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Abstract—The paper compares the treatment of fractions in a 

typical undergraduate college curriculum and in abstract algebra 
textbooks. It stresses that the main difference is that the 
undergraduate curriculum treats equivalent fractions as equal, and 
this treatment eventually leads to paradoxes and impairs the students’ 
ability to perceive ratios, proportions, radicals and rational exponents 
adequately. The paper suggests a simplified version of rigorous 
theory of fractions suitable for regular college curriculum. 
 

Keywords—Fractions, mathematics curriculum, mathematics 
education, teacher preparation 

I. INTRODUCTION 
RACTIONS are with us from elementary school to college.  
The regular college curriculum usually introduces the 

concept of a fraction by considering one or more parts in a 
whole that is divided into a greater number of equal parts. 

Thus, a typical demonstration of the fraction 
6
1  is one slice of 

a pizza that is divided into six equal slices. Though further in 
the course students go much farther in studying and using 
fractions, the basic concept remains essentially the same. 
Definitions like “A fraction is a ratio of two numbers” simply 
exchange one undefined term, fraction, for another—in this 
case, ratio—and so do not add much to students’ mathematical 
understanding of fractions.  

This paper is aimed to improve the situation. It is in line 
with publications by [8] that encourages “to develop a realistic 
alternative to the teaching and learning of fractions”, Philipp 
and [5] explaining “the way in which teachers view algebra … 
as a language for generalizing arithmetic”,  Gordon (2008) 
emphasizing the importance of conceptual understanding in 
College Algebra, and Wu (2011) suggesting to teach fractions 
using the notion of equivalence classes. Its main goal is to 
present a simplified version of rigorous theory of fractions 
suitable for regular college curriculum.  

II. LIMITATIONS OF THE SIMPLIFIED CONCEPT OF A FRACTION 
The simplified concept of a fraction that students 

customarily learn, although helpful at the initial stage, has a 
negative impact later. Thus, while conceptualizing the fraction   
as “one slice out of six” is intuitive and easy, attempting to 
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understand the fraction 
6
1

−
−  in the same way causes 

difficulties. Another problem arises in a claim of equality for 

these two fractions: 
6
1 =

6
1

−
−  A lack of knowledge of the 

mathematical theory underlying fractions impairs the ability of 
students to understand more comprehensive applications of 
fractions that they encounter later. Rational exponents provide 
an example of this potential misunderstanding. Students who 

consider two fractions such as 
3
1 and

6
2  equal may arrive at 

different results when they work with them as rational 

exponents: 2)8()8( 3 13
1

−=−=− , but 2)8()8( 6 26
2

=−=− . 
This is a paradox, because equal quantities should be 
interchangeable. (We will consider it below in this paper as an 
example of necessary restrictions on the fraction 
representatives.)  

Baker (2006) offers an additional example of a fraction-
related paradox. When introducing elementary operations with 
imaginary numbers, the author faced a problem: different 
representations of a negative fraction can lead to different 

results. For example, although the fractions 
4
1,

4
1 −

−  and 

4
1

−
are considered equal, their square roots in terms of 

imaginary numbers are not all the same: 
2
1

4
1

4
1 i=

−
=− , 

but 
2
1

2
1

4
1 i

i
−==

−
. This is another example that requires 

restriction on the definition and feasible operations with 
fractions. As shown below in this paper, taking a square root 
of a negative fraction, we should consider it as an additive 
inverse of a positive fraction, thus eliminating ambiguity. It 
should be mentioned also that if we want to stay in the 
framework of a unique result of taking the radical (“ the 
principal value of the square root of a negative number”) then 
we should deny the multiplication law: baab ≠ if we 
allow negative values of a or b. 

The rules for the addition and comparison of fractions 
present another source of confusion. Students learn to add 
fractions by using the least common denominator—a process 
that they usually study as a definition of the rule for adding 
fractions rather than as merely a useful technique. Formulating 
or applying the general rule for comparing fractions usually 
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confuses students as well. Another perplexing matter is the 

question, Is 
π
2 a fraction?  

The other question is this: what is ratio? And what is the 
difference between a fraction and a ratio? Furthermore, what 
is a proportion? Should proportions be defined in terms of 
fractions or in terms of ratios? 

A curriculum that does not help students gain a rigorous 
understanding of the theory of fractions does not permit an 
adequate statement of a problem that calls for solving 
proportions. A typical definition of a proportion in a college 
curriculum is something like this: “A proportion is an 
equation that states that two equivalent ratios are equal.” 
However, this definition raises a question: What is the 
difference between equivalent and equal ratios? Students who 
are able to make mechanical use of the cross-multiplication 
rule for solving proportions are frequently confused about the 
theory underlying this rule.  

These and other problems underscore the need for a college 
curriculum to present the mathematical theory of fractions in a 
more rigorous way, while preserving the standard framework 
of the regular curriculum as well. 

III. FRACTION THEORY INFORMALLY DISCUSSED 
 
 What are fractions? Conceptually, fractions are shares of a 

whole. But this general notion needs refining, since not every 
share of a whole is considered to be a fraction. For example, 
the length of a side of a square is a share of the length of its 

diagonal. But this share, which is equal to
2

1 , is not 

considered to be a fraction, for reasons that are outside the 
scope of this paper. Refining the concept of a fraction as a 
share of a whole requires examining the undefined notion of 
equal parts of a whole. A fraction is a share of a whole 
obtained by considering one or several of its equal parts. The 

fraction-bar notation signifies this fact: a fraction 
n
m  means 

that a whole has been divided into n equal parts, of which m 
are under consideration. In mathematics this basic concept is 
extended by allowing for consideration of zero parts of the 
whole, a number of parts that is greater than the whole, or a 
number of parts that have been removed from the whole. This 
extension corresponds to zero, improper fractions, or negative 
fractions, respectively.  

Mathematically, fractions originate from integer numbers 
that allow addition, subtraction, and multiplication, but not 
division. Division of integers is not always possible, and this 
fact is inconvenient for many practical applications. Fractions 
resolve the problem. They extend the set of integer numbers Z 
= {…,–3, –2, –1, 0, 1, 2, 3,…}to rational numbers, which 
inherit all of the integers’ properties and allow division as 
well.  

The extension technique that this paper presents may be 
applied not only to integers but also to any mathematical 
structures that allow addition, subtraction, and multiplication. 
Such structures are called rings. In abstract algebra, rings are 
extended to fields of quotients, the sets of abstract fractions. 
The last allow division. An example of a ring is a set of 
polynomials. It can be extended to the set of algebraic 
fractions called rational expressions—a field of quotients 
generated by polynomials. More details, examples, and proofs 
may be found in [3] and [7]. This paper concerns itself only 
with integer numbers and fractions originating from them. 
These fractions are called rational numbers. 

Mathematically, fractions are ordered pairs of integer 
numbers: (a, b), (m, n), (p, q), …, subject to specific axioms 
of equivalency, order, and operations. In what follows, it is 
useful to keep in mind that the first element in a pair is a 
numerator, the second is a denominator, and pairs representing 
fractions are customarily written with the fraction-bar 

notation: 
b
a , 

n
m , and 

q
p , respectively. The axioms that 

convert the pairs into fractions are as follows. 
 Axiom 1. The second element in a pair is not zero.  
 Axiom 2. Two pairs (m, n) and (p, q) are equivalent if mq = 
np. 

Axiom 3. Addition and multiplication of pairs are 
performed as follows: 
(m, n)+ (p, q) = (mq + pn, mn); (m, n) · (p, q) = (mp, nq).  (1) 

 Axiom 4. A pair (m, n) is positive if m · n > 0. A pair (m, n) 
is greater than a pair (p, q) if their difference is positive:  

 (m, n) > (p, q) if (m, n) – (p, q) > 0.        (2) 
Combining axioms 3 and 4 gives a rule of fraction 

comparison:  
(m, n) > (p, q) if (m, n) – (p, q) = (mq – np, nq) > 0,    (3) 

that is true if and only if    
(mq – np) · nq > 0.             (4) 

The last expression is the fraction comparison rule in a general 
form. For practical applications, it can be simplified. Thus, if 
fractions (m, n) and (p, q) are positive, with m, n, p, q > 0, 
then (m, n) > (p, q) if and only if mq > np. This is simply a 
cross-multiplication rule.  

Axiom 1 states that a denominator of a fraction 
cannot be zero. Axiom 2 clarifies whether two expressions, 

like 
2
1  and 

4
2 , are equal fractions or just two different 

numerals for one fraction. Abstract algebra accepts the second 
answer: these are simply two numerals that represent same 
fraction. This idea may be justified in the following way. 
Fractions are related to shares of a whole. In the example 

above, “one part out of two” is
2
1 , while “two parts out of 

four” is
4
2 . Both 

2
1  and 

4
2  actually represent equal shares of 

the whole, or “one-half,” and thus, it is reasonable to consider 
them as merely two equivalent numerals.  
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Axiom 2 formalizes this reasoning by using implicitly the 
well-known cross-multiplication rule to define equivalent 

pairs. In fraction-bar notation, the pairs 
n
m  and 

q
p  are 

equivalent if mq = np. Students know this rule, but the 
standard curriculum usually presents it as a technique rather 
than a definition. By contrast, in abstract algebra, pairs 
satisfying the condition of axiom 2 are called equivalent, 
rather than equal. It is a whole set of equivalent pairs—an 
equivalence class—that is considered as one fraction. Two 
fractions are equal if their equivalence classes are the same. 
Particular pairs located in one equivalence class are called 

representatives of a fraction. For example, a fraction 
2
1  is the 

following equivalence class: 

2
1 = {…,(–3, –6), (–2, –4), (–1, –2), (1, 2), (2, 4), (3, 6) ,…}, 

                       (5) 
with pairs (–3, –6), (–2, –4), (–1, –2), (1, 2), (2, 4), (3, 6) 
being its representatives.  

College algebra curriculum typically presents neither 
ordered pairs of integer numbers nor equivalence classes. The 
only notion that it usually considers is a fraction, and the only 
notation that it customarily uses to express this notion is 

fraction-bar notation. It commonly calls 
2
1  and 

4
2  equal 

fractions, although mathematically speaking, they are merely 
equivalent representatives. Abstract algebra reserves the word 
equal for equivalence classes, which are sets of equivalent 
pairs. Consider, for example, an equivalence class for a 

fraction 
4
2 . It contains the pair (2, 4) — an obvious 

representative—and all pairs (m, n) that are equivalent to (2, 
4). These include all pairs (m, n) such that 2n = 4m, n ≠ 0. 
This equation can be rewritten as n = 2m, m ≠ 0. Assigning to 
m all integer numbers except zero, or  …, –3, –2, –1, 1, 2, 3, 

…, produces an equivalence class for the fraction 
4
2 : 

4
2 = {…,(–3, –6), (–2, –4), (–1, –2), (1, 2), (2, 4), (3, 6),…}. 

(6) 
This equivalence class is exactly the same as that for the 

fraction 
2
1 , as given by formula (5). The coincidence of the 

two equivalence classes indicates that the fractions 
2
1  and 

4
2  

are equal. The ordered pairs (1, 2) and (2, 4), even if they are 

written with fraction-bar notation as 
2
1 and 

4
2 , are equivalent. 

Unfortunately, a standard college curriculum does not suggest 
separate names for a fraction as an equivalence class and as a 
class representative. A rigorous teaching of fractions should 
stress this difference. In this paper below we use the word 

“fraction” as a name of an equivalence class, unless opposite 
is mentioned explicitly or contextually.  

Two problems arise in relation to axiom 2. First, is the 
equivalence rule well defined? In other words, is it true that 
every pair is included in one and only one equivalence class? 
Second, are the results of operations independent of the choice 
of fraction representatives? Axiom 2 imposes conditions on all 
definitions, operation rules, and theorems. All of them should 
hold when a pair (m, n) is changed for an equivalent pair (p, 
q) such that mq = np. In particular, the addition and 
multiplication rules, when applied to equivalent pairs, should 
lead to equivalent results. The comparison rule should also 
give the same result irrespective of the representatives used.  

Usually, these problems resolve themselves, as shown 
below. At the same time, however, in some applications of 
fractions, they do not: different representatives give different 
results. In such cases, it is essential to state clearly for which 
representatives of the equivalence class a specific definition, 
operation, or theorem is applicable. An example is the 
definition of a rational exponent, which is applicable only to 
fraction representatives in lowest terms. 

Axiom 3 states the rules for the addition and multiplication 
of fractions. These rules are well defined, as the discussion 
below will show. Being well defined means that the rules are 
independent from the choice of representatives and are 
applicable to equivalence classes. From the rules of operations 
stated by axiom 3, it follows that fractions represented by 
pairs (m, 1) replicate integer numbers with respect to addition 
and multiplication. Such fractions are isomorphic to the 
integers. This observation allows for consideration of 

fractions (m, 1) as integer numbers m. Thus, the fraction 
1
2  

may be considered as the integer 2. It is important to note that 
a fraction is actually not an integer number, and mathematics 
instructors should respect the confusion of students who 
cannot add or multiply a fraction and an integer. The students’ 
confusion is legitimate: rigorously speaking, the required 
operations cannot be performed directly unless an integer 

number m is changed for a fraction (m, 1) or 
1
m  in fraction-

bar notation.  
It is important to observe that the rule of addition in axiom 

3 does not refer to the least common denominator (LCD). 
Using the LCD is simply a useful technique that permits 
working with smaller numbers in exchange for doing more 
mental math. For instance, compare the process of adding the 

two fractions 
3
1  and 

5
1  by directly applying axiom 3 with the 

process of adding the same two fractions by using the LCD. In 
the first case,  

3
1  + 

5
1  = 

53
3151

×
×+×  = 

15
8 . 

In the second case, the LCD of (3, 5) equals 15, so  

3
1  + 

5
1  = 

53
51

×
×  + 

35
31

×
×  = 

15
5  + 

15
3  = 

15
35 +  = 

15
8 . 
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In this example, directly applying axiom 3 turns out to be 
easier than working with the LCD, while leading to the same 
result. Axiom 3 justifies a simple rule of addition, similar to 
the cross-multiplication rule: “To add fractions, cross-multiply 
and then divide the result by the product of denominators.” 
Consideration of this simple rule elicits a question: Might it 
not be reasonable to introduce the addition of fractions in 
basic mathematic courses through instruction based on axiom 
3? This question deserves special discussion.  

Axiom 4 gives a criterion of positivity that is not usually 
stated in standard algebra curriculum. Because a fraction has 
infinitely many different representatives, being able to 
determine whether it is positive on the basis of only one 
representative is important. The rule is simple: a fraction is 
positive if its numerator and denominator have the same signs. 
The conclusion does not depend on a specific representative. 

For example, a fraction represented by 
2
1  or, equivalently, by 

2
1

−
− , is positive, because 1 · 2 > 0 and (–1) · (–2) > 0. 

The second part of axiom 4 applies axiom 3 to the 
subtraction of fractions to allow for the comparison of 
fractions. For example, comparing two fractions represented 

by 
2
1  and 

3
1

−
− , respectively, for the purpose of determining 

which of them is greater, involves computing the difference of 
the fractions by using the representatives: 

2
1  – 

3
1

−
−  = 

)3(2
2)1()3(1

−×
×−−−×  = 

6
1

−
− . 

The product of the numerator and denominator is (–1) · (–6) = 

6 > 0. This product is positive, and thus, by axiom 4, 
2
1  is 

greater than 
3
1

−
− . Using formula (4) leads directly to the same 

conclusion. Computing the value of (mq – np) · nq, as 
required by this formula, yields  

(1 · (–3) – 2 · (–1)) · (2 · (–3)) = 6 > 0. 

The result is positive, so 
2
1  > 

3
1

−
− . This result also follows 

from the observation that 
3
1

−
−  and 

3
1  are equivalent because 

(–1) · (3) = 1 · (–3) = –3, and 
2
1  is evidently greater than 

3
1  

—an intuitive idea related to the size of a pizza slice. The 
answer to the question of whether the rule of positivity is well 
defined is yes: neither positivity nor the result of fraction 
comparison depends on the representatives chosen.  

IV. FRACTIONS IN ABSTRACT ALGEBRA 
A presentation of the main definitions and theorems related 

to the rigorous theory of fractions follows. Our objective in 
this section is to restrict the use of abstract algebra to the 
needs of rigorous presentation of the theory of fractions in 
college algebra course. As before, the discussion is restricted 

to the rational numbers—that is, fractions formed from integer 
numbers.  

Definition 1. Fractions are equivalence classes of ordered 
pairs of integers satisfying axioms 1–4. 

Pairs of integers representing the equivalence classes are 
customarily written in the fraction-bar notation—that is, as 

n
m , instead of as (m, n). Whether we mean a fraction or its 

representative will follow from the context in each specific 
case. It is important to note that when we refer to a fraction—

say,
2
1 —we are actually referring to infinitely many of its 

representatives: …, 
6
3

−
− , 

4
2

−
− , 

2
1

−
− , 

2
1 , 

4
2 , 

6
3 , …. Two 

fractions are equal if the sets of their representatives are the 
same. Representatives of a fraction are equivalent.  

A special sign should be used to indicate equivalency—for 

instance, “~”: 
6
3

−
−  ~ 

2
1 . However, for simplicity, college 

algebra customarily calls representatives equal and uses the 

equals sign: 
6
3

−
− = 

2
1 . The theorems below justify operations 

with fractions.  
Theorem 1. Each ordered pair of integers belongs to one 

and only one equivalence class. The operations of addition 
and multiplication and the ordering rule are well defined. 
Addition and multiplication are commutative and associative. 
Multiplication is distributive with respect to addition.  

Both [3] and Shifrin (1996) offer a proof of this theorem, 
which is of principal importance. It states that any 
representative can be selected to compare fractions or to 
perform operations. Addition and multiplication follow the 
usual laws of algebraic operations. For example, if we need to 

add the fractions 
2
1  and 

3
1 , we can select any of their 

respective representatives for the addition. The result will 
always belong to the same equivalence class—the equivalence 

class corresponding to the fraction 
6
5 . Thus, if we take 

6
3

−
−  

and 
9
3  as representatives of the fractions 

2
1  and 

3
1 , 

respectively, and add them according to axiom 3, the result 
will be  

6
3

−
−  + 

9
3  = 

96
)6(393

×−
−×+×−  = 

54
45

−
− . 

The last expression is equivalent to 
6
5 , because (–45) · 6 = (–

54) · 5 = 270. Students in college algebra would customarily 

say that they can simplify the fraction 
54
45

−
−  to 

6
5  by dividing 

both its numerator and its denominator by (–9).  
In a similar manner, we can use any of the representatives 

of fractions for comparison. For example, 
2
1  is greater than

3
1  
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according to the simplified rule for axiom 4 because 1 · 3 > 2 · 
1. But will the result be the same if we take different 

representatives of each fraction? As before, consider 
6
3

−
−  and 

9
3  as representatives of 

2
1  and 

3
1 , respectively. By applying 

axiom 4 again—this time in a general form—we get  
[(–3) · 9 – (–6) · 3] · [(–6) · 9] = 648 > 0. 

So 
6
3

−
−  is greater than 

9
3  — the same result as before. 

Generally speaking, fractions can be formed not only from 
integers, but also from many other mathematical objects. 
Depending on the nature of these objects, fractions may or 
may not possess some specific properties. The integer 
numbers do not just form a ring. They form a structure called 
an ordered integral domain, which has some specific 
properties. A set of equivalence classes of pairs satisfying 
axioms 1–4 extends it to an ordered field of quotients. 
Fractions composed of integers—the fractions considered in 
this paper—inherit all the properties of this field. The 
following properties are essential here: (a) additive and 
multiplicative identities exist and are unique, (b) each element 
has a unique additive inverse, and (c) each element, except the 
additive identity, has a multiplicative inverse. Clarifications of 
the identities and inverses are given below. Proofs can be 
found in Bland (2002) or Shifrin (1996). 

The next theorem states the main properties of the fractions 
formed from integer numbers. Recall that such fractions are 
called rational numbers and are the only fractions that this 
paper considers. 

Theorem 2. The properties of fractions (rational numbers) 
are as follows: 

a. A fraction representative 
n
m  can be chosen with a positive 

or a negative denominator.  

b. The representatives 
n
m  and 

kn
km  (k ≠ 0) are equivalent and 

thus represent the same fraction. 

c. The sum of 
n
m  and 

n
p  equals 

n
pm + . 

d. The subtraction rule is 
n
m – 

q
p  = 

nq
npmq − . 

e. The additive identity representatives are 
q
0 , q ≠ 0.  

f. The multiplicative identity representatives are
q
q , q ≠ 0. 

g. The additive inverse representatives of 
n
m  are 

n
m−  or 

n
m

−
, n ≠ 0. They are denoted as –

n
m . 

h.  The multiplicative inverse representatives of 
n
m , m ≠ 0, are 

m
n . They are denoted as

1−
⎟
⎠
⎞

⎜
⎝
⎛

n
m . 

i. The division rule is 
n
m  ÷ 

q
p  = 

np
mq , p ≠ 0. 

j. Fractions having a representative 
1
m  are isomorphic to the 

integers. 
The proof of theorem 2 that follows uses theorem 1, which 
ensures the validity of all results for the whole equivalence 
class once they are proved for selected representatives. 
(a) A proof follows from mn = (–m)(–n), which asserts the 

equivalency of 
n
m  and 

n
m

−
− . If n > 0, then –n < 0, and vice 

versa. Thus, a positive or a negative denominator may be 
chosen, as desired. 
(b)  A proof follows from m(kn) = (km)n = mkn. 

(c) By axiom 3: 
n
m +

n
p =

nn
npmn + =

nn
pmn )( + =

n
pm + . The 

last transformation follows from (b). 
(d) A proof follows from  

⎜
⎝
⎛

n
m  – ⎟⎟

⎠

⎞
q
p  + 

q
p  = 

nq
npmq −  + 

q
p  = 

qnq
pnqqnpmq

)(
)()( +−  = 

=
nqq
mqq  

n
m . The last transformation is justified by (b). 

(e) For any 
n
m , 

n
m  + 

q
0  = 

nq
nmq 0+  = 

nq
mq  = 

n
m , where the 

last transformation is justified by (b). All representatives of 

the 
q
0 -form are equivalent, because for any two of them, 

1

0
q

 

and 
2

0
q

, 0 · q1 = q2 · 0 = 0. Moreover, any representative 

1q
p  that is equivalent to 

q
0  has p = 0, because p · q = q1 · 0 = 

0, and q ≠ 0. 

(f)     For any 
n
m , 

n
m  × 

q
q  = 

nq
mq  = 

n
m , where the last 

transformation is justified by (b). All representatives of the 

q
q -form are equivalent, because for any two of them, 

1
1

q
q

 and 

2
2

q
q , q1 · q2 = q2 · q1. Moreover, any representative 

s
r  that is 

equivalent to 
q
q  has r  = s, because r · q = q · s. The factor q ≠ 

0 can be cancelled on both sides, giving r = s. 
(g) A proof follows from  

n
m +

n
m− =

nn
nmmn )(−+ =

nn
0  or 

n
m +

n
m

−
=

nn
mnnm +− )( =

nn
0 .   
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The last term, as a consequence of (e), represents the additive 
identity, as required. 

(h) A proof follows from 
n
m  × 

m
n  = 

nm
mn . As a consequence 

of (f), the last expression is the multiplicative identity. 

Furthermore, for any representative
s
r  such that 

n
m  × 

s
r  = 

q
q , 

q ≠ 0, we have (m·r) · q = q · (n·s). As q ≠ 0, it can be 
cancelled on both sides, giving m·r = n·s. The last statement 

means that any multiplicative inverse 
s
r  is equivalent to 

m
n . 

(i) By the definition of division, 
n
m  ÷ 

q
p  = 

n
m  × 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
p , 

where the superscript “–1” stands for the multiplicative 

inverse. As a consequence of (h), 
1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
p =

p
q , so  

n
m  ÷ 

q
p  = 

n
m  × 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
p  = 

n
m  × 

p
q  = 

np
mq . 

(j) The isomorphism of the fractions represented by 
1
m  and 

the integers represented by m follows from the addition and 
multiplication rules for fractions (axiom 3):  

1
m  + 

1
n  = 

11
11

×
×+× nm  = 

1
nm + ; 

1
m  × 

1
n  = 

11×
× nm  = 

1
mn . ∴ 

Some situations require using a specific, simplest 
representative. Such a representative is called the 
representative in lowest terms.  

Definition 2. A fraction representative is in lowest terms if 
its numerator and denominator have no common factors other 
than 1 or –1 and the denominator is positive. 

This definition differs from a standard one by the 
requirement of positivity for the denominator. The proposed 
definition allows for a proof that ensures that the 
representative in lowest terms is unique. Otherwise, two 
fraction representatives could be considered to be in lowest 

terms—for example, 
2
1  and 

2
1

−
− . 

Theorem 3. The representative in lowest terms (the 
representative with a positive denominator) is unique. 

A proof follows from the uniqueness of the presentation of 
the natural numbers as a product of powers of prime numbers 
(see Bland [2002]). Consider the positive fractions first. Let 

n
m  and 

q
p  be two representatives in lowest terms of a 

positive fraction. Then m, n, p, q > 0, and mq = np. Presenting 
each of these as a unique product of powers of prime numbers 
and noting that the pairs m and n, and p and q cannot contain 
the same factors, we conclude that mq = np is possible only 
when m and p, and n and q, have the same prime 

factorizations. So, m = p and n = q, and the representative in 
lowest terms is unique. For negative fractions, a proof follows 
from an observation that each negative fraction is an additive 
inverse of a unique positive fraction. As such, each negative 
fraction inherits all of the representatives of the positive 
fraction, differing only in the sign of each numerator. Thus, 
the representative in lowest terms also differs only in the sign 
of the numerator. ∴ 

The following theorem clarifies the structure of equivalence 
classes. It states that all representatives of a fraction are 
simply multiples of the representative in lowest terms. 

Theorem 4. Let 
q
p  be a representative of a fraction and 

n
m  

be the representative in lowest terms of the same fraction. 

Then 
q
p  = 

kn
km  for some integer k ≠ 0. 

A proof is as follows. Because 
n
m  and 

q
p  represent same 

fraction, they are equivalent; that is, mq = np. Consider m ≠ 0 
first. In this case, p ≠ 0 as well. Furthermore, q = np/m = 
n(p/m), so p is a multiple of m because m and n have no 
common factors except 1 or –1. Thus, p = k1m for some 
integer k1. Likewise, p = mq/n = m(q/n), so  q = k2n. 
Substituting expressions for p and q into the equivalence 
equality gives us mq = m(k2n) = np = n(k1m). This implies 
m(k2n) = n(k1m), or mnk2 = mnk1.  If m ≠ 0, then the product 
mn can be cancelled on both sides, giving us k1 = k2 = k. In 
this case, p = km and q = kn, as required. If m = 0, then p = 0 

as well. Because
n
m  is a representative of the additive identity 

in lowest terms, it is 
1
0 , and all the other representatives are 

q
0 , q ≠ 0, as given by theorem 2(e). In this case, we have 

q
p  

= 
q
0  = 

1
0

⋅
⋅

q
q , and the theorem holds with k = q ≠ 0. ∴ 

Part (c) of theorem 2 gives rise to the following practical 
rule for the addition of fractions. If the representatives of two 
fractions have the same denominators, then to add them, we 
can simply add the numerators. For example, the 

representatives of the fraction 
2
1  are {…, 

6
3

−
− , 

4
2

−
− , 

2
1

−
− , 

2
1 , 

4
2 , 

6
3 ,…}, and the representatives of the fraction 

3
1  are 

{…, 
9
3

−
− , 

6
2

−
− , 

3
1

−
− , 

3
1 , 

6
2 , 

9
3 ,…}. By observation, we can 

find two representatives with the same denominators—for 

example, 
6
3 and 

6
2 , respectively. By applying theorem 2, part 

(c), we obtain  

2
1  + 

3
1  = 

6
3  + 

6
2  = 

6
23 +  = 

6
5 . 
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The standard curriculum usually presents this useful rule 
without proof, merely as a guideline to a more sophisticated 
rule using the least common denominator (LCD). Actually, it 
is a theorem, rather than simply a utilitarian rule of operation. 
On the one hand, the advantage of the LCD-based technique is 
that it allows for lowering the values of the numbers involved 
in the operation of addition. On the other hand, this technique 
requires more mental work.  

Theorem 5. Let 
n
m  and 

q
p  be representatives of two 

fractions, and an integer s be a common multiple of n and q; 
that is, s = k1n = k2q. Then  

n
m +

q
p = 

s
pkmk 21 +

.           (7) 

Parts (b) and (c) of theorem 2 support a proof: 

n
m  + 

q
p  = 

nk
mk

1
1  + 

qk
pk

2
2  = 

s
mk1  + 

s
pk2  = 

s
pkmk 21 +

.  

The first transformation is an application of theorem 2(b), and 
the second, an application of 2(c). ∴ 

As follows from the proof, it is not necessary to use the 
least common denominator: any multiple of both 
denominators is sufficient. But the lower the multiple, the 
smaller the numbers involved in the operation. The preceding 
discussion suggests an interesting question for discussion in a 
classroom: Which technique should computers use to add 
fractions—that based on the LCD or that based on axiom 3? It 
is likely that computers use direct definition first and then 
simplify the answer using some sort of the Euclidean division 
algorithm. In support of this opinion, in may be mentioned 
that prime factorization of integer numbers is computationally 
difficult problem. Its complexity, in particular, underlies 
modern cryptography, Scheinerman (2006). 

V. RATIOS 
 Ratios generalize fractions in two dimensions. First, they 
allow for several, rather than just two, elements. Second, the 
elements may be real numbers, not necessarily integers, as 
with fractions. Conceptually, while a fraction is a share of a 
whole, a ratio is a set of relationships among the parts 
composing the whole. The parts may be of different nature. A 
typical example of a ratio is a recipe. For example, a recipe 
that reads: For serving two persons take 2 pound rabbit, ½ cup 
flour, 1 tablespoon butter, and 1cup red wine, may be written 
as the ratio 2 persons : 2 lb : ½ cup : 1 tablespoon : 1 cup. This 
ratio tells us that depending on the number of persons served, 
the amounts of each product should be increased or decreased 
proportionally. 
 Mathematically, ratios are ordered sequences of real 
numbers (n-tuples) satisfying the following axioms.  
 Axiom 1R. No zero elements in a sequence.  
 Axiom 2R. (Cross - Multiplication Rule) Two sequences 
(a1, a2, …, an) and (b1, b2,…, bn) are equivalent:  

(a1, a2, …, an) ~ (b1, b2,…, bn)  if  aibj,= ajbi,       (8) 
for all 1≤ i, j≤ n. 

 As previously for fractions, a definition of a ratio is this: 
Definition 1R. Ratios are equivalence classes of ordered 

sequences of real numbers satisfying axioms 1R and 2R. 
It should be stressed that no one element of a ratio can be 

zero. Also, as opposed to fractions, ratios cannot be ordered, 
added or multiplied. (Except for the ratios of two elements 
that may be multiplied, as shown below.) 

Ordered sequences of real numbers representing the 
equivalence classes of ratios are customarily written in the 
colon notation as a1: a2: …: an. Similarly to fractions, the 
following theorems may be proved: 

Theorem 1R. Each ordered sequence belongs to one and 
only one equivalence class. 

Also, similarly to fractions, a notion of a “ratio in lowest 
terms” may be introduced:  

Definition 2R. A ratio representative is in lowest terms if 
its last element is 1.  

Theorems 3 and 4 may be combined in  
Theorem 3R. The representative in lowest terms is unique. If 
(a1, a2, …, an) and (b1, b2,…, bn) are equivalent, that is are 
representatives of the same ratio, then ai = rbi for some real 
number r ≠ 0 for all i = 1,2,…,n. 

A proof is based on axiom 2R and is similar to that for 
fractions. ∴ 

The last element has been chosen just for the convenience 
of the presentation of the ratio of two elements. In this case, a 
ratio can be expressed as just a real number. For example, a 
ratio (25 : 10) ~ (2.5 : 1) may be presented as 2.5; the second 
element is kept in mind. Any element of a ratio can be chosen 
for the normalization to lowest terms. Theorem 3R holds, but 
should be rephrased appropriately.  

It may be noted that a ratio may be presented geometrically 
as a line passing through a origin in the n-dimensional space 
with removed origin: Rn\{0}. Each point of the line (except 
the origin that has been excluded) corresponds to the ratio 
representative. The lowest term representative is located in the 
intersection of the line with a hyper plane xn=1, or, if another 
coordinate is used in the definition of the ratio in lowest terms, 
xi=1, 1≤ i≤ n. This presentation of ratios allows for their 
consideration as elements of projective space PRn-1 (author is 
thankful to Tanvir Prince for this comment).  
 Ratios of two elements, like a1: a2, are of special 
importance in applications. As follows from the theorem 2R, 
any such ratio has a unique representative in lowest terms b1: 
1. As the two representatives are equivalent: a1: a2 ~ b1: 1, the 
latter allows for consideration of the whole set of equivalent 
ratios of two elements a1: a2 as a real number b1. A ratio in 
lowest terms may be considered as a point on a line y = 1 in an 
xy-plane with the origin (0,0) removed. It may be noted that 
fractions allow for similar geometric interpretation. In this 
case, a discrete coordinate system in xy-plane should be 
considered, see Arnon, Nesher and Nirenburg (1999) for 
details. 

In some applications of the ratios of two elements such as 
chained price indexes or chained rates, multiplication of ratios 
may be consistently defined as  
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(a1: a2) (c1: c2) = a1c1 : a2 c2,            (9) 
similar to multiplication of fractions. The result is equal to the 
product of two real numbers representing the ratios and does 
not depend on the choice of the representatives. For example, 
if a car runs 40 miles on 2 gallons of gasoline, and the price of 
a gallon is 3 dollars, then the product of two ratios (40:2) ⋅ 

(1:3) = (40·1 : 2·3) = 40 : 6 ~ 20 : 3 ~ 
3

20  : 1 means that the 

car runs 20 miles per 3 dollars or 
3

20  miles per dollar.  

It should be stressed that in spite of some similarities ratios 
are not fractions. They are different mathematical objects 
originating from different real-life problems, comprising 
different elements (real numbers as contrary to integer 
numbers for fractions) and satisfying different axioms. Ratios 
(except for the ratios of two elements) cannot be ordered, 
added or multiplied.        

VI. ANSWERS TO THE QUESTIONS SUPPLIED BY THE THEORY 
OF FRACTIONS 

Equipped with the theory of fractions, we are in a position 
to answer the questions posed at the beginning of this paper. 
The following discussion revisits and resolves each of those 
questions in turn. 

The fractions 
2
1  and 

4
2 are not two equal fractions but merely 

different representatives of the same fraction. In other words, 
they are different numerals for the same quantity.  

Rational exponents are defined only for fraction 

representatives in lowest terms. For instance, 6
2

)8(−  is 

undefined and should be exchanged for 2)8( 3
1

−=− .  
For negative fractions, both numerator and denominator are 

assumed positive with the minus sign associated with the 
fraction itself. Though different equivalent approaches are 
available, this one seems to us more intuitive and better 
perceived. Taking square roots from negative fractions 
requires that we consider radicands as additive inverses of 
positive fractions. By doing so, we assign the minus sign 
neither to the numerator nor the denominator but to the 
fraction itself, by the definition. As a result, the problem cited 
by Baker (2006) disappears, because only one answer is 

possible:
2
1

4
1 i=− , and the expressions 

4
1− and 

4
1

−
are 

undefined.  

An expression such as 
π
2  is not a fraction. It is simply an 

incomplete operation over real numbers. It can be viewed, 
however, as a representative of the ratio π:2 . The latter is a 
ratio of a length of the diagonal of a square with a side s = 1 
and the length of a semicircle of radius r = 1. 

A proportion is a statement that two ratio representatives 
are equivalent. For example, 1 : 2 ~ 4 : x, where the sign “~” 
stands for equivalency. (Note that in the sense of this 

definition writing a proportion in terms of fractions, like 
2
1  ~ 

x
4  or 

2
1  = 

x
4 , is not correct.) Axiom 2R justifies a method of 

solution. For example, the two pairs (1, 2) and (4, x) are 
equivalent if 1 · x = 2 · 4, so x = 8. This rigorous notation and 
reasoning associated with this definition of proportion are not 
typically used in college algebra. Instead, it is customary to 

write 
2
1  = 

x
4  and to consider it as a statement of the equality 

of the two fractions or ratios. It may be noted also that some 
textbooks define proportions in terms of fractions. In this case, 
all the terms of a proportion, by the definition, should be 
integers. Otherwise, rational equations enter the picture, 
pushing out proportions. For example, both the rational 

equation 
3
2  = 

x
3  and proportion in terms of ratios 2 : 3 ~ 3 : x 

have the solution x = 3 ⋅ 3 / 2 = 4.5. But as a proportion in 
terms of fractions, the equation has no solution, because the 
pair (3, 4.5) is not a fraction representative, and the right hand 

side of the equation 
5.4

33
=

x
 is not a fraction. 

VII. THE PLACE OF FRACTIONS IN A BROADER CONTEXT 
How meaningful is the approach suggested in this paper?  

How valuable can it be? First, it resolves the paradoxes cited 
earlier. Second, it provides students with a general point of 
view on fractions, which, like some other mathematical 
objects, can be considered as pairs of numbers. These objects 
include, but are not limited to, complex numbers, vectors, and 
functions. Thus, this approach paves the way to a connected, 
unified way of teaching and learning of such objects.  

For example, to obtain complex numbers, consider the pairs 
(m, n) and (p, q), where m, n, p, and q are real numbers. 
Define the sum and product of the pairs as follows: 

(m, n) + (p, q) = (m + p, n + q),  (m, n) · (p, q) = 
(mp – nq, mq + np)              (10) 

It can be shown that when addition and multiplication are 
defined in this way, they are commutative and associative, and 
multiplication is distributive with respect to addition. The 
pairs (m, 0) and (p, 0) are isomorphic to the real numbers m 
and p, respectively. A pair (0, 1) has an interesting property: 

(0, 1) · (0, 1)  = (–1, 0).           (11) 
The last result means that the square of (0, 1) is isomorphic to 
a real number –1. This observation justifies the terminology 
and notation related to complex numbers:  
(0, 1) = i,  i2 = –1, (m, n) = (m, 0) + (0, n) = m + in.           (12) 

With this construction in mind, students can more easily 
grasp complex numbers. The “imaginary unit” i becomes 
simply a specific pair of real numbers without any of the 
mystery that sometimes accompanies its appearance in college 
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algebra curriculum. It is important to note that in contrast to 
fractions, complex numbers are not ordered, and they have no 
equivalence classes. 

The approach to fractions that the paper describes also 
facilitates the use of pairs as an alternative to function 
notation. We can write (m, n) or (p, q) as n = f(m) or q = f(q), 
respectively. Addition and multiplication are defined only for 
pairs with equal first terms: 
(m, n) + (m, q) = (m, n+q),  (m, n) · (m, q) = (m, nq).          (13) 
These formulas are just different notations for the well-known 
ones  

(f + g)(m) = f(m) + g(m), (f · g)(m) = f(m) · g(m),   (14) 
 where  f(m) = n, g(m) = q.  

Another topic in college algebra that becomes more 
accessible through the proposed approach to fractions is 
vectors. Pairs of real numbers can be viewed as vectors in the 
plane. Only one operation is possible in this case—vector 
addition: 
 (m, n) + (p, q) = (m+p, n+q).             (15) 

Vectors are not ordered, nor can they be multiplied by one 
another. However, vectors can be multiplied by a number: 
  m · (p, q) = (mp, mq).                          (16) 
It is important to emphasize and explore the similarities 
between algebraic and geometric interpretations of vectors in 
the plane and operations over them. Also, similarities can be 
established between vectors in the plane and complex 
numbers. These similarities are of importance in the study of 
functions of complex variables.  

In summary, a consideration of fractions as equivalence 
classes of ordered pairs of integer numbers can serve as a 
useful teaching tool, leading students to a better understanding 
of fractions per se and preparing them to study rational 
expressions, complex numbers, vectors, or functions. When 
fractions are studied more rigorously much earlier, they have 
the potential to help students grasp broader contexts of 
abstract algebra later. Viewing fractions as equivalence 
classes also helps students build a surer understanding of real 
numbers, which can be viewed as equivalence classes of 
rational numbers. 
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