
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1569

Quantifying the Stability of Software Systems via

Simulation in Dependency Networks
Weifeng Pan, Member, ACM

Abstract—The stability of a software system is one of the most
important quality attributes affecting the maintenance effort. Many
techniques have been proposed to support the analysis of software
stability at the architecture, file, and class level of software systems,
but little effort has been made for that at the feature (i.e., method and
attribute) level. And the assumptions the existing techniques based
on always do not meet the practice to a certain degree. Considering
that, in this paper, we present a novel metric, Stability of Software
(SoS), to measure the stability of object-oriented software systems
by software change propagation analysis using a simulation way
in software dependency networks at feature level. The approach is
evaluated by case studies on eight open source Java programs using
different software structures (one employs design patterns versus one
does not) for the same object-oriented program. The results of the
case studies validate the effectiveness of the proposed metric. The
approach has been fully automated by a tool written in Java.

Keywords—Software stability, change propagation, design pattern,
software maintenance, object-oriented (OO) software.

I. INTRODUCTION

S
OFTWARE maintenance is characterized as an activity of

high cost, with typical estimates ranging from 60% to 80%

of the total cost during the life cycle of the software systems

[1]. The cost being so high, makes how to control the software

maintenance cost an urgent as well as tough problem. In [2],

Stephen S. Yau et al. proposed that there are generally two

ways to control the cost. One is to provide some tools and

techniques to help the maintenance practitioners perform their

maintenance tasks. The other one is to utilize some meaningful

software metrics. In this paper we will mainly focus on

reducing maintenance cost through the utilization of metrics,

i.e., to develop metrics to assess the quality characteristics of

softwares affecting the software maintenance cost.

By the IEEE definition, software maintenance is the process

of modifying a software system or component after delivery

to correct faults, improve performance or other attributes, or

adapt to a changed environment [3]. And it has been regarded

as a four-phase process in [2], [4]: (1) the first phase consists of

analyzing a software system in order to understand it; (2) the

seconde phase consists of generating a particular modification

proposal to accomplish the implementation of the maintenance

objective; (3) the third phase consists of accounting for the

ripple effect as a consequence of software modifications; and

(4) the fourth phase consists of testing the modified software to

ensure the modified software has at least the same reliability

as before. Therefore, we can find that performing software

Weifeng Pan (Corresponding Author) is with the School of Computer Sci-
ence and Information Engineering, Zhejiang Gongshang University, Hangzhou
310018, Zhejiang, P. R. China, e-mail: wfpan@mail.zjgsu.edu.cn.

changes together with the change impact analysis (i.e., ripple

effect analysis) correspondingly are two key activities in the

software maintenance process, accounting for more than 40%

of the total cost of software maintenance as reported in [5].

The primary attribute affecting the change impact analysis as

a consequence of software modifications is the stability of the

software [2], [4]. By stability of the software, it means the

resistance to the amplification of changes in the software.

Software structure (i.e., topological structure) has a great

influence on the quality of software systems [5]. In recent

years, researchers in the field of statistical physics and complex

system used complex software dependency networks to repre-

sent software systems by taking software components such as

methods, classes and packages as nodes and their interactions

as edges [6]. It provides us a new way to study complex

software systems.

In this paper a novel metric, called Stability of Software

(SoS), for quantitatively measuring the stability of Object-

Oriented (OO) software systems using simulation in software

dependency networks is presented. First, the software sys-

tems are modeled as weighted software dependency networks,

weighted feature dependency networks (WFDN), in which fea-

tures (i.e., methods and attributes) are nodes and the interaction

between every pair of nodes if any is a directed edge which is

annotated with a weight corresponding to the probability that

a change in one features (method or attribute) will propagate

to the other. Then we analyze the software change propagation

process in WFDN via simulation, and based on which, SoS is

developed to measure the stability of OO software systems.

The results of the case studies on eight open source Java

programs validate the effectiveness of the proposed metric.

The approach has been fully automated by a tool written in

Java.

The main contributions of this paper are summarized in the

following:

(1) introduce WFDN to represent OO software systems at

feature level and propose to use a probability way to perform

the change propagation analysis;

(2) propose a catalog of changes with respect to WFDN to

represent the changes in OO software systems;

(3) produce SoS based on change propagation analysis to

characterize the stability of OO software systems;

(4) finally present a simulation approach to calculate SoS of

OO software systems.

The rest of this paper is organized as follows. Section II

contains a brief summary of the related work. Section III

describes our approach in detail. Section IV presents the

results of case studies conducted on eight Java programs. In

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1570

Section V a software tool developed to automate the proposed

approach is briefly described. The limitations and future work

of our research work are mentioned in Section VI. And we

conclude the paper in Section VII.

II. RELATED WORK

This section is a brief, but, for reasons of space, incomplete,

overview of the related work. It falls into two categories:

(1) research work on software change impact analysis, and

(2) research work on software dependency networks, both of

which are the basis of the proposed stability metric.

A. Software Change Impact Analysis

Software change impact analysis estimates and determines

the parts of a software system and related documentation if

proposed software changes are made [7]. It is of vital im-

portance to improve the overall efficiency in software mainte-

nance. In [8], Kung et al. explored the change impact analysis

in a class diagram. They introduced a novel notion, class

firewall, to denote classes that may be impacted by a change in

a given class. And the change impact analysis results have been

used to address the test order problem in regression testing. In

[9], Alan MacCormack et al. adopt Design Structure Matrices

(DSMs) to represent the source files and their dependencies,

and introduced the concept of change cost to measure the

average influence of components on the whole system. Tsan-

talis et al. introduced a probabilistic approach to evaluate the

potential flexibility of a given object-oriented software system

[10]. This approach consider the types of changes and differs

with the internal axis and external axis changes. Shaik et al.

introduced change propagation coefficient to assess the design

quality of software architecture [11]. In [12], we introduced an

efficient statistical measure, called average propagation ratio,

to analyze the change propagation process in the complex

software networks at the granularity level of class. Li et al.

proposed a software change propagation model and several

metrics to characterize the change propagation process [13].

B. Software Dependency Networks

The quality of a software system is partially determined

by its topological structure. So the need to reveal the internal

relationships between structure and quality has become emi-

nent. Recently, researchers used complex software dependency

networks to represent software systems by taking software

components such as methods, classes and packages as nodes

and their interactions as edges. And many kinds of software

dependency networks have been defined, such as software

networks at package level [6], [14], software networks at class

level [15], [16], [17], software networks at feature level [18],

and software networks at method level [14]. In [19], Li et al.

gave a detailed review of the research work in such a new

field.

III. THE APPROACH

In the previous researches as we talked in Section II,

the authors always make the following three assumptions in

Fig. 1. A simple example

their change impact analysis processes: (1) the change in one

software component such as one file or class will definitely

propagate to other components that have relationships to the

changed node directly or indirectly; (2) in one change session

there is only one initial changed file or class; and (3) all

the existing change impact analysis are performed at file or

class level. These three assumptions the existing techniques

based on, however, may sometimes not meet the practice. The

rationale is threefold:

(1) In OO software systems, a class always contains many

attributes and methods. We treat a class as changed if at least

one of the methods or attributes in it changed. The attributes

and methods of another class depending on the changed class

do not all link to the changed attributes or methods directly

or indirectly in it. So it does not always meet the practice that

the change in one class definitely propagates to classes having

relationships to it.

See figure 1, class X is composed of three methods (i.e., b(),
c() and d()) and one attribute (i.e., a) and class Y is composed

of two methods (i.e., e() and f()). So any attributes or methods

of class X changes, class X will be viewed as changed. In

previous work, authors all think the change in class X will

definitely propagate to class Y , for the latter depends on the

former. However it is not always the truth. For instance, if

the change exists in method c(), the change may propagate to

class Y , for f() in class Y depends on c() in X . However

if the change exists in other attributes or methods but c(), it

will not propagate to class Y , for f() and e() in class Y do

not directly or indirectly depend on the changed attributes or

methods in class X . So we should introduce probability in

change impact analysis at class level. This situation also fits

in with that at file level.

(2) Software systems will change from time to time in its

life cycle. The change requirements will result in many parts

of the system to be changed, i.e., the number of initial changed

software components may be over one. So supposing there is

only one changed software component in a change session

does not meet the practice.

See figure 2, the nodes colored red, X1 and X2, are

the initial changed classes in one change session. In the

foregoing literatures, the classes in dashed rectangle will be

counted twice. So it overestimates the results of change impact

analysis.

(3) Complex OO software systems are generally composed

of a number of classes which in turn contain many attributes

and methods. And the change in one class will finally be

transferred to changes in its attributes and methods. So we

can do the change impact analysis at the feature level.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1571

Fig. 2. A simple example

Fig. 3. Workflow of the proposed approach

Our current work can be seen as an extension of the work

done in [12], [13]. And in this paper we have primarily solved

the demerits in existing research work mentioned above, i.e.,

we introduce probability when analyzing the change propagate

from one class to others, take into consideration the situation

that more than one initial changes occurred, and analyze the

change propagation at the feature level. The overall framework

of the proposed approach is illustrated in figure 3. The main

steps in the framework will be specified as follows.

A. OO Software Systems

We mainly focus on the OO domains herein, and take the

open source OO (hereafter OSOO) software systems as our

research subjects. The rationale is twofold [18]: (1) OO has

become the most widely used development paradigm since

1990’s. And there are a lot of OSOO software systems on

the web which can be easily got for our research objectives;

and (2) OSOO software systems are developed under the OO

paradigm. They have relatively clear internal structures and the

components such as attributes, methods, classes, packages, and

their dependencies are amenable to extraction and analysis.

B. Software Information Collection

Software information collection refers to the process to

extract software components such as attributes, methods, and

their dependencies. We have developed a tool that can be used

to analyze compiled Java codes (.class and .jar) to get needed

data. In this paper, we only take into consideration two kinds

of dependencies, method accessing attribute dependency and

method call dependency. Software information collection has

been automated by a tool developed using Java (see Section

V).

C. Software Stability Analysis

This subsection describes our approach in detail, with focus

on the formal definition of the software dependency network,

a list of atom changes with respect to software dependency

network, the metric to characterize the stability of OO software

systems, and the algorithm used to compute the proposed

metric.

1) Software Dependency Network: After software informa-

tion collection, the OO software systems can be modeled as

one type of software dependency network, weighted feature

dependency network. We use the term feature to designate

attributes and methods. We will be treating them the same

from here on. And the dependencies between two features as

talked in subsection it B are treated as the same dependency,

namely use dependency. We next give the formal definition of

weighted feature dependency network.

Definition 1: Weighted Feature Dependency Network

In Weighted Feature Dependency Network (WFDN), the

nodes represent features (namely attributes or methods) of a

specific OO software system. And each feature is represented

by only one node. Edge between two nodes denotes one

feature uses another feature. i.e., if feature A uses feature

B, there will be an edge from the node denoting A to the

node denoting B. And here we only consider the presence

of dependency and neglect the multiplicity of dependencies

such as A depends three times on B. And the weight of each

edge denotes the probability that a change in B will propagate

to A. See figure 4 for example. Since in our approach, the

initial changed software components may be more than one,

here we will also take into consideration the ratio that the

initial changed nodes account for the total number of nodes

in WFDN. Therefore WFDN can be described as:

WFDN = (N,E,Mp, CR), (1)

where N is the set of all features of the specific OO software

system; E is the set of edges denoting all relationships among

features; Mp is a matrix storing the change propagation

probability among all pairs of nodes if they are linked by

an edge in WFDN, i.e., if node j links to node i, the entry

Mp(i, j) of Mp stores the probability that if node i changes,

the change will propagate to node j with probability Mp(i, j).
If two nodes, node k and node l, have no edge linking them

together, the entry Mp(k, l) and Mp(l, k) will be 0. CR is

the ratio that the initial changed nodes (corresponding to the

changed software components) account for the total nodes in

WFDN. Figure 4 shows a simple source code segment and its

corresponding WFDN.

In WFDN we assume the change probability between every

pair of features that directly liked will be same, i.e., every

no-zero entry in Mp will be same.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1572

Fig. 4. Illustration of WFDN

2) A Catalog of Changes: To use the software dependency

network to analyze the software change impact, we should

transform source code edits into a set of atomic changes. As

talked in Section II, the authors also analyzed the change

impact of OO software systems from the perspective of

internal structure of softwares. They, however, fail to provide

the list of atomic changes that can be applied in their method.

We next, with reference to [20], present a catalog of atomic

changes for OO software systems with respect to software

dependency networks at feature level. We assume the original

and the changed version of the OO software systems are both

syntactically correct and compilable, and any source code

change edits can be decomposed into a set of atomic changes

as defined in table 1.

All these atomic changes in table 1 are self-explanatory.

These atomic changes are presented in the perspective of

WFDN and represent the source code edits at feature level.

In our current work, we mainly analyze the stability of

OO software systems by analysis on the existing software

components in an OO software system. So atomic changes

introducing new nodes and dependencies, like CMD and AF

annotated“No”, will be ignored in our current approach. In

this point, our approach is no better than the existing work.

And for the other atomic changes, regardless their nature, we

will be treating them as the same change operation, namely

change, and will be realized by random selection operations

in our change propagation algorithm.

3) Change Propagation Algorithm: Any software system

generally will undergo many times of modifications to ad-

just for the change requirements such as new requirements,

enhancement, error correction and optimization. Since the

diversity and randomness of software maintenance activities,

it is of no meaning for the practitioners to predict when the

next maintenance activity will occur and what this activity will

consist of [2]. Because of the random nature of software main-

tenance activities, in our simulation, we will use the random

selection operation to mimic this process. In the following

subsections, an algorithm for software change impact analysis

using simulation will be outlined. Before that some metrics

used in this algorithm will be given first.

Definition 2: Change Probability Propagation Field of a

Node, CPPFN

Suppose there is a specific WFDN. The CPPFN of

node i in this WFDN, CPPFN(i), defines a set of nodes

that are accurately affected by the change in node i in a

specific simulation. And the size of this set can be denoted

as sCPPFN = |CPPFN(i)|. Here and below, | ∗ | denotes

the counting of the elements in set ∗.

Definition 3: Change Probability Propagation Field of a

Set of Nodes, CPPFSN

Suppose there is a specific WFDN. The CPPFSN of a

set of nodes setN , CPPFSN(setN), defines a set of nodes

that may be affected by the change in nodes in setN in a

specific simulation. And the size of this set can be denoted

as sCPPFSN = |CPPFSN(setN)|. Then the formula to

calculate CPPFSN(setN) is shown as:

CPPFSN(setN) =
⋃

∀i∈setN

CPPFN(i) (2)

In Algorithm 1 shown below, mp and cr are decimal num-

bers between 0 and 1, and maxT is an integer far more than

|N |; simT is the number of simulation run times; bChanged[]
is an array with boolean type and each element of bChanged[]
stores the state of each node in WFDN, i.e., “true” denotes

changed and “false” denotes unchanged; bChangedBak[] is

the backup array of bChanged[]; bSelected[] is an array with

type boolean and stores the state of each node, i.e., “true”

denotes it has been selected as a node in initial changed node

set and “false” denotes not; CPPFSN [] is an array with

an integer type and stores the CPPFSN obtained in each

simulation run; t is the counter of current run times; cChgNN
is the number of nodes that have selected as changed nodes

in initial change set.

4) Metric for Software Stability: Based on the analysis

above, here we will define a metric to characterize the stability

of OO software systems.

Definition 4: Changed Node Ratio, CNR

Suppose there is a specific WFDN. CNR defines a ratio

that the changed nodes account for the total nodes in WFDN

from an initial state to a stable state in simT simulations. And

it can be calculated as:

CNR =

simT
∑

i=1

CPPFSN [i]

simT × |N |
× 100% (3)

The notations have the same meaning as that used in change

propagation algorithm.

Definition 5: Stability of Software, SoS

Then a novel metric for measuring the stability of OO

software systems (hereafter SoS) can be produced, which can

be computed according to formula (4):

SoS = 1− CNR (4)

Obviously SoS is a scalar whose value between 0 and 1.

A low SoS indicates a stable software where changes do not

easily propagate between its software components.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1573

TABLE I
CATEGORIES OF ATOMIC CHANGES

Abbreviation Atomic Change Name Realized?

DEM Delete an empty method Yes

DM Delete a non-empty method Yes

CHM Change the header of a method Yes

CM Change the body of a method without new dependencies introduction Yes

CMD Change the body of a method with new dependencies introduction No

AF Add an attribute No

DF Delete an attribute Yes

CF Change an attribute without new dependencies introduction Yes

CFD Change an attribute with new dependencies introduction Yes

Algorithm 1 Change Propagation Algorithm.

Input:

WFDN, mp, cr, and maxT ;

Output:

CPPFSN [i] (i = 1, 2, ..., |N |);
1: Initial Mp, set each entry Mp[i][j] = mp if there is

a direct edge from node i to node j in WFDN. Set

CR = cr and simT = maxT . Set bChanged[i] =

false, bChangedBak[i] = false, bSelected[i] = false,

CPPFSN [i] = 0 (i = 1, 2, ..., |N |), and t = 1. Set

cChgNN = 0. Prepare a queue cQueue.

2: If (cChgNN <= cr × |N |) then randomly select a

node i which satisfies bChangedBak[i] = false and

bSelected[i] = false from N . Push it into cQueue,

set bChanged[i] = true, bChangedBak[i] = true,

bSelected[i] = true, cChgNN++, and go to step 3; else

go to step 6.

3: If (cQueue is Null) then go to step 6; else go to step 4.

4: Pop one node from cQueue, denoted as Ni. Travel through

the nodes in N one by one (each node denoted as Nj),

if (Mp[i][j] = mp) then add node j to a temporary set

tempSet.
5: For each node Nk in tempSet, randomly generate a

decimal deck. If (deck >= mp), then (1) add Nk into

cQueue (i.e., the change in Ni will propagate to Nk),

(2) delete it from tempSet, (3) set the corresponding

bChanged[k] and bChangedBak[k] of Nk to be true,

and (4) go to step 2; else delete it from tempSet and go

to step 2.

6: Set CPPFSN [t] to be the number of non-zero elements

of array bChangedBak[l] (l = 1, 2, ..., |N |). Set t = t
+ 1. If (t < simT), then set bChanged[i] = false and

bChangedBak[i] = false (i = 1, 2, ..., |N |) and go to

step 2; else go to step 7.

7: return CPPFSN [i] (i = 1, 2, ..., |N |).

5) Analysis on the Convergence of SoS: As talked above,

SoS is computed using a simulation method. So, though the

parameters like mp, cr, etc., are set to the same values in

two separate runs, the SoS obtained may be different. So

if we want to use SoS to characterize the stability of OO

software systems, we should make a judgement that whether

TABLE II
JUNIT 3.4 STATISTICS

Parameter Value Parameter Value

Number of packages 7 Number of classes 78

Number of features 601 |N | 575

|E| 889

the proposed SoS can convergence to a relative stable value.

There are two main parameters (i.e., mp and cr) that should

be set before running the change propagation algorithm. We

next analyze the convergence of SoS by different settings of

mp and cr with maxT being same. And we use an OSOO

software system, JUnit 3.4 [21] as our research subject. Table

2 shows the statistics of JUnit 3.4, including the number of

packages, classes, and features of the whole systems. And

here we focus on the WFDN composed of weakly connected

components (WCC) with the number of nodes in each WCC

larger than 1, i.e., the isolate nodes who have no direct edges

to other nodes will be ignored. The number of nodes (|N |)
and edges (|E|) in WFDN are also shown in table 2.

According to our experience in our daily work, the number

of the initial changed nodes always will not be larger than

6. So here we set cr from 1/575 to 6/575 at interval 1/575

and maxT = 50,000. And for each cr setting, we analyze the

SoS vs. current run time t for mp ranging from 0.1 to 1 at

interval 0.1. For limitation of space, here we only show the

results of two simulations under two specific cr settings where

cr = 1/575 and cr = 6/575. Please see figure 5 for illustration.

From the curve of SoS vs. t, we can make the following four

observations: (1) at the early period of simulation (especially

t < 5,000), the SoS are not stable, fluctuating drastically; (2)

when t is much more lager than |N |, like t >= 50,000 in

figure 5, SoS converges to a relative stable value; (3) under

the same cr and t, the larger mp, the smaller stable SoS we

obtained; and (4) under the same mp and t, the larger cr, the

smaller stable SoS we obtained. In simulations with other mp
and cr settings, we obtain the similar results.

But whether the observations obtained in JUnit 3.4 fit in well

with that in other software systems? To answer this question,

we randomly select about 100 software systems and analyze

the stability of them using simulation method. And we also

make the observations in all these software systems as that in

JUnit 3.4. For limitation of space, here we omit the details

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1574

Fig. 5. Illustration of SoS vs. t. The left part: SoS vs. t with cr = 1/575 and maxT = 50,000. The right part: SoS vs. t with cr = 6/575 and maxT =
50,000

of the software systems used and the simulations on them.

Based on the analysis above, we can conclude that SoS can

be used as a metric to characterize the stability of OO software

systems.

IV. CASE STUDY

Design patterns are generally defined as descriptions of

communicating classes that form a common solution to a type

of design problem. They are widely accepted as a proven

way to improve software quality [22]. Such an improvement

in software quality should be qualitatively captured by the

proposed metric, SoS.

A. Data Source

In order to investigate the applicability of the SoS proposed

in this paper, eight Java programs have been examined. Both

programs have two versions: one employs design patterns and

one does not. These Java programs have been selected for

analysis because they satisfy the following criteria: (1) they

are written in Java which can be supported by our analysis

tool; (2) the two versions of each Java programs have the

same functionality, and the only difference is whether use

design pattern or not; and (3) only one kind of design pattern

will be used in one version of a software system. The design

pattern used in one version of each Java program is Adapter,

Bridge, Builder, Chain, Composite, Interpreter, Iterator, and

Sate [23]. The source codes of the eight Java programs with

two versions before and after using design pattern are available

for download from [24]. Table 3 shows the statistics of the

eight Java programs under study.

B. Results and Discussion

To analyze the stability of object-oriented software systems,

we model them by WFDNs, using our own developed analysis

tool SSAT (that will be detailed in Section V). To make it

clear, for instance, figure 6 gives an illustration of the WFDNs

of the Java program before and after using Adapter design

pattern. Then, we apply our simulation method on the WFDNs

of software systems under study and their SoS values are

calculated. In all our simulations, simT are all set to be

10,000. Table 4 shows the SoS of the eight Java programs

TABLE III
STATISTICS OF THE EIGHT JAVA APPLICATIONS

WFDN WFDN

Before Before After After

Design Pattern |N | |E| |N | |E|

Adapter 5 4 12 11

Bridge 26 48 41 65

Builder 11 13 31 34

Chain 7 8 10 13

Composite 11 15 12 15

Interpreter 4 3 20 25

Iterator 5 6 15 21

Sate 5 5 15 16

before and after using design pattern with maxT = 50,000,

cr × |N | = 1, and cr = 0.2α (α= 1, 2, 3, 4, 5). The results

of simulations under other cr and mp settings all have similar

conclusions. So for the limitation of space, here we omit them.

For details, please refer to [24] where we have attached all the

data used in this paper.

From Table 4, we can find that the SoS of Java programs

using design patterns are larger than that of Java programs not

using design patterns. The results matches with the anticipation

that design patterns can improve the quality of software

systems, and it verifies that the proposed method has the same

ability of that in [10], [13].

V. IMPLEMENTATION

We have developed a Java program named Software Stabil-

ity Analysis Tool (SSAT) adapted from SNAT in [18], which

is mainly consists of three parts: (1) a bytecode parser, (2) a

NET generator and parser, and (3) a SoS calculator.

The bytecode parser can parse the complied Java code

(.class and .jar) to reveal the static structure WFDN, and store

them in a file with NET file extension.

The NET generator, after the complied Java code has been

parsed, produces a NET file, denoting WFDN. The NET file

contains the information about the full feature names, the

dependencies among them and the weight of each dependency

edge (i.e., change propagation probability). It has the same

format as that used in Pajek [25]. So you can also use Pajek to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1575

TABLE IV
SoS OF THE EIGHT JAVA PROGRAMS WITH maxT = 50, 000, cr × |N |=1, AND mp=0.2α (α=1,2,3,4,5)

Design Pattern
mp=0.2 mp=0.4 mp=0.6 mp=0.8 mp=1.0

Before After Before After Before After Before After Before After

Adapter 0.76726 0.900075 0.73698 0.881 0.7031 0.860717 0.67144 0.83775 0.63974 0.812883

Bridge 0.944435 0.967037 0.924104 0.95579 0.901631 0.943246 0.879369 0.929088 0.858127 0.913768

Builder 0.886064 0.960255 0.860818 0.953065 0.829336 0.944642 0.801873 0.936771 0.776091 0.927984

Chain 0.821386 0.87126 0.778914 0.8382 0.733714 0.80083 0.683729 0.76639 0.631786 0.7293

Composite 0.882482 0.892342 0.847091 0.866942 0.808427 0.837133 0.770873 0.807825 0.734336 0.777725

Interpreter 0.7102 0.936635 0.663675 0.9216 0.613675 0.902025 0.5598 0.8816 0.49895 0.85966

Iterator 0.7471 0.911807 0.68474 0.88482 0.628 0.853267 0.56862 0.822547 0.51544 0.792087

Sate 0.75778 0.91716 0.70876 0.90002 0.65586 0.878807 0.60412 0.8554 0.5623 0.83218

AdapterDemo.main{java.lang.String[]}

LegacyLine.LegacyLine{}

LegacyLine.draw{int, int, int, int}

LegacyRectangle.LegacyRectangle{}

LegacyRectangle.draw{int, int, int, int}

AdapterDemo.main{java.lang.String[]}

Line.Line{}

Rectangle.Rectangle{}

Shape.draw{int, int, int, int}

LegacyLine.LegacyLine{}

Line.adaptee

Line.draw{int, int, int, int}

LegacyLine.draw{int, int, int, int}

LegacyRectangle.LegacyRectangle{}

Rectangle.adaptee

Rectangle.draw{int, int, int, int}

LegacyRectangle.draw{int, int, int, int}

Fig. 6. Illustration of WFDNs of the Java program before (left) and after (right) using adapter design pattern.

Fig. 7. Sample screenshot for SSAT

give an illustration of the WFDN. For the limitation of space,

here we will not go further into details about the format of

the NET file.

The SoS calculator applies the aforementioned approach to

calculate SoS for a specific software system.

A sample screenshot of SSAT applied to the Java program

before using adapter design pattern with maxT = 50,000, cr×
|N | = 1, and mp = 0.2, is shown in figure 7.

VI. LIMITATIONS AND FUTURE WORK

Although our approach shows some feasibilities in measur-

ing the stability of the sample Java programs, the broad validity

of our approach demands further demonstration. Moreover,

when constructing WFDN, we suppose that the change in one

feature will propagate to other features with the same proba-

bility. This may not meet the practice in some circumstance.

Thus, the future work includes:

(1) validating the approach using more other open source

software systems written in Java and other programming

languages (e.g., C++, C#);

(2) presenting a more realistic approach which takes into

considering in WFDN the non-trivial probability (not simply

the same probability).

VII. CONCLUSION

In this paper we used the weighted feature dependency

network (WFDN) to model the topological structure of OO

software systems, examined the change propagation process in

WFDN using a simulation way, and finally proposed a metric

SoS to characterize the stability of OO software systems. The

rationale behind this approach is that in a high quality software

system, changes arising in features should be limited to a range

as small as possible, i.e., SoS should be kept as small as

possible.

Case studies have shown the effectiveness of SoS in soft-

ware stability measurement. The proposed approach improves

the accuracy of existing methodologies. And it has been

automated by a tool written in Java and can be applied to

measure the SoS of any OO software system written in Java.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1576

ACKNOWLEDGMENT

This research is supported by the National Basic Research

973 Program of China under Grant No. 2007CB310801, the

National Natural Science Foundation of China under Grant

Nos. 60873083, 60903034, 61003073 and 61070013, the Nat-

ural Science foundation of Hubei Province under Grant Nos.

2008CDB351 and 2008ABA379, the Research Fund for the

Doctoral Program of Higher Education of China under Grant

No. 20090141120022, and the Fundamental Research Funds

for the Central Universities of China under Grant No. 6082005.

REFERENCES

[1] Roger S. Pressman, Software Engineering: A Practitioner’s Ap-

proach. New York, England: McGraw-Hill, 1992.

[2] S. Yau and J. S. Collofello, “Design stability measures for software
maintenance,” IEEE Transactions on Software Engineering, vol. 11, no. 9,
pp. 849-856, 1985.

[3] IEEE Std. 610.12, Standard Glossary of Software Engineering Terminol-

ogy, IEEE Computer Socienty Press, Los Alamitos, CA, 1990.

[4] S. Yau and J. S. Collofello, “Some Stability Measures for Software
Maintenance,” IEEE Transactions on Software Engineering, vol. SE-6,
no. 6, pp. 545-552, 1980.

[5] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Prac-

tical Approach, 2rd ed. Londom, UK: International Thomson Computer
Press, 1996.

[6] C R. Myers, “Software systems as complex networks: Structure function,
and evolvability of software collabration graphs”, Physical Review E,
2003, 68: 046116.

[7] S. Bohner and R. Arnold, Software Change Impact Analysis, IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.

[8] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima and C. Chen, “Change
Impact Identification in Object-Oriented Software Maintenance,” Proc. of

IEEE International Conference on Software Maintenance, pp. 202-211,
1994.

[9] A. MacCormack, J. Rusnak and C. Y. Bald Win, “Exploring the Structure
of Complex Software Designs: An Empirical Study of Open Source and
Proprietary code,” Management Science, vol. 52, no. 7, pp. 1015-1030,
2006.

[10] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and I. Delegiannis,
“Probabilistic Evaluation of Object-Oriented System,” Pro. of the 10th

International Symposium on Software metrics, pp. 26-33, 2004.

[11] I. Shaik, W. Abdelmoez, R. Gunnalan, A. Mili, and C. Fuhrman, “Using
change propagation probabilities to assess quality attributes of software
architectures,” Proc. of IEEE International Conference on Computer

Systems and Applications, pp. 704-711, March, 2006.

[12] J. Liu, J. Lu, K. He, B. Li and C. K. TSE, “Characterizing the structural
quality of general complex software networks via statistical propagation
dynamics,” International Journal of Bifurcation and Chaos, vol. 18, no. 4,
2008.

[13] L. Li, G. Qian and L. Zhang, “Evaluation of software change propagation
using simulation,” Proc. of World Coongress on Software Engineering

2009, pp. 28-33, May 19-21, 2009.

[14] D. Hyland-Wood, D. Carrington and S. Kaplan, “Scale-free nature of
Java software package, class and method collaboration graphs,” Technical

Report of MiND Laboratory, 2006, No. TR-MS1286, University of
Maryland College Park, 2006.

[15] H. Li, B. Huang and J. Lu, “Dynamical evolution analysis of the object-
oriented software systems,” Proc. of 2008 IEEE Congress on Evolutionary

Computation, pp. 3030-3035, June 1-6, 2008.

[16] H. Li, “Scale-free networks models with accelerating growth,” Frontiers

of Computer Science in China, vol. 3, no. 3, pp. 3030-3035, 2009.

[17] J. Liu, K. He, Y. Ma and R. Peng, “Scale free in software metrics,”
Proc. of IEEE Proceedings of 30th Annual International Computer

Software and Applications Conference, pp. 229-235, Sept. 18-21, 2006.

[18] W. F. Pan, B. Li, Y. T. Ma, J. Liu and Y. Y. Qin, “Class structure
refactoring of object-oriented softwares using community detection in
dependency networks,” Frontiers of Computer Science in China, vol. 3,
no. 3, pp. 396-404, 2009.

[19] B. Li, Y. T. Ma and J. Liu, “Advances in the studies on complex networks
of software systems,” Advances in Mechanics, vol. 38, no. 6, pp. 805-814,
2008.

[20] B. G. Ryder and F. Tip, “Change impact analysis for object-oriented
programs,” Proc. of ACM SIGPLAN-SIGSOFT Workshop on Program

analysis for software tools and engineering, pp. 45-53, 2001.
[21] JUnit, http://junit.sourceforge.net, May 5, 2010.
[22] N. Tsantalis, E. Chatzigeorgous, G. Stephanides and S. T. Halkidis,

“Design pattern detection using similarity scoring,” IEEE Transactions

on Software Engineering, vol. 32, no. 11, pp. 896-909, Nov., 2006.
[23] R. Martin, Design principles and design pattern.

http://www.objectmentor.com, May 5, 2010.
[24] Data for the case studies, http://blog.sina.com.cn/breezepan, May 5,

2010.
[25] Pajek, http://pajek.imfm.si/doku.php, May 5, 2010.

Weifeng Pan received his Ph.D. degree from State
Key Laboratory of Software Engineering at Wuhan
University in 2011. His current research interests
include software engineering, service computing,
complex networks, and intelligent computation. He
is a member of China Computer Federation (CCF),
and Association for Computing Machinery (ACM).
In June 2011, he joined School of Computer Science
and Information Engineering, Zhejiang Gongshang
University.

