈ Q(A), B0 ∈ Q(B) such that A0 and B0 are
simultaneous diagonalizable and A0B0 = B0A0.
Proof. A,B ∈ Qn are sign patterns allowing
simultaneous diagonalizability if and only if there exist
A0 ∈ Q(A), B0 ∈ Q(B) such that A0 and B0 are
simultaneous diagonalizable. This holds if and only if
A0B0 = B0A0.

Theorem 2.1. If A and B are two nonnegative sign patterns
allowing simultaneous unitary diagonalizability, then AB =
BA.
Proof. By Lemma 2.1, A,B ∈ Qn are two sign patterns
allowing simultaneous diagonalizability if and only if there
exist A0 ∈ Q(A), B0 ∈ Q(B) such that A0B0 = B0A0.
Because A and B are nonnegative, the proof is similar to that
of Lemma 2.1. If (A0B0)ij = 0(i, j = 1, · · · , n), then

(AB)ij = 0.
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Likewise, if (A0B0)ij > 0, then

(AB)ij = +.

Vice versa, if (B0A0)ij = 0, then (BA)ij = 0, and if
(B0A0)ij > 0, then (BA)ij = +. Therefore, according to
A0B0 = B0A0, AB = BA holds.
Similarly, we can easily obtain the following result:
Corollary 2.1. Let A,B ∈ Qn be sign patterns allowing
simultaneous diagonalizability. (AB)ij = # if and only if
(BA)ij = #, i, j = 1, · · · , n, then AB = BA.

Lemma 2.2. [2, Corollary 3.7] Let A,B ∈ Mn be two
nonsingular Hermitian matrices simultaneously unitary diago-
nalizable. Then, there is a Hermitian matrix X ∈Mn such that
B = XAX if and only if there is a unitary matrix V ∈ Mn

such that V ∗AV and V ∗BV are diagonal matrices of the
forms

V ∗AV = SA⊕A1⊕· · ·⊕Al, V ∗BV = SB⊕B1⊕· · ·⊕Bl,
where sign(SA) = sign(SB), and Ai, Bi ∈ M2 are
indefinite matrices such that Bi is a negative multiple of
A−1
i , i = 1, · · · , l.

By Lemma 2.2, we can easily obtain the following theorem:
Theorem 2.2. Let A,B ∈ Qn be two symmetric sign
patterns allowing simultaneous unitary diagonalizability and
MR(A) = MR(B) = n. Then, there exist a symmetric matrix
X ∈ Mn and nonsingular A0 ∈ Q(A), B0 ∈ Q(B) such that
B0 = XA0X if and only if there is an orthogonal matrix
V ∈Mn such that V ∗A0V and V ∗B0V are diagonal matrices
of the forms

V ∗A0V = SA⊕A1⊕· · ·⊕Al, V ∗B0V = SB⊕B1⊕· · ·⊕Bl,
where sign(SA) = sign(SB), and Ai, Bi ∈ M2 are
indefinite matrices such that Bi is a negative multiple of
A−1
i , i = 1, · · · , l.

Theorem 2.3. Let A,B ∈ Qn be two nonnegative symmetric
sign patterns allowing simultaneous unitary diagonalizability.
If there are nonsingular A0 ∈ Q(A), B0 ∈ Q(B) and a non-
negative real symmetric matrix X0 such that B0 = X0A0X0,
then there exists a symmetric sign pattern matrix X such that
B = XAX .
Proof. This theorem can be proved by using similar

methods of Theorem 2.1.
Corollary 2.2. Let A,B ∈ Qn be two symmetric sign patterns
allowing simultaneous unitary diagonalizability. If there are
A0 ∈ Q(A), B0 ∈ Q(B) and a nonnegative real symmetric
matrix X0 such that B0 = X0A0X0, and there is not # in
product of S(X0)AS(X0), then there exists a symmetric sign
pattern matrix X = S(X0) such that B = XAX .
Proof. If there is not # in product of S(X0)BS(X0), by
B0 = X0A0X0, we have

sign((X0A0X0)ij) = (XAX)ij , for all i, j = 1, · · · , n.
Moreover, sign((B0)ij) = (B)ij , for all i, j = 1, · · · , n. Thus
B = XAX holds.

Lemma 2.3. Let A and B be two n×n nonsingular simultane-
ous diagonalizable normal real matrices. Let the eigenvalues
of A be a1, · · · , ak, αk+1 + iβk+1, · · · , ap + iβp, and the
eigenvalues of B be b1, · · · , bk, γk+1 + iωk+1, · · · , γp + iωp.
If {

aibi = ajbj i, j = 1, · · · , k,
αiωj = βiγj i, j = k + 1, · · · , n,

then there exists a nonsingular symmetric matrix X such that
B = XAX .

Proof. Let A and B be two nonsingular simultaneous diago-
nalizable normal real matrices, and there exists real orthogonal
matrix Q such that

Q
T
AQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 0

. . .
ak

αk+1 βk+1
−βk+1 αk+1

. . .
αp βp

0 −βp αp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

Q
T
BQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 0

. . .
bk

γk+1 ωk+1
−ωk+1 γk+1

. . .
γp ωp

0 −ωp γp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Suppose that there exist a nonsingular symmetric matrix X
such that QTAQ = XQTBQX, then

X
−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 0

. . .
ak

αk+1 βk+1
−βk+1 αk+1

. . .
αp βp

0 −βp αp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1

X

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 0

. . .
bk

γk+1 ωk+1
−ωk+1 γk+1

. . .
γp ωp

0 −ωp γp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

We partition the three matrices into 2 × 2 blocks with the
suitable dimension. Then, their product will have the following
three kind of equations.

Case 1:

⎛
⎝ a1 · · · 0

· · · · · · · · ·
0 · · · ak

⎞
⎠

−1

X11

⎛
⎝ b1 · · · 0

· · · · · · · · ·
0 · · · bk

⎞
⎠ =

⎛
⎝ b1 · · · 0

· · · · · · · · ·
0 · · · bk

⎞
⎠
T

X11 ·

⎛
⎜⎝
⎛
⎝ a1 · · · 0

· · · · · · · · ·
0 · · · ak

⎞
⎠

−1⎞⎟⎠
T
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where X =
(
X11 X12

X21 X22

)
and X11 is a symmetric square

matrix.
From above equation, we find that, only need let

aibi = ajbj , i, j = 1, · · · , k, the above equation constantly
holds. Thus, there exists solution x11.

Case 2:

(
a1 · · · 0
· · · · · · · · ·
0 · · · ak

)−1

X12

⎛
⎜⎝

γk+1 ωk+1 · · · 0 0
−ωk+1 γk+1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · γp ωp

0 0 · · · −ωp γp

⎞
⎟⎠ =

⎛
⎝ b1 · · · 0

· · · · · · · · ·
0 · · · bk

⎞
⎠
T

X12·

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

αk+1 βk+1 · · · 0 0
−βk+1 αk+1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · αp βp
0 0 · · · −βp αp

⎞
⎟⎟⎟⎟⎠

−1⎞
⎟⎟⎟⎟⎠

T

.

By aibi = ajbj , we have

X12

⎛
⎜⎜⎜⎜⎝

γk+1 ωk+1 · · · 0 0
−ωk+1 γk+1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · γp ωp
0 0 · · · −ωp γp

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

αk+1 βk+1 · · · 0 0
−βk+1 αk+1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · αp βp
0 0 · · · −βp αp

⎞
⎟⎟⎟⎟⎠

T

= aibiX12.

Because αl±iβl and γl±iωl are imaginary characteristic root
of A and B, X12 has a unique solution, l = k+ 1, · · · , p, and
X21 = XT

12.
Case 3:⎛

⎜⎜⎜⎜⎝
αk+1 βk+1 · · · 0 0
−βk+1 αk+1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · αp βp
0 0 · · · −βp αp

⎞
⎟⎟⎟⎟⎠

−1

X22

·

⎛
⎜⎜⎜⎜⎝

γk+1 ωk+1 · · · 0 0
−ωk+1 γk+1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · γp ωp
0 0 · · · −ωp γp

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

γk+1 ωk+1 · · · 0 0
−ωk+1 γk+1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · γp ωp
0 0 · · · −ωp γp

⎞
⎟⎟⎟⎟⎠

T

X22·

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

αk+1 βk+1 · · · 0 0
−βk+1 αk+1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · αp βp
0 0 · · · −βp αp

⎞
⎟⎟⎟⎟⎠

−1⎞
⎟⎟⎟⎟⎠

T

Unfold this equation, then αk+s−1ωk+s−1 =
γk+s−1βk+s−1 (1 ≤ s ≤ n − k + 1) can make that
the above equation has solution X22.

According to above analysis, the proof is completed.

Theorem 2.4. Let A,B ∈ Qn be two nonnegative sign
patterns allowing simultaneous unitary diagonalizability. And
there exist A0 ∈ Q(A), B0 ∈ Q(B) such that A0 and
B0 are two n × n nonsingular simultaneously diagonaliz-
able normal real matrices. Let the eigenvalues of A0 be
a1, · · · , ak, αk+1 + iβk+1, · · · , ap + iβp, and the eigenvalues
of B0 be b1, · · · , bk, γk+1 + iωk+1, · · · , γp + iωp, and{

aibi = ajbj i, j = 1, · · · , k,
αiωj = βiγj i, j = k + 1, · · · , n,

then there exists a symmetric sign pattern X such that
B = XAX if and only if there does not exist # entries in
XAX .

Proof. By Lemma 2.3, we know that there exists X0 such
that B0 = X0A0X0. Let X = X0. Because A and B are
nonnegative sign patterns, Similar to Corollary 4.2, we can
also obtain that B = XAX holds if and only if there does
not exist # entries in XAX .

Corollary 2.3. Let A,B ∈ Qn be sign patterns allowing
simultaneous unitary diagonalizability. If there are A0 ∈
Q(A), B0 ∈ Q(B) and a real symmetric matrix X0 such
that B0 = X0A0X0, and there is not # in product of
S(X0)AS(X0), then there exists a symmetric sign pattern
matrix X = S(X0) such that B = XAX .

III. CONCLUSION

In this paper, we make a discussion about allowing unitary
diagonalizability of sign pattern. Some sufficient and neces-
sary conditions of allowing unitary diagonalizability are also
obtained. Moreover, the relation of two sign patterns allowing
simultaneous unitary diagonalizability is researched.
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