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Abstract—Flexible Job Shop Problem (FJSP) is an extension of 

classical Job Shop Problem (JSP). The FJSP extends the routing 
flexibility of the JSP, i.e assigning machine to an operation. Thus it 
makes it more difficult than the JSP. In this study, Cooperative Co-
evolutionary Genetic Algorithm (CCGA) is presented to solve the 
FJSP. Makespan (time needed to complete all jobs) is used as the 
performance evaluation for CCGA. In order to test performance and 
efficiency of our CCGA the benchmark problems are solved. 
Computational result shows that the proposed CCGA is comparable 
with other approaches. 
 

Keywords—Co-evolution, Genetic Algorithm (GA), Flexible Job 
Shop Problem(FJSP)  

I. INTRODUCTION 

 ODAY’s manufacturing industries are concerned not only 
on the cost and quality of the product, but they are also 
concern about the delivery performance of the product. 

Besides that, the delivery performance also becomes a tool to 
secure competitive advantages. Therefore scheduling plays an 
important role in the manufacturing process. A schedule is an 
allocation of the operation to the time intervals on the 
machines. To find a best schedule it can be either very easy or 
very difficult, and it depends on the process constraint, shop 
environment and performance indicator (makespan, machine 
workload). Job Shop Problem (JSP) is a branch of production 
manufacturing and it is a hardest combinatorial problem. The 
classical JSP consist of n jobs and m machines and each job 
has a sequence of operations. The problem of the JSP is the 
sequence of the operations on the machine in order to find a 
minimum makespan (time needed to complete all jobs). 

In order to make the JSP closer to the real world of the 
manufacturing system, the JSP is extended to Flexible Job 
Shop Problem (FJSP).  In FJSP an operation can be processed 
by more than one machines, but in the JSP one operation can 
be processed by exactly one machine. Thus the FJSP present 
two difficulties: 

i. Machine selection problem, assigned a suitable or 
appropriate machine to an operation. 

ii. Operation sequencing problem, sequence the 
operation on the machine in order to find a minimum 
makespan. 
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Brucker and Schlie[3] were the first to develop the 
polynomial algorithm for solving the FJSP problem with two 
jobs. In the recent years, there are a growing number of 
literatures in the FJSP. The related publication is Chen et 
al.[5], Dauzère-Pérès and Paulli[6], Kacem et al.[7], Xing et 
al.[8], and Yadazni et al.[9] [10] among others. Among the 
literatures, it can be categorized into the hierarchical approach 
or the integrated approach.  The hierarchical approach solves 
the machine selection problem and operation sequencing 
problem hierarchical (assign then sequence) hence it reduces 
the difficulties of the FJSP. Brandimarte[11],  solved this FJSP 
hierarchically. He adopted the dispatching rules to solve the 
machine selection problem then solved the sequencing 
problem using the different Tabu Search (TS). However the 
integrated approaches solve the machine selection problem 
and operation sequencing problem simultaneously. Dauzère-
Pérès and Paulli[6], Hurink  et al.[12], Mastrolilli and 
Gambardella[13] adopted the integrated approach and 
proposed a different TS for solving the FJSP. In their 
approach, there is no distinction in solving the problem of 
machine selection and operation sequence problem. 

In recent years the GA has been successfully adopted to 
solve the FJSP, and this can be proved by the growing number 
of publication. The relevant works are Mesghouni et al.[14], 
Chen et al.[5] and Kacem et al.[7]. Mesghouni et al.[14] were 
the first to model the GA for the FJSP; they proposed the 
parallel job representation and parallel machines 
representation. Chen et al.[5] also proposed a new 
chromosome representation that consists of two strings i.e A 
String  and B String. A String is defined by the routing 
problem whereas B String defines the sequence on the 
operation problem. Lastly Kacem et al.[7], proposed a task 
sequencing list as the chromosome representation that 
combines both the routing and sequencing information. 
Besides that, they developed an approach by the localization 
to find a promising initial assignment.  
 In this study we proposed a cooperative co-evolutionary 
genetic algorithm (CCGA) for the FJSP. In CCGA, the FJSP 
is decomposed into two problems (sub problem). Each 
problem is evolved by a single GA. In this way, two parallel 
searches on two sub problem are more efficient than a single 
search on entire problem.  

II.  PROBLEM DESCRIPTION 

FJSP consist of a set of n jobs J = {J1, J2,…,Jn} and 
processed by m set of machines M = {M1, M2,…,Mm}. A job Ji 
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is formed by a sequence of operations (Oi1, Oi2,... Oin), . Each 
operation Oin, i.e the operation n from job i can be executed on 
any machine from the predetermined alternative machine set 
M ij M. The processing time for each operation Oin is 
predetermined. All jobs and machines are available at time 0. 
There are three constraints for jobs and machines: 

i. There are precedence constraints among the operation 
of the same job. 

ii. Each operation must be completed without 
interruption once started. 

iii.  Each machine can only execute one operation at a 
time. 

There are two problems presented in the FJSP that are the 
machine assignment problem and operation sequencing 
problem. In the machine assignment problem an appropriate 
machine is selected and assigned to an operation whereas the 
operation sequencing problem is to sequence the operation on 
the machine in order to minimized the makespan, i.e., the time 
needed to complete all the jobs. Makespan is defined as CM = 
max {Ci} where Ci is the completion time for job Ji.  

The flexibility of the FJSP can be categorized into partial 
flexibility and total flexibility[7]. In the case of partial 
flexibility each operation can only be executed by a limited 
number of machines Mij ≠ M. However in the case of total 
flexibility each operation can be processed by any available 
machines Mij ⊂M. 

Problem instance of the FJSP with partial flexibility is 
given in TABLE I. In TABLE I, each rows correspond to 
operations and columns representing the machine. Each unit 
value in the table is the processing time of the machines. 
However the symbol “-” means that the machine cannot 
execute the corresponding operation.  

III.  COOPERATIVE CO-EVOLUTIONARY GENETIC ALGORITHM 

FOR FJSP 

A. Cooperative co-evolutionary genetic algorithm 

Co-evolutionary algorithm introduces the concept of 
ecosystem that involves two or more interacting species. 
During the evolution process there are interactions between 
individual from different species. However, in conventional 
genetic algorithm (GA) the individual does not interact with 
the individual from other species. Co-evolutionary algorithm 
is reported that it provides a promising alternative to a 
standard evolutionary algorithm in a complex and dynamic 

problem[15]. Co-evolutionary is categorized into the 
cooperative co-evolutionary and competitive co-evolutionary. 
Here, we will focus on the cooperative co-evolutionary 
algorithm, and it is because of the trend of current research 
which focuses on the cooperative co-evolutionary algorithm. 

In this research we present Cooperative Co-evolutionary 
Genetic Algorithm (CCGA) for solving the FJSP. The CCGA 
is first proposed by De Jong and Potter[16] to improve the 
traditional GA  that has a slow evolution process for large 
search space[17]. CCGA uses the strategy of divide and 
conquer. CCGA divides or splits a big problem into smaller 
problems i.e species, each of this species is representing the 
partial solution of the problem. Each species is maintained in a 
population that contains different individuals (chromosomes). 
Furthermore these species evolve independently by a single 
genetic algorithm. Therefore during the individual’s fitness 
evaluation process, the individual is cooperated with its 
cooperative partner to form a complete solution to calculate 
the individual’s fitness.  

In our algorithm there are two populations, and each 
population represents the difficulties of the FJSP as mentioned 
in section II. The first population is the machine selection 
population PopM(N)={1,2,…N}, and the second population is 
the operation sequencing population PopO(N)={1,2,…N}. 
Since these two populations have different features and 
therefore the genetic operation and individual representation 
are different for both populations. Moreover the details of 
these two populations are explained in sections C and D.  

B. Cooperative partner selection and fitness evaluation 

There is a great difference between GA and CCGA in the 
fitness evaluation. In GA, fitness value of an individual is 
dependent on the quality of the solution and it is evaluated 
independently. Note that the quality we considered here is the 
makespan. But in CCGA the individual’s fitness depends on 
how well it cooperates with its cooperative partner. Thus to 
evaluate the CCGA individual’s fitness value, the method to 
select cooperative partner should be determined first. There 
are various methods to select the cooperative partner and we 
have conducted some testing on the randomly select and select 
the best cooperative partner. The computational result 
indicates that the randomly select cooperative give a better 
result among others.  

Roulette wheel selection is chosen to select the individual 
for reproduction. By using this method, individual with higher 
fitness will have a higher probability to be selected. Thus it 
has increased the chance to produce individuals with better 
fitness. The individual’s fitness is calculated by using (1), and 
the fitness value is in the range of 0 to 1. 
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In (1) fq(s) is the fitness of s th individual in a population 
PopM[q] ( q=1,2, number of individual). While gq(u)  is the 
makespan of u th individual when it cooperates with the 
cooperative partner from PopO. The equation rescaled the 
value of gq(s) so that it makes the selection more effective and 
deals with minimum problem.  

TABLE I PROCESSING TIME TABLE 
Job Operation Machines 

  M1 M1 M1 M1 M1 

J1 O11 2 6 5 4 3 
O12 - 8 - 4 - 

J2 O21 2 2 - 8 - 
O22 8 7 5 4 8 

J3 O31 6 - - 9 3 
O32 1 - 4 4 - 
O33 7 5 - 6 - 

J4 O41 3 - 6 - 5 
O42 4 6 5 - - 
O43 8 7 11 5 8 
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C. Genetic component for machine selection 

1) Initial population 
In order to generate a promising initial population for the 

machine selection problem, we adopt two approaches 
presented by Pezzella et al.[2]. The first approach is 
AssignmentRule1 (search for the global minimum in the 
processing table) and the second approach is AssignmentRule2 
(randomly permute jobs and machine in the processing table). 
These two approaches are the modified version of the 
approach of localization by Kacem et al.[7]. In the initial 
population 10% of the individual is generated by 
AssignmentRule1 and 90% of the individual is generated by 
AssignmentRule2.  
2) Individual representation 

Parallel job representation (PJr) was used as the individual 
representation in the machine selection problem. PJr is first 
introduced by Meshouni et al.[14]. This PJr is represented in a 
matrix form, where each row of the matrix is an ordered series 
of operation for each job. Meanwhile, each cell of the matrix 
consists of assigned machine and the starting time of the job 
operation. Moreover, this representation allows both row 
crossover and column crossover to be easily performed. But it 
needs a repairing mechanism to recalculate the starting time 
for every job operation after performing the genetic operation. 
Thus, we have improved this PJr with some modifications to 
avoid production of infeasible solution. In our approach, each 
cell of PJr only consists of the assigned machine and this 
machine is selected from the assignment rule. 

 
3) Genetic operation 

There are two crossover operator used to produce a new 
offspring. Row crossover and column crossover adopted 
from[14] are used in our approach as these operators always 
produce a legal offspring. The algorithm for the row crossover 
is given as: 

Step1. Two individuals are randomly selected by the 
roulette wheel selection. One job (row of matrix) J is 
randomly selected. 

Step2. The assigned machine for the selected job remains 
unchanged for both selected individuals. 

Step3. Swap the assigned machine for the remaining job for 
both individuals. 

The step for column crossover is similar to the row 
crossover, but the column crossover is swapped by the 
selected operation (column of the matrix) for the selected 
individual. 

Mutation operator only changed the machine assignment 
properties of the individual. In Fig. 1, an example of mutation 
operation performed on the PJr. Firstly a job J4 and operation 
O3 are selected to perform the mutation, and the currently 
assigned machine is M4. Secondly, a machine randomly 
selected from an alternative machine set is M = {M1, M2, M3, 

M4, M5} (refer to TABLE I ninth row and third column). M5 is 
the selected and assigned machine for its changes are J4, O3 to  
M5 

.  
Fig. 1 Mutation for parallel job representation 

 

D. Genetic component for operation sequence 

1) Initial population 
Initial population of the operation sequence is obtained by 

sequencing the operation on machine based on the initial 
population of machine selection. Initial population is 
generated from the mixing of three well know dispatching 
rules such as the most work remaining (MWR), most 
operation remaining (MOR) and random select job (RSJ). 
There are 40% of individual generated by MWR, 40% of 
individual generated by MOR and 20% of individual is 
generated by RSJ. 
2) Individual representation 

Operation sequence representation is used to encode the 
operation sequencing problem. In this representation all 
operations for the same job are defined with a same symbol 
and it interprets them according to the order. Thus, infeasible 
solution can be avoided by using the same symbol for the 
same job. The chromosome length L is the total operations of 
all jobs. An example of the operation sequence representation 
is constructed based on TABLE I. In TABLE I job J1 consists 
of two operations (O11 - O12) and job J2 consists of two 
operations (O21 - O22). However for job J3 and J4 each of this 
job consist of three operations. The operations for J3 are (O31,-
O32-O33) and J4 are (O41,-O42-O43). In Fig. 2 a chromosome 
that contains of 2-1-3-4-4-2-3-1-4-3 is constructed. This data 
is read from left to right and there is an increasing operation 
index for each job. Thus it can be translated into O21- O11- O31- 
O41- O42- O22- O32- O12- O43- O33.  

 
 

Fig. 2 Operation sequence representation 
 
3) Genetic operator 

In applying the crossover operator for the representation of 
operation the sequencing precedence of constraint among job 
must not be violated because it might be producing an illegal 
offspring, and to repair an illegal offspring is very time 

Operation Sequence representation 
2 1 3 4 4 2 3 1 4 3 

 

 O1 O2 O3 
J1 M1 M4 - 
J2 M2 M3 - 
J3 M5 M4 M4 
J4 M3 M1 M2 

           Parent 
Alternative machine sets 
M1 M2 M3 M4 M5 

 
 O1 O2 O3 

J1 M1 M4 - 
 J2 M2 M3 - 
 J3 M5 M4 M4 
J4 M3 M1 M5 

Offspring 

TABLE II  PARALLEL JOB REPRESENTATION 
 O1 O2 O3 

J1 M1 M4 - 
J2 M2 M3 - 
J3 M5 M4 M4 
J4 M3 M1 M2 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1870

 

consuming. Therefore the precedence order crossover
operator from Lee et al.[18] concerns on the precedence order 
is adopted. The POX works as follows:  

Step 1 Generate two sub-job set Js1/Js2

select two parent individuals as Os1 and Os2

Step 2 Copy any element in Os1/Os2 that belong
into the child individual Os’1/Os’2, and retain 
in Os’1/Os’2; 

Step 3 Delete the elements that are already
Js1/Js2 from Os1/Os2; 

Step 4 Orderly fills the empty position in O
remainder elements of Os2/Os1; 

In Fig. 3, we used chromosome representation that consists 
of 4 jobs to demonstrate the procedure of POX. First two sub 
jobs are generated Js1 = {2,3}, Js2={1,4}. After that, copy 
element in Os1 which belongs to Js1 into 
remain in the same position. And it is followed by deleting the 
element that is already in sub-job Js1 from O
empty position in Os1’ with the remainder elements of O

Swap mutation is applied to the 
representation. First, two positions of the chromosome are 
randomly selected. Secondly, swap the element of the selected 
position. 

Fig. 3 Procedure of precedence order crossover

IV. PROPOSED ALGORITHM

The procedure for CCGA for FJSP is given as below:

Step 1: Initialization. Generate initial population for 
machine selection population 
{1,2…N}, and operation sequence population 
PopO[q], q = {1,2...N}. 

Step 2: Initial fitness evaluation. Each individual from 
PopM[k]and PopO[q] is evaluated by 
combining them with the cooperative partner 
and set the fbest to be the fitness value of the 
individual. Cooperative partner is randomly 
selected from other species to form a complete 
solution.   

Step 3: Co-evolution 
 Step 3.1 Select two parents from 

based on the fitness by the roulette wheel 
selection and applied crossover operator to 
generate two new offspring

 Step 3.2 Mutation operator is applied to obtain new 
offspring 

 Step 3.3 Evaluate the fitness value of 
 

Os1 2 1 3 4 4 2 3
 

Os2 1 2 3 4 2 1 3
 

Os1’ 2 1 3 4 1 2 3
 

Os2’ 1 2 3 4 2 1 3
 

 

precedence order crossover (POX) 
on the precedence order 

s2 from all jobs and 
s2 randomly; 

that belongs to Js1/Js2 
, and retain the same position 

Step 3 Delete the elements that are already in the sub-job 

Step 4 Orderly fills the empty position in Os’1/Os’2 with the 

, we used chromosome representation that consists 
of 4 jobs to demonstrate the procedure of POX. First two sub 

={1,4}. After that, copy the 
into the child Os1’ and, 

remain in the same position. And it is followed by deleting the 
from Os2. Lastly, fill the 

with the remainder elements of Os2. 
 operation sequence 

representation. First, two positions of the chromosome are 
randomly selected. Secondly, swap the element of the selected 

 
Procedure of precedence order crossover 

LGORITHM 

The procedure for CCGA for FJSP is given as below: 

 

Fig. 4 is shown to explain the algorithm framework clearly. In 
Fig. 4, a co-evolutionary model of two species on this study is 
given. It denotes the evolution process for each species from 
the perspective of each in turn.
 
 

 
Fig. 4 Cooperative co-evolutionary genetic algorithm for FJSP

V.  COMPUTATIONAL 

The proposed algorithm was implemented in java on 
Intel Core 2 Duo running at 2.40 GHz, and tested
dataset from Brandimarte[11]
from http://www.idsia.ch/~monaldo/fjsp.html
number of the dataset is in the range of 10 to 20, the number 
of machine is in the range of 4 to 15 and the number of 
operations is in the range of 5 to 10.
efficiency, the proposed algorithm was to test 
for every problem instance. 
given as: 

 
 

  offspring by combining it with 
cooperative partner. The random individual, 
best individual from previous evaluation 
and individual who
position is being evaluated and is selected 
as the cooperative partners.

 Step 3.4 Set m←m+1. 
If m<M (the number of species), then go to 
Step 3.1. Otherwise go to Step 4.

Step 4 Termination. If the termination criteria are 
satisfied, then the process will be stopped. 
Otherwise go to 

 

Generate initial population for 
machine selection population PopM[k], k = 

, and operation sequence population 

. Each individual from 
is evaluated by 

he cooperative partner 
to be the fitness value of the 

individual. Cooperative partner is randomly 
selected from other species to form a complete 

Select two parents from the population 
the fitness by the roulette wheel 

selection and applied crossover operator to 
generate two new offspring 
Mutation operator is applied to obtain new 

Evaluate the fitness value of the new 

3 1 4 3 

3 4 4 3 

3 4 4 3 

3 4 4 3 

Evolution of PopM 

PopM              PopO 

Fitness evaluation 
Cooperative 
partner 

Change 
individual

Evolution of PopO 

PopM              PopO 

Fitness evaluation Cooperative 
partner 

Change 
individual

 
is shown to explain the algorithm framework clearly. In 

evolutionary model of two species on this study is 
given. It denotes the evolution process for each species from 

perspective of each in turn. 

 

evolutionary genetic algorithm for FJSP 

OMPUTATIONAL RESULT 

The proposed algorithm was implemented in java on an 
Intel Core 2 Duo running at 2.40 GHz, and tested on 10 

[11]. This data set can be obtained 
http://www.idsia.ch/~monaldo/fjsp.html/. The job 

number of the dataset is in the range of 10 to 20, the number 
of machine is in the range of 4 to 15 and the number of 
operations is in the range of 5 to 10. In order to evaluate the 
efficiency, the proposed algorithm was to test 5 times on each 

. The genetic parameter used is 

offspring by combining it with the 
cooperative partner. The random individual, 
best individual from previous evaluation 
and individual who stay at the same 
position is being evaluated and is selected 

cooperative partners. 
+1.  

(the number of species), then go to 
. Otherwise go to Step 4. 

If the termination criteria are 
satisfied, then the process will be stopped. 
Otherwise go to Step 3. 

Evolution of PopM 

PopM              PopO 

Fitness evaluation 
Cooperative 
partner 

Change 
individual 

Evolution of PopO 

PopM              PopO 

Fitness evaluation 
Cooperative 
partner 

Change 
individual 
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� Population size: 500 to 2500 
� Number of generation: 1000 
� Crossover rates: 0.7 
� Mutation rates: 0.01 

 The computational result is compared with the GENACE 
from Ho and Tay[1], GA from Pezzella et al.[2] and hybrid 
GA from Yadzni et al.[9] is given in TABLE III. In column 2 
n×m denotes the number of jobs ×  number of machines, and 
Flex in column 3 denotes the average number of machine for 
each operation while the Pop Size represents the population 

size used for every problem, the population size depends on 
the complexity of the problem (eg. number of machine, 
number of job, flexibility of the problem).The best makespan 
obtained from our CCGA after 5 runs of experiment is 
denoted as CM in column 6. The best makespan from the 
GENACE, GA and hGA is represented in column 8,11 and 14 
respectively.    Moreover, the relative deviation is defined as 
dev = [(CM(CCGA) - CM(Comp)) / CM(Comp)]*100%. 
CM(Comp) is the makespan that we compared to, while 
CM(CCGA) is the makespan obtained from our CCGA. The 
13th row in the table denotes the average improvement of our 
CCGA compared with other approaches.  

The PopSize (population size) used for our CCGA is 
smaller compared to GA[2] and hGA. Although the population 
size used for GENACE is 100 and it is smaller compared to 
the population size of our CCGA, but the makespan obtained 
by our CCGA has outperformed the GENACE[1].   

In order to compare the performance of our CCGA and GA, 
we developed a GA that uses the same genetic operation. 
However the chromosome representation used in GA consists 
of two parts that are the machine selection (parallel job 
representation) and operation sequence (operation sequence 
representation). Besides that, the genetic parameter used to 
test GA is the similar with parameter stated in Section V. In 
Fig 5, comparison on the evolution process for GA and CCGA 
on benchmark problem Mk10 is given. In Fig 5, CCGA 
obtains makespan of 225 in the 313th generation. However at 
the 313th generation the makespan obtained by GA is 270. GA 
takes long time (more generation) to obtain the minimum 
makespan. Thus, we can conclude that CCGA improve the 
convergence speed and it optimum the searching ability 
compared to GA.  

VI. CONCLUSION 

Cooperative co-evolutionary genetic algorithm is proposed 
to solve the FJSP problem in this study. The computational 
result in TABLE III indicates that our CCGA is comparable 
with other approaches. In CCGA, the FJSP is divided into two 
species based on its difficulties and each of these species is 
maintained in a population. Furthermore by maintaining 
different species in different population, the population does 
not converge to a single individual. Besides that, each 
population evolves by a standard genetic algorithm. From Fig. 
5 in section V, it can be observed that adopting two parallel 
searches in two small problems is more efficient compared to 
a single search in a big problem. Besides that, CCGA speeds 
up the convergence. In future the technique in this study can 
be applied in other areas such as project planning 
management, and transportation scheduling problem. 

 
Fig. 5 Comparison on evolution process for CCGA and GA 
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