
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1867

Abstract—Flexible Job Shop Problem (FJSP) is an extension of

classical Job Shop Problem (JSP). The FJSP extends the routing
flexibility of the JSP, i.e assigning machine to an operation. Thus it
makes it more difficult than the JSP. In this study, Cooperative Co-
evolutionary Genetic Algorithm (CCGA) is presented to solve the
FJSP. Makespan (time needed to complete all jobs) is used as the
performance evaluation for CCGA. In order to test performance and
efficiency of our CCGA the benchmark problems are solved.
Computational result shows that the proposed CCGA is comparable
with other approaches.

Keywords—Co-evolution, Genetic Algorithm (GA), Flexible Job
Shop Problem(FJSP)

I. INTRODUCTION

 ODAY’s manufacturing industries are concerned not only
on the cost and quality of the product, but they are also
concern about the delivery performance of the product.

Besides that, the delivery performance also becomes a tool to
secure competitive advantages. Therefore scheduling plays an
important role in the manufacturing process. A schedule is an
allocation of the operation to the time intervals on the
machines. To find a best schedule it can be either very easy or
very difficult, and it depends on the process constraint, shop
environment and performance indicator (makespan, machine
workload). Job Shop Problem (JSP) is a branch of production
manufacturing and it is a hardest combinatorial problem. The
classical JSP consist of n jobs and m machines and each job
has a sequence of operations. The problem of the JSP is the
sequence of the operations on the machine in order to find a
minimum makespan (time needed to complete all jobs).

In order to make the JSP closer to the real world of the
manufacturing system, the JSP is extended to Flexible Job
Shop Problem (FJSP). In FJSP an operation can be processed
by more than one machines, but in the JSP one operation can
be processed by exactly one machine. Thus the FJSP present
two difficulties:

i. Machine selection problem, assigned a suitable or
appropriate machine to an operation.

ii. Operation sequencing problem, sequence the
operation on the machine in order to find a minimum
makespan.

Lee Yih Rou. Author is with the Software Engineering Department,

Universiti Teknologi Malaysia, Skudai 81300 Malaysia(corresponding author
to provide phone: 012-427-3568; e-mail: yihrou@gmail.com).

Hishammudin Asmuni Author is with the Software Engineering
Department, Universiti Teknologi Malaysia, Skudai 81300 Malaysia (e-mail:
hishamudin@utm.my).

Brucker and Schlie[3] were the first to develop the
polynomial algorithm for solving the FJSP problem with two
jobs. In the recent years, there are a growing number of
literatures in the FJSP. The related publication is Chen et
al.[5], Dauzère-Pérès and Paulli[6], Kacem et al.[7], Xing et
al.[8], and Yadazni et al.[9] [10] among others. Among the
literatures, it can be categorized into the hierarchical approach
or the integrated approach. The hierarchical approach solves
the machine selection problem and operation sequencing
problem hierarchical (assign then sequence) hence it reduces
the difficulties of the FJSP. Brandimarte[11], solved this FJSP
hierarchically. He adopted the dispatching rules to solve the
machine selection problem then solved the sequencing
problem using the different Tabu Search (TS). However the
integrated approaches solve the machine selection problem
and operation sequencing problem simultaneously. Dauzère-
Pérès and Paulli[6], Hurink et al.[12], Mastrolilli and
Gambardella[13] adopted the integrated approach and
proposed a different TS for solving the FJSP. In their
approach, there is no distinction in solving the problem of
machine selection and operation sequence problem.

In recent years the GA has been successfully adopted to
solve the FJSP, and this can be proved by the growing number
of publication. The relevant works are Mesghouni et al.[14],
Chen et al.[5] and Kacem et al.[7]. Mesghouni et al.[14] were
the first to model the GA for the FJSP; they proposed the
parallel job representation and parallel machines
representation. Chen et al.[5] also proposed a new
chromosome representation that consists of two strings i.e A
String and B String. A String is defined by the routing
problem whereas B String defines the sequence on the
operation problem. Lastly Kacem et al.[7], proposed a task
sequencing list as the chromosome representation that
combines both the routing and sequencing information.
Besides that, they developed an approach by the localization
to find a promising initial assignment.
 In this study we proposed a cooperative co-evolutionary
genetic algorithm (CCGA) for the FJSP. In CCGA, the FJSP
is decomposed into two problems (sub problem). Each
problem is evolved by a single GA. In this way, two parallel
searches on two sub problem are more efficient than a single
search on entire problem.

II. PROBLEM DESCRIPTION

FJSP consist of a set of n jobs J = {J1, J2,…,Jn} and
processed by m set of machines M = {M1, M2,…,Mm}. A job Ji

Lee Yih Rou, and Hishammuddin Asmuni

A Study of Cooperative Co-evolutionary
Genetic Algorithm for Solving Flexible Job

Shop Scheduling Problem

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1868

is formed by a sequence of operations (Oi1, Oi2,... Oin), . Each
operation Oin, i.e the operation n from job i can be executed on
any machine from the predetermined alternative machine set
M ij M. The processing time for each operation Oin is
predetermined. All jobs and machines are available at time 0.
There are three constraints for jobs and machines:

i. There are precedence constraints among the operation
of the same job.

ii. Each operation must be completed without
interruption once started.

iii. Each machine can only execute one operation at a
time.

There are two problems presented in the FJSP that are the
machine assignment problem and operation sequencing
problem. In the machine assignment problem an appropriate
machine is selected and assigned to an operation whereas the
operation sequencing problem is to sequence the operation on
the machine in order to minimized the makespan, i.e., the time
needed to complete all the jobs. Makespan is defined as CM =
max {Ci} where Ci is the completion time for job Ji.

The flexibility of the FJSP can be categorized into partial
flexibility and total flexibility[7]. In the case of partial
flexibility each operation can only be executed by a limited
number of machines Mij ≠ M. However in the case of total
flexibility each operation can be processed by any available
machines Mij ⊂M.

Problem instance of the FJSP with partial flexibility is
given in TABLE I. In TABLE I, each rows correspond to
operations and columns representing the machine. Each unit
value in the table is the processing time of the machines.
However the symbol “-” means that the machine cannot
execute the corresponding operation.

III. COOPERATIVE CO-EVOLUTIONARY GENETIC ALGORITHM

FOR FJSP

A. Cooperative co-evolutionary genetic algorithm

Co-evolutionary algorithm introduces the concept of
ecosystem that involves two or more interacting species.
During the evolution process there are interactions between
individual from different species. However, in conventional
genetic algorithm (GA) the individual does not interact with
the individual from other species. Co-evolutionary algorithm
is reported that it provides a promising alternative to a
standard evolutionary algorithm in a complex and dynamic

problem[15]. Co-evolutionary is categorized into the
cooperative co-evolutionary and competitive co-evolutionary.
Here, we will focus on the cooperative co-evolutionary
algorithm, and it is because of the trend of current research
which focuses on the cooperative co-evolutionary algorithm.

In this research we present Cooperative Co-evolutionary
Genetic Algorithm (CCGA) for solving the FJSP. The CCGA
is first proposed by De Jong and Potter[16] to improve the
traditional GA that has a slow evolution process for large
search space[17]. CCGA uses the strategy of divide and
conquer. CCGA divides or splits a big problem into smaller
problems i.e species, each of this species is representing the
partial solution of the problem. Each species is maintained in a
population that contains different individuals (chromosomes).
Furthermore these species evolve independently by a single
genetic algorithm. Therefore during the individual’s fitness
evaluation process, the individual is cooperated with its
cooperative partner to form a complete solution to calculate
the individual’s fitness.

In our algorithm there are two populations, and each
population represents the difficulties of the FJSP as mentioned
in section II. The first population is the machine selection
population PopM(N)={1,2,…N}, and the second population is
the operation sequencing population PopO(N)={1,2,…N}.
Since these two populations have different features and
therefore the genetic operation and individual representation
are different for both populations. Moreover the details of
these two populations are explained in sections C and D.

B. Cooperative partner selection and fitness evaluation

There is a great difference between GA and CCGA in the
fitness evaluation. In GA, fitness value of an individual is
dependent on the quality of the solution and it is evaluated
independently. Note that the quality we considered here is the
makespan. But in CCGA the individual’s fitness depends on
how well it cooperates with its cooperative partner. Thus to
evaluate the CCGA individual’s fitness value, the method to
select cooperative partner should be determined first. There
are various methods to select the cooperative partner and we
have conducted some testing on the randomly select and select
the best cooperative partner. The computational result
indicates that the randomly select cooperative give a better
result among others.

Roulette wheel selection is chosen to select the individual
for reproduction. By using this method, individual with higher
fitness will have a higher probability to be selected. Thus it
has increased the chance to produce individuals with better
fitness. The individual’s fitness is calculated by using (1), and
the fitness value is in the range of 0 to 1.

 ����� � �	�
���
���������	��	������

���������	� �	 �����
���������	��	������

 �1�

In (1) fq(s) is the fitness of s th individual in a population
PopM[q] (q=1,2, number of individual). While gq(u) is the
makespan of u th individual when it cooperates with the
cooperative partner from PopO. The equation rescaled the
value of gq(s) so that it makes the selection more effective and
deals with minimum problem.

TABLE I PROCESSING TIME TABLE
Job Operation Machines

 M1 M1 M1 M1 M1

J1 O11 2 6 5 4 3
O12 - 8 - 4 -

J2 O21 2 2 - 8 -
O22 8 7 5 4 8

J3 O31 6 - - 9 3
O32 1 - 4 4 -
O33 7 5 - 6 -

J4 O41 3 - 6 - 5
O42 4 6 5 - -
O43 8 7 11 5 8

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1869

C. Genetic component for machine selection

1) Initial population
In order to generate a promising initial population for the

machine selection problem, we adopt two approaches
presented by Pezzella et al.[2]. The first approach is
AssignmentRule1 (search for the global minimum in the
processing table) and the second approach is AssignmentRule2
(randomly permute jobs and machine in the processing table).
These two approaches are the modified version of the
approach of localization by Kacem et al.[7]. In the initial
population 10% of the individual is generated by
AssignmentRule1 and 90% of the individual is generated by
AssignmentRule2.
2) Individual representation

Parallel job representation (PJr) was used as the individual
representation in the machine selection problem. PJr is first
introduced by Meshouni et al.[14]. This PJr is represented in a
matrix form, where each row of the matrix is an ordered series
of operation for each job. Meanwhile, each cell of the matrix
consists of assigned machine and the starting time of the job
operation. Moreover, this representation allows both row
crossover and column crossover to be easily performed. But it
needs a repairing mechanism to recalculate the starting time
for every job operation after performing the genetic operation.
Thus, we have improved this PJr with some modifications to
avoid production of infeasible solution. In our approach, each
cell of PJr only consists of the assigned machine and this
machine is selected from the assignment rule.

3) Genetic operation

There are two crossover operator used to produce a new
offspring. Row crossover and column crossover adopted
from[14] are used in our approach as these operators always
produce a legal offspring. The algorithm for the row crossover
is given as:

Step1. Two individuals are randomly selected by the
roulette wheel selection. One job (row of matrix) J is
randomly selected.

Step2. The assigned machine for the selected job remains
unchanged for both selected individuals.

Step3. Swap the assigned machine for the remaining job for
both individuals.

The step for column crossover is similar to the row
crossover, but the column crossover is swapped by the
selected operation (column of the matrix) for the selected
individual.

Mutation operator only changed the machine assignment
properties of the individual. In Fig. 1, an example of mutation
operation performed on the PJr. Firstly a job J4 and operation
O3 are selected to perform the mutation, and the currently
assigned machine is M4. Secondly, a machine randomly
selected from an alternative machine set is M = {M1, M2, M3,

M4, M5} (refer to TABLE I ninth row and third column). M5 is
the selected and assigned machine for its changes are J4, O3 to
M5

.
Fig. 1 Mutation for parallel job representation

D. Genetic component for operation sequence

1) Initial population
Initial population of the operation sequence is obtained by

sequencing the operation on machine based on the initial
population of machine selection. Initial population is
generated from the mixing of three well know dispatching
rules such as the most work remaining (MWR), most
operation remaining (MOR) and random select job (RSJ).
There are 40% of individual generated by MWR, 40% of
individual generated by MOR and 20% of individual is
generated by RSJ.
2) Individual representation

Operation sequence representation is used to encode the
operation sequencing problem. In this representation all
operations for the same job are defined with a same symbol
and it interprets them according to the order. Thus, infeasible
solution can be avoided by using the same symbol for the
same job. The chromosome length L is the total operations of
all jobs. An example of the operation sequence representation
is constructed based on TABLE I. In TABLE I job J1 consists
of two operations (O11 - O12) and job J2 consists of two
operations (O21 - O22). However for job J3 and J4 each of this
job consist of three operations. The operations for J3 are (O31,-
O32-O33) and J4 are (O41,-O42-O43). In Fig. 2 a chromosome
that contains of 2-1-3-4-4-2-3-1-4-3 is constructed. This data
is read from left to right and there is an increasing operation
index for each job. Thus it can be translated into O21- O11- O31-
O41- O42- O22- O32- O12- O43- O33.

Fig. 2 Operation sequence representation

3) Genetic operator

In applying the crossover operator for the representation of
operation the sequencing precedence of constraint among job
must not be violated because it might be producing an illegal
offspring, and to repair an illegal offspring is very time

Operation Sequence representation
2 1 3 4 4 2 3 1 4 3

 O1 O2 O3
J1 M1 M4 -
J2 M2 M3 -
J3 M5 M4 M4
J4 M3 M1 M2

 Parent
Alternative machine sets
M1 M2 M3 M4 M5

 O1 O2 O3

J1 M1 M4 -
 J2 M2 M3 -
 J3 M5 M4 M4
J4 M3 M1 M5

Offspring

TABLE II PARALLEL JOB REPRESENTATION
 O1 O2 O3

J1 M1 M4 -
J2 M2 M3 -
J3 M5 M4 M4
J4 M3 M1 M2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1870

consuming. Therefore the precedence order crossover
operator from Lee et al.[18] concerns on the precedence order
is adopted. The POX works as follows:

Step 1 Generate two sub-job set Js1/Js2

select two parent individuals as Os1 and Os2

Step 2 Copy any element in Os1/Os2 that belong
into the child individual Os’1/Os’2, and retain
in Os’1/Os’2;

Step 3 Delete the elements that are already
Js1/Js2 from Os1/Os2;

Step 4 Orderly fills the empty position in O
remainder elements of Os2/Os1;

In Fig. 3, we used chromosome representation that consists
of 4 jobs to demonstrate the procedure of POX. First two sub
jobs are generated Js1 = {2,3}, Js2={1,4}. After that, copy
element in Os1 which belongs to Js1 into
remain in the same position. And it is followed by deleting the
element that is already in sub-job Js1 from O
empty position in Os1’ with the remainder elements of O

Swap mutation is applied to the
representation. First, two positions of the chromosome are
randomly selected. Secondly, swap the element of the selected
position.

Fig. 3 Procedure of precedence order crossover

IV. PROPOSED ALGORITHM

The procedure for CCGA for FJSP is given as below:

Step 1: Initialization. Generate initial population for
machine selection population
{1,2…N}, and operation sequence population
PopO[q], q = {1,2...N}.

Step 2: Initial fitness evaluation. Each individual from
PopM[k]and PopO[q] is evaluated by
combining them with the cooperative partner
and set the fbest to be the fitness value of the
individual. Cooperative partner is randomly
selected from other species to form a complete
solution.

Step 3: Co-evolution
 Step 3.1 Select two parents from

based on the fitness by the roulette wheel
selection and applied crossover operator to
generate two new offspring

 Step 3.2 Mutation operator is applied to obtain new
offspring

 Step 3.3 Evaluate the fitness value of

Os1 2 1 3 4 4 2 3

Os2 1 2 3 4 2 1 3

Os1’ 2 1 3 4 1 2 3

Os2’ 1 2 3 4 2 1 3

precedence order crossover (POX)
on the precedence order

s2 from all jobs and
s2 randomly;

that belongs to Js1/Js2
, and retain the same position

Step 3 Delete the elements that are already in the sub-job

Step 4 Orderly fills the empty position in Os’1/Os’2 with the

, we used chromosome representation that consists
of 4 jobs to demonstrate the procedure of POX. First two sub

={1,4}. After that, copy the
into the child Os1’ and,

remain in the same position. And it is followed by deleting the
from Os2. Lastly, fill the

with the remainder elements of Os2.
 operation sequence

representation. First, two positions of the chromosome are
randomly selected. Secondly, swap the element of the selected

Procedure of precedence order crossover

LGORITHM

The procedure for CCGA for FJSP is given as below:

Fig. 4 is shown to explain the algorithm framework clearly. In
Fig. 4, a co-evolutionary model of two species on this study is
given. It denotes the evolution process for each species from
the perspective of each in turn.

Fig. 4 Cooperative co-evolutionary genetic algorithm for FJSP

V. COMPUTATIONAL

The proposed algorithm was implemented in java on
Intel Core 2 Duo running at 2.40 GHz, and tested
dataset from Brandimarte[11]
from http://www.idsia.ch/~monaldo/fjsp.html
number of the dataset is in the range of 10 to 20, the number
of machine is in the range of 4 to 15 and the number of
operations is in the range of 5 to 10.
efficiency, the proposed algorithm was to test
for every problem instance.
given as:

 offspring by combining it with
cooperative partner. The random individual,
best individual from previous evaluation
and individual who
position is being evaluated and is selected
as the cooperative partners.

 Step 3.4 Set m←m+1.
If m<M (the number of species), then go to
Step 3.1. Otherwise go to Step 4.

Step 4 Termination. If the termination criteria are
satisfied, then the process will be stopped.
Otherwise go to

Generate initial population for
machine selection population PopM[k], k =

, and operation sequence population

. Each individual from
is evaluated by

he cooperative partner
to be the fitness value of the

individual. Cooperative partner is randomly
selected from other species to form a complete

Select two parents from the population
the fitness by the roulette wheel

selection and applied crossover operator to
generate two new offspring
Mutation operator is applied to obtain new

Evaluate the fitness value of the new

3 1 4 3

3 4 4 3

3 4 4 3

3 4 4 3

Evolution of PopM

PopM PopO

Fitness evaluation
Cooperative
partner

Change
individual

Evolution of PopO

PopM PopO

Fitness evaluation Cooperative
partner

Change
individual

is shown to explain the algorithm framework clearly. In

evolutionary model of two species on this study is
given. It denotes the evolution process for each species from

perspective of each in turn.

evolutionary genetic algorithm for FJSP

OMPUTATIONAL RESULT

The proposed algorithm was implemented in java on an
Intel Core 2 Duo running at 2.40 GHz, and tested on 10

[11]. This data set can be obtained
http://www.idsia.ch/~monaldo/fjsp.html/. The job

number of the dataset is in the range of 10 to 20, the number
of machine is in the range of 4 to 15 and the number of
operations is in the range of 5 to 10. In order to evaluate the
efficiency, the proposed algorithm was to test 5 times on each

. The genetic parameter used is

offspring by combining it with the
cooperative partner. The random individual,
best individual from previous evaluation
and individual who stay at the same
position is being evaluated and is selected

cooperative partners.
+1.

(the number of species), then go to
. Otherwise go to Step 4.

If the termination criteria are
satisfied, then the process will be stopped.
Otherwise go to Step 3.

Evolution of PopM

PopM PopO

Fitness evaluation
Cooperative
partner

Change
individual

Evolution of PopO

PopM PopO

Fitness evaluation
Cooperative
partner

Change
individual

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1871

� Population size: 500 to 2500
� Number of generation: 1000
� Crossover rates: 0.7
� Mutation rates: 0.01

 The computational result is compared with the GENACE
from Ho and Tay[1], GA from Pezzella et al.[2] and hybrid
GA from Yadzni et al.[9] is given in TABLE III. In column 2
n×m denotes the number of jobs × number of machines, and
Flex in column 3 denotes the average number of machine for
each operation while the Pop Size represents the population

size used for every problem, the population size depends on
the complexity of the problem (eg. number of machine,
number of job, flexibility of the problem).The best makespan
obtained from our CCGA after 5 runs of experiment is
denoted as CM in column 6. The best makespan from the
GENACE, GA and hGA is represented in column 8,11 and 14
respectively. Moreover, the relative deviation is defined as
dev = [(CM(CCGA) - CM(Comp)) / CM(Comp)]*100%.
CM(Comp) is the makespan that we compared to, while
CM(CCGA) is the makespan obtained from our CCGA. The
13th row in the table denotes the average improvement of our
CCGA compared with other approaches.

The PopSize (population size) used for our CCGA is
smaller compared to GA[2] and hGA. Although the population
size used for GENACE is 100 and it is smaller compared to
the population size of our CCGA, but the makespan obtained
by our CCGA has outperformed the GENACE[1].

In order to compare the performance of our CCGA and GA,
we developed a GA that uses the same genetic operation.
However the chromosome representation used in GA consists
of two parts that are the machine selection (parallel job
representation) and operation sequence (operation sequence
representation). Besides that, the genetic parameter used to
test GA is the similar with parameter stated in Section V. In
Fig 5, comparison on the evolution process for GA and CCGA
on benchmark problem Mk10 is given. In Fig 5, CCGA
obtains makespan of 225 in the 313th generation. However at
the 313th generation the makespan obtained by GA is 270. GA
takes long time (more generation) to obtain the minimum
makespan. Thus, we can conclude that CCGA improve the
convergence speed and it optimum the searching ability
compared to GA.

VI. CONCLUSION

Cooperative co-evolutionary genetic algorithm is proposed
to solve the FJSP problem in this study. The computational
result in TABLE III indicates that our CCGA is comparable
with other approaches. In CCGA, the FJSP is divided into two
species based on its difficulties and each of these species is
maintained in a population. Furthermore by maintaining
different species in different population, the population does
not converge to a single individual. Besides that, each
population evolves by a standard genetic algorithm. From Fig.
5 in section V, it can be observed that adopting two parallel
searches in two small problems is more efficient compared to
a single search in a big problem. Besides that, CCGA speeds
up the convergence. In future the technique in this study can
be applied in other areas such as project planning
management, and transportation scheduling problem.

Fig. 5 Comparison on evolution process for CCGA and GA

REFERENCES
[1] N.B. Ho and J.C. Tay. GENACE: an efficient cultural algorithm for

solving the flexible job-shop problem. in Evolutionary Computation,
2004. CEC2004. Congress on. 2004: p. 1759-1766 Vol.2F. Pezzella, G.
Morganti, and G. Ciaschetti, A genetic algorithm for the Flexible Job-
shop Scheduling Problem. Comput. Oper. Res., 2008. 35(10): p. 3202-
3212.

[2] F. Pezzella, G. Morganti and G. Ciaschetti, A genetic algorithm for the
Flexible Job-shop Scheduling Problem. Comput. Oper. Res., 2008.
35(10): p. 3202-3212J. Gao, L. Sun, and M. Gen, A hybrid genetic and

200

210

220

230

240

250

260

270

280

290

300

1 41 81 12
1

16
1

20
1

24
1

28
1

32
1

36
1

40
1

44
1

48
1

52
1

56
1

60
1

64
1

68
1

72
1

76
1

80
1

84
1

88
1

92
1

96
1

M
a

ke
sp

an

Number of Generation

Evolution process for CCGA and GA on Mk10

GA

CCGA

TABLE III COMPARISON OF CCGA WITH OTHER APPROACHES
Problem n×m Flex UB CCGA GENACE[1] GA[2] hGA[4]

PopSize CM PopSize CM dev % PopSize CM dev
%

PopSize CM dev %

MK01 10 × 6 2.09 (36,42) 2000 41 100 40 -2.50 5000 40 -2.50 3000 40 -2.50
MK02 10 × 6 4.1 (24,32) 1000 27 100 29 +6.90 5000 26 -3.85 3000 26 -3.85
MK03 15 × 8 3.01 (204,211) 500 204 100 N/A N/A 5000 204 0.00 2000 204 0.00
MK04 15 × 8 1.91 (48,81) 2500 62 100 67 +7.46 5000 60 -3.33 3000 60 -3.33
MK05 15 × 4 1.71 (168,186) 1000 173 100 176 +1.70 5000 173 0 1000 172 -0.58
MK06 10 × 15 3.27 (33,86) 2000 64 100 67 +4.48 5000 63 -1.59 2000 58 -10.34
MK07 20 × 5 2.83 (133,157) 1000 140 100 147 +4.76 5000 139 -0.72 1000 139 -0.72
MK08 20 × 10 1.43 523 500 523 100 523 0.00 5000 523 0.00 1000 523 0.00
MK09 20 × 10 2.53 (299,369) 1500 328 100 320 -2.50 5000 311 -5.47 1000 307 -6.84
MK10 20 × 15 2.98 (165,296) 2000 225 100 229 +1.75 5000 212 -6.13 2000 197 -14.21

 Average improvement +2.21 -2.36 -4.24

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1872

variable neighborhood descent algorithm for flexible job shop
scheduling problems. Computers & Operations Research, 2008. 35(9): p.
2892-2907.

[3] P. Brucker and R. Schlie, Job-shop scheduling with multi-purpose
machines. Computing, 1990. 45(4): p. 369-375.S. Dauzère-Pérès and J.
Paulli, An integrated approach for modeling and solving the general
multiprocessor job-shop scheduling problem using tabu search. Annals
of Operations Research, 1997. 70(0): p. 281-306.

[4] J. Gao, L. Sun and M. Gen, A hybrid genetic and variable neighborhood
descent algorithm for flexible job shop scheduling problems. Computers
& Operations Research, 2008. 35(9): p. 2892-2907.

[5] H. Chen, J. Ihlow and C. Lehmann. A genetic algorithm for flexible job-
shop scheduling. in Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on. 1999: p. 1120-1125 vol.

[6] S. Dauzère-Pérès and J. Paulli, An integrated approach for modeling and
solving the general multiprocessor job-shop scheduling problem using
tabu search. Annals of Operations Research, 1997. 70(0): p. 281-306.

[7] I. Kacem, S. Hammadi and P. Borne, Approach by localization and
multiobjective evolutionary optimization for flexible job-shop
scheduling problems. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 2002. 32(1): p. 1-13.

[8] L.-N. Xing, Y.-W. Chen and K.-W. Yang, Multi-population interactive
coevolutionary algorithm for flexible job shop scheduling problems.
Computational Optimization and Applications.

[9] M. Yazdani, M. Amiri and M. Zandieh, Flexible job-shop scheduling
with parallel variable neighborhood search algorithm. Expert Syst. Appl.,
2010. 37(1): p. 678-687.M. Mastrolilli and L. M. Gambardella, Effective
Neighborhood Functions for the Flexible Job Shop Problem. 1998,
Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale.

[10] M. Yazdani, M. Gholami, M. Zandieh and M. Mousakhani, A Simulated
Annealing Algorithm for Flexible Job-Shop Scheduling Problem.
Journal of Applied Sciences, 2009. 9(4): p. 662-670.

[11] P. Brandimarte, Routing and scheduling in a flexible job shop by tabu
search. Annals of Operations Research, 1993. 41(3): p. 157-183.

[12] J. Hurink, B. Jurisch and M. Thole, Tabu search for the job-shop
scheduling problem with multi-purpose machines. OR Spectrum, 1994.
15(4): p. 205-215.K. A. De Jong and M. A. Potter, A Cooperative
Coevolutionary Approach to Function Optimization, in The Third
Conference on Parallel Problem Solving from Nature: Parallel Problem
Solving from Nature. 1994, Springer-Verlag. p. 249-257.

[13] M. Mastrolilli and L.M. Gambardella, Effective Neighborhood Functions
for the Flexible Job Shop Problem. 1998, Istituto Dalle Molle Di Studi
Sull Intelligenza Artificiale.

[14] Mesghouni K., Hammadi S. and Borne P. Evolution programs for job-
shop scheduling. in Systems, Man, and Cybernetics, 1997.
'Computational Cybernetics and Simulation'., 1997 IEEE International
Conference on. 1997: p. 720-725 vol.1

[15] E.M. David and M. Risto, Forming neural networks through efficient
and adaptive coevolution. Evol. Comput., 1997. 5(4): p. 373-399.

[16] K.A. De Jong and M.A. Potter, Evolving Complex Structures via
Cooperative Coevolution. Evolutionary Programming, 1995.

[17] K.A. De Jong and M.A. Potter, A Cooperative Coevolutionary Approach
to Function Optimization, in The Third Conference on Parallel Problem
Solving from Nature: Parallel Problem Solving from Nature. 1994,
Springer-Verlag. p. 249-257.

[18] K.M. Lee, T. Yamakawa and L. Keon-Myung. A genetic algorithm for
general machine scheduling problems. in Knowledge-Based Intelligent
Electronic Systems, 1998. Proceedings KES '98. 1998 Second
International Conference on. 1998: p. 60-66 vol.2

Ms. Lee Yih Rou received her B.Sc. degree in Universiti Teknologi
Malaysia, Malaysia in 2009. She is currently pursuing her Master degree in
Faculty of Computer Science and Information System, Universiti Teknologi
Malaysia. Her current research interest includes machine scheduling and
artificial intelligence.

Dr. Hishammuddin Asmuni, is serving as a lecturer at the Software
Engineering Department, Faculty of Computer Science and Information
Systems, Universiti Teknologi Malaysia. He received his degree in Computer
Science at the Universiti Malaya in 1996. He received MSc degree in
Computer Science from Univeriti Teknologi Malaysia in 1999 specializing in
the area of Software Engineering. After teaching for four years, he pursued his
Ph.D. at The University of Nottingham, United Kingdom and received Ph.D.
in Computer Science specializing in the area of Artificial Intelligence in 2008.
His current research interest includes optimization techniques particularly in
parallel bio-inspired algorithm.

