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Abstract—This paper presents nonlinear elastic dynamic analysis 

of 3-D semi-rigid steel frames including geometric and connection 
nonlinearities. The geometric nonlinearity is considered by using 
stability functions and updating geometric stiffness matrix. The 
nonlinear behavior of the steel beam-to-column connection is 
considered by using a zero-length independent connection element 
comprising of six translational and rotational springs. The nonlinear 
dynamic equilibrium equations are solved by the Newmark numerical 
integration method. The nonlinear time-history analysis results are 
compared with those of previous studies and commercial SAP2000 
software to verify the accuracy and efficiency of the proposed 
procedure. 
 

Keywords—Geometric nonlinearity, nonlinear time-history 
analysis, semi-rigid connection, stability functions. 

I. INTRODUCTION 
EAM-TO-COLUMN joints of steel frames are usually 
assumed to be rigid or pinned connections in structural 

design. This assumption causes an inaccurate estimation of the 
response of frames since real beam-to-column joints are 
between fully rigid and pinned connections.  

In this paper, an independent zero-length connection 
element with six different translational and rotational springs 
connecting two different nodes with zero distance is 
developed. This is efficient because modification of the beam-
column stiffness matrix considering the semi-rigid 
connections is unnecessary and the connection is ready to 
integrate with any element types. The dynamic behavior of 
rotational springs is captured through the independent 
hardening model employing the Richard-Abbott four-
parameter model [1] and the Chen-Lui exponential model [2]. 
The translational springs with constant stiffness are used to 
model linear semi-rigid connections. 

The Newmark numerical integration method combined with 
the Newton-Raphson iterative algorithm is adopted to solve 
the nonlinear dynamic equilibrium equations. The results of 
the second-order elastic dynamic response are compared with 
those of previous studies and commercial SAP2000 software 
[3] to demonstrate the accuracy and computational efficiency. 
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II.  NONLINEAR ELEMENT MODELLING 

A. Nonlinear Beam-column Element 
To capture the effect of axial force acting through the lateral 

displacement of the beam-column element ( P δ−  effect), the 
stability functions reported by Chen and Lui [4] are used to 
minimize the modeling and solution time. Only one element 
per member is generally needed to accurately capture the 
P δ−  effect. The material is assumed to be elastic. The 
incremental force-displacement equation of a 3-D beam-
column element can be expressed in accordance with Kim and 
Thai [5]: 
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(1) 

 
where E  and G  are the elastic and shear modulus of 
material; A  and L  are the area and length of beam-column 
element; J  is the torsional constant; nI  is the moment of 
inertia with respect to the n  axes ( ),n y z= ; PΔ , yAMΔ , 

yBMΔ , zAMΔ , zBMΔ , and TΔ  are the incremental axial 
force, A and B end moments with respect to y  and z  axes, 
and torsion respectively; δΔ , yAθΔ , yBθΔ , zAθΔ , zBθΔ , and 

φΔ  are the incremental axial displacement, joint rotations, 
and angle of twist; 1nS  and 2nS  are the stability functions [4] 
with respect to the n  axis.  

The tangent stiffness matrix of a beam-column element 
considering both the P δ−  and P − Δ effects is obtained as 
follows: 

  
[ ] [ ] [ ] [ ]12 12 6 12 6 6 6 12 12 12

T
e gK T K T K

× × × × ×
⎡ ⎤= + ⎣ ⎦  (2) 
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where [ ]eK  is the elemental stiffness matrix including the 

P δ−  effect, and [ ]T is the transformation matrix, and [ ]gK is 
the geometric stiffness matrix accounting for the P − Δ  effect, 
shown as [5]. 
 

B. Nonlinear Spring Element 
1) Spring Element 
An independent zero-length element with three translational 

and three rotational springs is developed to simulate the steel 
beam-to-column connection. The multi-spring elements 
connect two nodes with identical coordinates. The 
translational spring has linear stiffness, while the rotational 
one has linear or nonlinear stiffness. The coupling effects 
between the six spring elements of a connection are neglected. 

The relation between the incremental force vector { }SFΔ  
and displacement vector { }SUΔ  of the spring element 
corresponding to six degrees of freedom is as follows: 

 
{ } { }S S SF K U⎡ ⎤⎣ ⎦Δ = Δ  (3) 

 
where [ ]SK  is the diagonal tangent stiffness matrix for each 

spring. The tangent stiffness for the linear springs lin
nk  or the 

nonlinear springs non
nk  is 

 

,
lin lin
n k nk R=  (4a) 

,
non non
n kt nk R=  (4b) 

 
where ,

lin
k nR  is a constant scalar of a linear spring, ,

non
kt nR  is the 

tangent stiffness of a nonlinear spring with respect to the n  
axis ( ), ,n x y z= . 

2) Nonlinear Semi-rigid Connection Models 
In this study, the Richard-Abbott model [1] and the Chen-

Lui exponential model [2] are used to evaluate the nonlinear 
behavior of semi-rigid connections. The independent 
hardening model is used to predict the cyclic behavior of the 
connections. 

Richard and Abbott [1] proposed a four-parameter model. 
The moment-rotation relationship of the connection is defined 
by 
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where M  and rθ  are the moment and the rotation of the 
connection, n  is the parameter defining the shape, kiR  is the 
initial connection stiffness, kpR  is the strain-hardening 

stiffness and 0M  is the reference moment. 
Lui and Chen [2] proposed the following exponential 

model: 
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in which M  and rθ  are the moment and the absolute value 
of the rotational deformation of the connection, α  is the 
scaling factor, kfR  is the strain-hardening stiffness of the 

connection, 0M  is the initial moment, jC  is the curve-fitting 
coefficient, and n  is the number of terms considered. 

3) Cyclic Behavior of Semi-rigid Connections 
The independent hardening model shown in Fig. 1 is used 

to trace the cyclic behavior of semi-rigid connections because 
of its simple application [6]. The instantaneous tangent 
stiffness of the connections is determined by taking derivative 
of (5) and (6). 

 

 
Fig. 1 Independent hardening model 

III. NONLINEAR ANALYSIS ALGORITHM 
The Newmark’s method has been chosen for the numerical 

integration of the equation of motion because of its simplicity 
[7]. The residual forces in each time step can be eliminated by 
using the Newton-Raphson iterative procedure [8]. The 
incremental equation of motion of a structure can be written as 

 
[ ]{ } [ ]{ } [ ]{ } { }M D C D K D FΔ + Δ + Δ = Δ  (7) 

 
where D⎡ ⎤Δ⎣ ⎦ , D⎡ ⎤Δ⎣ ⎦ , and [ ]DΔ  are the vectors of incremental 

acceleration, velocity, and displacement, respectively; [ ]M , 

[ ]C , and [ ]K  are the mass, damping, and tangent stiffness 

matrices, respectively; { }FΔ  is the external load increment 

vector. The viscous damping matrix [ ]C  can be defined as 
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[ ] [ ] [ ]M KC M Kα β= +  (8) 

 
where Mα  and Kβ  are mass- and stiffness-proportional 
damping factors, respectively. If both modes are assumed to 
have the same damping ratio ξ, then 
 

1 2

1 2 1 2

2 2     ;     M K
ω ωα ξ β ξ

ω ω ω ω
= =

+ +
 (9) 

 
where ω1 and ω2 are the natural radian frequencies of the first 
and second modes of the considered frame, respectively. 

IV. VERIFICATION 

A. Single-bay Two-story Semi-rigid Steel Frame 
A single-bay two-story steel frame with flexible beam-to-

column connections was studied by Chan and Chui [8]. The 
geometry and loading of the frame are given in Fig. 2. All the 
frame members are W8x48 with Young’s modulus E of 

6205 10×  kN/m2. An initial geometric imperfection ψ  of 
1/438 is considered. The vertical static loads are applied on the 
frame to consider the second-order effects followed by the 
horizontal forces applied suddenly at each floor during 0.5 
second, as shown in Fig. 2. The lumped masses of 5.1 and 
10.2 Ton are modeled at the top of the columns and the middle 
of beams, respectively. The material is assumed to be elastic, 
and the viscous damping is ignored. A time step tΔ  of 0.001 
second is chosen in the dynamic analysis. The four parameters 
of the Richard-Abbott model are: 23,000 /kiR kN m rad= ⋅ ,

70 /kpR kN m rad= ⋅ , 180oM kN m= ⋅ , and 1.6n = . The 
time-displacement responses at the second floor predicted by 
the proposed analysis for the rigid, linear semi-rigid, and 
nonlinear semi-rigid frames match well with those of Chan 
and Chui [8], as shown in Fig. 3. In addition, the moment-
rotation curves at connection C also agree well with the results 
of Chan and Chui as shown in Fig. 4. 

 

 
Fig. 2 Single-bay two-story semi-rigid steel frame 

 
Fig. 3 Time-displacement response at top of the two-story frame 
 

 
Fig. 4 Hysteresis loops at connection C of the two-story frame 

 
B. Two-story Space Frame Subjected to Impulse Force 
The nonlinear dynamic response of two-story space frames 

with various connection types (fully rigid, linear semi-rigid, 
and nonlinear semi-rigid connections) subjected to an impulse 
force of 100kN is studied. The member sizes and properties of 
the frame are shown in Fig. 5, [8]. Static vertical loads of 36.9 
and 46.1 kN are applied in order to consider the P − Δ  and 
P δ−  effects. These static loads are considered as lumped 
masses at nodes. The Chen-Lui exponential model is used for 
the flush end plate connection of semi-rigid joints. The 
parameters of the model are: kiR = 12,340.198kN.m/rad; kfR = 

108.924kN.m/rad; oM = 0.0kN.m; α = 0.00031783; 1C = -
28.286; 2C = 573.189; 3C = -3,433.98; 4C = 8,511.3; 5C = -
9,362.567; and 6C = 3,832.899 (unit of iC  is kN.m) [9]. The 
connection stiffness about the weak-axis of the sections 
assumes to be one fifth of the stiffness about the strong-axis. 
A time step tΔ  of 0.005 second is chosen.  
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The time-displacement response at point A and the 
hysteresis loops of moment-rotation at joint C are shown in 
Figs. 6-7, respectively. The results of both rigid and linear 
semi-rigid connection cases compare well with those of the 
SAP2000 software. 

 
 

 
Fig. 5 Dimensions and properties of a two-story space frame 

 
 

 
Fig. 6 Time-displacement response at node A in nonlinear elastic 

analysis 
 

 
Fig. 7 Moment-rotation curve of nonlinear strong-axis and weak-axis 

springs at connection C 
 

It is noted that the SAP2000 software could not analyze the 
nonlinear semi-rigid frame. The nonlinear semi-rigid frame 
has a larger displacement and a longer period, as shown in Fig. 
6, because it has greater flexibility than the rigid one due to 
the presence of the semi-rigid connections. In the nonlinear 
semi-rigid connection case, the response shows a displacement 
shift due to permanent rotational deformation at connections. 
It was found that the nonlinear connections dampened the 
deflection due to energy dissipation. 

V.  CONCLUSION 
A simple efficient numerical procedure is developed for the 

nonlinear elastic dynamic analysis of three-dimensional steel 
frames with semi-rigid connections. The geometric 
nonlinearity is considered by using the stability functions. An 
independent zero-length connection element comprising of six 
translational and rotational springs is proposed to simulate the 
steel beam-to-column connection. The independent hardening 
model is used to trace the hysteresis loops of the nonlinear 
semi-rigid connections. The proposed method is verified to be 
accurate through two numerical examples. It is found that the 
nonlinear semi-rigid connections dampen the deflection due to 
energy dissipation. 
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