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A Study of Cooperative Co-evolutionary
Genetic Algorithm for Solving Flexible Job
Shop Scheduling Problem
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Brucker and Schlie[3] were the first to develop the
Abstract—Flexible Job Shop Problem (FJSP) is an extension ¢folynomial algorithm for solving the FISP problerithatwo
classical Job Shop Problem (JSP). The FJSP extiredsouting jobs. In the recent years, there are a growing runuf
flexibility of the JSP, i.e assigning machine to@peration. Thus it |iteratures in the FJSP. The related publicationrClen et
makes it more difficult than the JSP. In this stu@poperative Co- al.[5], Dauzére-Pérés and Paulli[6], Kacem et Bl.King et

evolutionary Genetic Algorithm (CCGA) is present@dsolve the .
FJSP. Makespan (time needed to complete all jabs)sed as the al.[8], and Yadazni et al.[9] [10] among others. émg the

performance evaluation for CCGA. In order to teatigrmance and literatures, it can be categorized into the higvial approach
efficiency of our CCGA the benchmark problems amived. Or the integrated approach. The hierarchical aggrcsolves
Computational result shows that the proposed CC&éoimparable the machine selection problem and operation sedugnc
with other approaches. problem hierarchical (assign then sequence) henstiices
the difficulties of the FISP. Brandimarte[11], & this FISP
Keywords—Co-evolution, Genetic Algorithm (GA), Flexible Job pierarchically. He adopted the dispatching rulesatve the
Shop Problem(FJSP) machine selection problem then solved the sequgncin
problem using the different Tabu Search (TS). Havethe
integrated approaches solve the machine selectiobhlgm
ODAY’s manufacturing industries are concernedamy  ang operation sequencing problem simultaneouslyiza-
on the cost and quality of the product, but they @lso  pgres and Paullij6], Hurink et al.[12], Mastraliland

pdoncer:n at;]oug tlhe delivefry performalmcebof the p:tr:t)du Gambardella[13] adopted the integrated approach and
Besides that, the delivery performance also becaries| to proposed a different TS for solving the FJSP. Imirth

secure competitive advantages. _Therefore schedplﬂy_;;_ an approach, there is no distinction in solving thehbem of
important role in the manufacturing process. A scie is an : . ;
machine selection and operation sequence problem.

allocation of the operation to the time intervala the
P In recent years the GA has been successfully adoute

machines. To find a best schedule it can be eitber easy or . .
very difficult, and it depends on the process amiist, shop SCIve the FISP, and this can be proved by the ggomimber
of publication. The relevant works are Mesghounalgil4],

environment and performance indicator (makesparghina k
workload). Job Shop Problem (JSP) is a branch adytion Chen et al.[5] and Kacem et al.[7]. Mesghouni €.4] were
manufacturing and it is a hardest combinatoriabfmm. The the first to model the GA for the FJSP; they prambshe
classical JSP consist afjobs andm machines and each job parallel job  representation and parallel machines
has a sequence of operations. The problem of tReissghe representation. Chen et al[5] also proposed a new
sequence of the operations on the machine in dodéind a chromosome representation that consists of twagsri.eA
minimum makespan (time needed to complete all jobs) String and B String A String is defined by the routing

In order to make the JSP closer to the real wofldhe Problem whereasB String defines the sequence on the
manufacturing system, the JSP is extended to Feexibb OPeration problem. Lastly Kacem et al.[7], proposedask
Shop Problem (FISP). In FISP an operation candeegsed S€duencing list as the . chromosome representatia .th
by more than one machines, but in the JSP one tipergan  cOMbines both the routing and sequencing informatio
be processed by exactly one machine. Thus the pagfnt Besides that, they developed an approach by treization
two difficulties: to find a promising initial assignment.

i.  Machine selection problem, assigned a suitable or In this study we proposed a cooperative co-evohatiy
appropriate machine to an operation. genetic algorithm (CCGA) for the FISP. In CCGA, ISP
i. Operation sequencing problem, sequence tH% decomposed into two problems (sub problem). Each

operation on the machine in order to find a minimun'?rObIern is evolved by a single GA. In this way, Wa”e'
makespan. searches on two sub problem are more efficient thaimgle

search on entire problem.
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is formed by a sequence of operatio®g (Op,... Op), . Each

problem[15]. Co-evolutionary is categorized into eth

operationOy,, i.e the operation from jobi can be executed on cooperative co-evolutionary and competitive co-atiohary.

any machine from the predetermined alternative mnacket
M; M. The processing time for each operati@, is
predetermined. All jobs and machines are availabliéme O.
There are three constraints for jobs and machines:

Here, we will focus on the cooperative co-evoludon
algorithm, and it is because of the trend of curmsearch
which focuses on the cooperative co-evolutionagpiadhm.

In this research we present Cooperative Co-evalatip

i. There are precedence constraints among the operat®enetic Algorithm (CCGA) for solving the FISP. TREGA

of the same job.
ii. Each operation must
interruption once started.

be

is first proposed by De Jong and Potter[16] to ionpr the

completed withoutraditional GA that has a slow evolution process large

search space[17]. CCGA uses the strategy of diddd

iii. Each machine can only execute one operation atcanquer. CCGA divides or splits a big problem istoaller

time.
There are two problems presented in the FISP thathe

problems i.e species, each of this species is septing the
partial solution of the problem. Each species istaied in a

machine assignment problem and operation sequencipgpulation that contains different individuals (@mosomes).

problem. In the machine assignment problem an piate
machine is selected and assigned to an operati@neat the
operation sequencing problem is to sequence thetme on
the machine in order to minimized the makespan,the time
needed to complete all the jobs. Makespan is defast,, =
max {C} whereC; is the completion time for job.

The flexibility of the FISP can be categorized iptotial
flexibility and total flexibility[7]. In the case fo partial
flexibility each operation can only be executed ayimited

Furthermore these species evolve independently bingle
genetic algorithm. Therefore during the individsafitness
evaluation process, the individual is cooperatedh wis
cooperative partner to form a complete solutiorcatculate
the individual’s fitness.

In our algorithm there are two populations, and heac
population represents the difficulties of the F#SRnentioned
in section Il. The first population is the machiselection
populationPopMN)={1,2,...N}, and the second population is

number of machine#!; # M. However in the case of total the operation sequencing populatidtopQN)={1,2,...N}.

flexibility each operation can be processed by awmgilable
machinedvi; LIM.

Problem instance of the FJSP with partial flexipilis
given in TABLE I. In TABLE I, each rows correspord
operations and columns representing the machineh Hait
value in the table is the processing time of thechirees.

Since these two populations have different featuaesl
therefore the genetic operation and individual espntation
are different for both populations. Moreover thdaile of
these two populations are explained in sectionadCla

B.Cooperative partner selection and fithess evaluatio

However the symbol “” means that the machine canng 1here is a great difference between GA and CCG#hén

execute the corresponding operation.

TABLE | PROCESSING TIME TABLE

Job Operation Machines

My My My My My

J On 2 6 5 4 3
O, - 8 - 4 -

021 2 2 8 -

Oy 8 7 5 4 8

N Osn 6 - - 9 3
Os; 1 - 4 4 -

033 7 5 - 6 -

J On 3 - 6 - 5
042 4 6 5 - -
Oy 8 7 11 5 8

Il.  COOPERATIVE CGEVOLUTIONARY GENETIC ALGORITHM

FOR FJSP

A.Cooperative co-evolutionary genetic algorithm

Co-evolutionary algorithm
ecosystem that involves two or more interacting cigse
During the evolution process there are interactibatveen
individual from different species. However, in cemtional
genetic algorithm (GA) the individual does not naigt with
the individual from other species. Co-evolutionatgorithm
is reported that it provides a promising alterratito a
standard evolutionary algorithm in a complex andhatgic

introduces the concept of

fitness evaluation. In GA, fitness value of an indual is
dependent on the quality of the solution and ieveluated
independently. Note that the quality we considdreck is the
makespan. But in CCGA the individual's fitness degseon
how well it cooperates with its cooperative partriEnus to
evaluate the CCGA individual’s fitness value, thetiod to
select cooperative partner should be determined. firhere
are various methods to select the cooperative @agnd we
have conducted some testing on the randomly satetselect
the best cooperative partner. The computationalultres
indicates that the randomly select cooperative givbetter
result among others.

Roulette wheel selection is chosen to select tdevistual
for reproduction. By using this method, individwdgth higher
fithess will have a higher probability to be se#ett Thus it
has increased the chance to produce individualk tstter
fitness. The individual's fitness is calculatedusing (1), and
the fitness value is in the range of 0 to 1.

_ 9q()~{maxycpopmiq9qW+1}
fq(S) - minyepopmiq] 9q (u)—{maxuepopM[q]gq(u)+1} €Y)

In (1) fy(s) is the fitness of sh individual in a population
PopMq] (g=1,2, number of individual). Whilgy(u) is the
makespan of uh individual when it cooperates with the
cooperative partner fronPopQ The equation rescaled the
value ofgy(s) so that it makes the selection more effective and
deals with minimum problem.
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C.Genetic component for machine selection

1) Initial population
In order to generate a promising initial population the

machine selection problem, we adopt two approaches [ 0, [

presented by Pezzella et al.[2]. The first approash

AssignmentRulel(search for the global minimum in the

processing table) and the second approaéisssggnmentRule2
(randomly permute jobs and machine in the procgssihle).

These two approaches are the modified version ef th

approach of localization by Kacem et al.[7]. In timtial

M,, Ms} (refer to TABLE I ninth row and third columnMsis
the selected and assigned machine for its chamgdg @; to
Ms

NY M; My
Jz M, Ms -
J3 Ms My M
A Ms My ('\T;)’
Parent
Alternative machine sets

[M: [ Mo [ Ms | Ma T M)

population 10% of the individual is generated by [} 0, [N

AssignmentRuleand 90% of the individual is generated by J M M, -

AssignmentRule2. jz mz ma M

2)Individual representation 3 Ms My (,\7:),
Parallel job representatioy) was used as the individual Offspring

representation in the machine selection problBd.is first

introduced by Meshouni et al.[14]. TH, is represented in a

matrix form, where each row of the matrix is anesetl series
of operation for each job. Meanwhile, each celth® matrix
consists of assigned machine and the starting tifrtee job
operation. Moreover, this representation allowshbobw
crossover and column crossover to be easily peddrBut it
needs a repairing mechanism to recalculate théirgjaime
for every job operation after performing the gemeiperation.
Thus, we have improved thBJ, with some modifications to
avoid production of infeasible solution. In our apgch, each

Fig. 1 Mutation for parallel job representation

D.Genetic component for operation sequence
1) Initial population

Initial population of the operation sequence isaoted by
sequencing the operation on machine based on fttial in
population of machine selection. Initial populatiois
generated from the mixing of three well know dispéatg
rules such as the most work remaining (MWR), most
operation remaining (MOR) and random select job JJRS

cell of PJ only consists of the assigned machine and thiphere are 40% of individual generated by MWR, 40% o

machine is selected from the assignment rule.
TABLE Il PARALLEL JOB REPRESENTATION

O, O, Os
Nt M Mgy -
J2 Ma Mz -
NG Ms Mg M,
Js Ma M M2

3)Genetic operation
There are two crossover operator used to produneva

individual generated by MOR and 20% of individual i
generated by RSJ.
2)Individual representation

Operation sequence representation is used to entwde
operation sequencing problem. In this represemat
operations for the same job are defined with a saymebol
and it interprets them according to the order. Tinfgasible
solution can be avoided by using the same symbolttfe
same job. The chromosome length L is the total atjmrs of

offspring. Row crossover and column crossover asbptall jobs. An example of the operation sequenceesgmtation

from[14] are used in our approach as these opearatovays
produce a legal offspring. The algorithm for thevrcrossover
is given as:

is constructed based on TABLE I. In TABLE | jdbconsists
of two operations @;; - O;5) and job J, consists of two
operations Q,; - O,,). However for jobJ; andJ, each of this

Stepl. Two individuals are randomly selected by thgb consist of three operations. The operationsf@re Qs -

roulette wheel selection. One job (row of matrix) is)
randomly selected.

Step2. The assigned machine for the selected jolains
unchanged for both selected individuals.

Step3. Swap the assigned machine for the remajonépr
both individuals.

The step for column crossover is similar to the row
crossover, but the column crossover is swapped Hey t

selected operation (column of the matrix) for tredested
individual.

03,-033) and J, are ©41-04-043). In Fig. 2 a chromosome
that contains of 2-1-3-4-4-2-3-1-4i8 constructed. This data
is read from left to right and there is an incragsbperation
index for each job. Thus it can be translated ®¢p O;;- Os-
O41- Oy Oy~ O3y~ Oy~ Oy3- Ogs.

Operation Sequence representation

[2]1]3[ 4[4 2 3 1 4 3

Fig. 2 Operation sequence representation

Mutation operator only changed the machine assighme

properties of the individual. In Fig. 1, an exampfemutation
operation performed on tHeJ.. Firstly a jobJ, and operation
O; are selected to perform the mutation, and theeatiyr

3) Genetic operator
In applying the crossover operator for the repregem of
operation the sequencing precedence of constraiohg job

selected from an alternative machine saflis {My, M,, Ma,

offspring, and to repair an illegal offspring isryetime
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consuming. Therefore therecedence order crossao (POX)
operator from Lee et al.[18] conceros the precedence orc
is adopted. The POX works as follows:

Step 1 Generate two sub-job sefJJ) from all jobs and
select two parent individuals ag;@nd Q; randomly;

Step 2 Copy any element ingf@s, that belons to J4/Js,
into the child individual @,/Os», and retairthe same position
in Og1/Og;

Step 3 Delete the elements that are alr in the sub-job
Jsi/Js; from Q/Og,

Step 4 Orderly fills the empty position irg1/Og», with the
remainder elements of@0;;

In Fig. 3 we used chromosome representation that cor
of 4 jobs to demonstrate the procedure of POXtRive sub
jobs are generated; ¥ {2,3}, Js={1,4}. After that, copythe
element in @ which belongs to ¢ into the child Q;- and,
remain in the same position. And it is followeddsjeting the
element that is already in sub-jol flom Cg,. Lastly, fill the
empty position in Q. with the remainder elements o).

Swap mutation is applied to theperation sequence

representation. First, two positions of the chroomos are
randomly selected. Secondly, swap the elementeoféhecter
position.

Oy [2]1[8]4]4[2]8]1]4]3]

OSZ

1[2]8]4f2]1[8]4]4[3]

PR ~N Y
Ow[2]1[8]4]1]2]8]4]4]3]
Op [1]2]8]4f2]1][8]4]4]3]

Fig. 3Procedure of precedence order cross

IV. PROPOSEDALGORITHM
The procedure for CCGA for FISP is given as be

Step 1: Initialization. Generate initial population fc
machine selection populatioPopM[Kk], k =
{1,2...N} and operation sequence popula
PopO[q], g = {1,2...N}.

Step 2: Initial fitness evaluationEach individual fron

PopM[kland PopO[q] is evaluated b
combining them with he cooperative partn
and set thefpes to be the fitness value of tl
individual. Cooperative partner is randon
selected from other species to form a comg
solution.

Step 3: Co-evolution

Step 3.1 Select two parents fronthe population
based orthe fithess by the roulette whe
selection and applied crossover operatc
generate two new offspri
Mutation operator is applied to obtain n
offspring
Step 3.3 Evaluate the fitness value the new

Step 3.2

offspring by combining it with the
cooperative partner. The random individt
best individual from previous evaluati
and individual wh stay at the same
position is being evaluated and is selet
as thecooperative partnel

Set m—m+1.

If m<M (the number of species), then gc
Step 3.1 Otherwise go to Step
Termination If the termination criteria ar
satisfied, then the process will be stopy
Otherwise go tStep 3.

Step 3.4

Step 4

Fig. 4is shown to explain the algorithm framework cleatty
Fig. 4, a coevolutionary model of two species on this stud
given. It denotes the evolution process for eadctiss fromr
theperspective of each in tu

Evolution of PopM

Evolution of PopM

PopO
OO L aX
SEEE5 AAAAR

L > AAAAN
Cq Fitness evaluation

B

Fig. 4 Cooperative cevolutionary genetic algorithm for FJ

V. COMPUTATIONAL RESULT

The proposed algorithm was implemented in javaan
Intel Core 2 Duo running at 2.40 GHz, and te on 10
dataset from Brandimaftel]. This data set can be obtained
from http://www.idsia.ch/~monaldo/fisp.ht/. The job
number of the dataset is in the range of 10 totl2® numbe
of machine is in the range of 4 to 15 and the nundse
operations is in the range of 5 to In order to evaluate the
efficiency, the proposed algorithm was to 15 times on each
for every problem instancelhe genetic parameter used is
given as:

1870



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:12, 2010

TABLE Il CoMPARISON OFCCGAWITH OTHER APPROACHES

Problem nxm  Flex UB CCGA GENACE[1] GA[2] hGA[4]
PopSize @ PopSize @ dev% PopSize dev  PopSize @ dev %
%

MKO01 10x6  2.09 (36,42) 2000 41 100 40 -2.50 5000 40 -2.50 3000 40 -2.50
MKO02 10x6 4.1 (24,32) 1000 27 100 29  +6.90 5000 6 2-3.85 3000 26 -3.85
MKO03 15x¢ 3.01 (204,211 50( 204 10C  N/A N/A 500( 204  0.0C 200( 204 0.0C
MKO04 15x8 191 (48,81) 2500 62 100 67 +7.46 5000 60 -3.33 3000 60 -3.33
MKO5 15x4 171 (168,186) 1000 173 100 176  +1.70 006 173 0 1000 172 -0.58
MKO6  10x1f 3.27 (33,86 200¢ 64 10C 67  +4.4¢ 500( 63 -1.5¢ 200( 58 -10.3¢
MKO7 20x%x5 2.83 (133,157) 1000 140 100 147 +4.76 000G 139 -0.72 1000 139 -0.72
MKO8 20x10 1.43 523 500 523 100 523 0.00 5000 528.00 1000 523 0.00
MKO9 20x10 253 (299,369) 1500 328 100 320 -2.505000 311 -5.47 1000 307 -6.84
MK10 20x15 298 (165,296) 2000 225 100 229  +1.755000 212 -6.13 2000 197 -14.21

Average improvement +2.21 -2.36 -4.24

= Population size: 500 to 2500
= Number of generation: 1000
= Crossover rates: 0.7
= Mutation rates: 0.01
The computational result is compared with the GENEA
from Ho and Tay[1], GA from Pezzella et al.[2] ahgbrid
GA from Yadzni et al.[9] is given in TABLE IIl. Itolumn 2
nxm denotes the number of joxsnumber of machines, and
Flex in column 3 denotes the average number of madoine
each operation while theop Sizeepresents the population
size used for every problem, the population sizeedds on
the complexity of the problem (eg. number of maehin
number of job, flexibility of the problem).The besiakespan
obtained from our CCGA after 5 runs of experimest i

VI. CONCLUSION

Cooperative co-evolutionary genetic algorithm isgosed
to solve the FISP problem in this study. The coatfmrtal
result in TABLE Il indicates that our CCGA is coamable
with other approaches. In CCGA, the FJSP is dividéal two
species based on its difficulties and each of ttgmeies is
maintained in a population. Furthermore by mairiten
different species in different population, the plapion does
not converge to a single individual. Besides thaach
population evolves by a standard genetic algorithrom Fig.
5 in section V, it can be observed that adopting parallel
searches in two small problems is more efficiemhgared to
a single search in a big problem. Besides that, £Gfeeds

denoted asCy in column 6. The best makespan from the, the convergence. In future the techniquehia study can

GENACE, GA and hGA is represented in column 8,1 34 e applied in other areas such as project planning

respectively.  Moreover, the relative deviatisndefined as
dev = [Cu(CCGA) - Cy(Comp)) / Cu(Comp)]*100%.
Cu(Comp) is the makespan that we compared to, whil

Cu(CCGA) is the makespan obtained from our CCGA. The 300 -

13" row in the table denotes the average improvementio
CCGA compared with other approaches.

The PopSize (population size) used for our CCGA is
smaller compared to GA[2] and hGA. Although the ylagion
size used for GENACE is 100 and it is smaller coragao
the population size of our CCGA, but the makespatained
by our CCGA has outperformed the GENACE[1].

In order to compare the performance of our CCGA @Ad
we developed a GA that uses the same genetic aperat
However the chromosome representation used in GAists
of two parts that are the machine selection (palrgthb
representation) and operation sequence (operagquesice
representation). Besides that, the genetic paramsted to
test GA is the similar with parameter stated int®ecV. In
Fig 5, comparison on the evolution process for @4 @CGA

on benchmark problem Mk10 is given. In Fig 5, CCGA

obtains makespan of 225 in the $1@eneration. However at

the 313" generation the makespan obtained by GA is 270. GA

takes long time (more generation) to obtain the immim
makespan. Thus, we can conclude that CCGA imprbee t
convergence speed and it optimum the searchingtyabil
compared to GA.

management, and transportation scheduling problem.

e Evolution process for CCGA and GA on Mk10

290
280 /GA
270
&
8 260 -
S 250 -
< CCGA
S 240 |
230
220
210
200
B BeDebrD=RrDeDebrb=RrDrDebrb=RrBrDebrb=RrD el
TONOOTONOOTONOOTONOOSTWN O
HEAEH AN NNOOSTTTIOND OO ONNNOOOWOWOO O

Number of Generation
Fig. 5 Comparison on evolution process for CCGA @Ad
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