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Multi-Case Multi-Objective Simulated Annealing
(MC-MOSA): New Approach to Adapt Simulated
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Abstract—In this paper a new approach is proposed for the
adaptation of the simulated annealing search in the field of the
Multi-Objective Optimization (MOO). This new approach is called
Multi-Case Multi-Objective Simulated Annealing (MC-MOSA). It
uses some basics of a well-known recent Multi-Objective Simulated
Annealing proposed by Ulungu et al., which is referred in the
literature as U-MOSA. However, some drawbacks of this algorithm
have been found, and are substituted by other ones, especially in
the acceptance decision criterion. The MC-MOSA has shown better
performance than the U-MOSA in the numerical experiments. This
performance is further improved by some other subvariants of the
MC-MOSA, such as Fast-annealing MC-MOSA, Re-annealing MC-
MOSA and the Two-Stage annealing MC-MOSA.

Keywords—Simulated annealing, multi-objective optimization, ac-
ceptance decision criteria, re-annealing, two-stage annealing.

I. INTRODUCTION

THe Multi-Objective Optimizations (MOO) is the process
of finding one or more vectors of decision variables that

simultaneously satisfy all feasibility constraints and optimize
a vector objective function that maps the decision variables
to two or more performance criteria or objectives. Thus, in a
Multi-objective Optimization Problem (MOP), we have a set
of n parameters or variables (decision variables), a set of k
objective functions, and a set of m constraints. Objective func-
tions and constraints are functions of the decision variables.
We assume that all the objectives have to be maximized, so
that the MOP may be expressed as:

maximize z = f(x) = [f1(x), f2(x), . . . , fk(x)] (1)
subject to : e(x) = [e1(x), e2(x), . . . , em(x)] � 0

(2)
where : x = [x1, x2, . . . , xn] ∈ Ω (3)

z = [z1, z2, . . . , zk] ∈ Z (4)

The decision vector x = [x1, x2, . . . , xn] (also called
solution) is a vector of decision variables (also parameters),
representing the numerical qualities for which values must
be found in an optimization problem. The variables may be
integer, real, or a mixture. The set of all decision vectors for a
given MOP is called the decision space (also parameter space)
Ω . The sub-set of the decision space, where all decision
vectors satisfy the vector of constraints e(x), is called ”feasible
set” Ωf , that is described as:
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Ωf = {x ∈ Ω | e(x) � 0}
The vector objective function f(x) maps the decision vec-

tors from the decision space into a k-dimensional objective
space (also criterion space) Z ⊂ Rk, where each vector z ∈ Z
is denoted as objective vector, or criterion vector. The opti-
mization definition given in this section has a maximization
form. Generally, we may have to minimize all the objective
functions, maximize them all, or minimize some functions and
maximize others. However, any objective function can always
be converted from the minimization form to the maximization
form, and vice versa since:

max(fi(x)) = −min(−fi(x)) and
min(fi(x)) = −max(−fi(x))

In the Single-Objective Optimization (SOO), the feasible
set is completely ordered according to the objective function
f(.): for two feasible solutions a and b, either f(a) ≤ f(b)
or f(a) ≥ f(b). The goal of the optimization is to find
the solution that gives the maximum of f(.). In contrary to
SOO, in the MOO the Ωf is not totally ordered, but only
partially ordered. In the objective space, two objective vectors
u and v can have two possible relations. In one case, one
solution is dominating the other, e.g. u is dominating v, if
fi(u) > fi(v) ∀i. In the second case, they are indifferent to
each other, if ∃i such that fi(u) > fi(v) and ∃j for which
fj(u) < fj(v). In the latter case, solutions u and v are
called to be non-dominated. An algorithm that solves a MOP
finds out the set of the non-dominated solutions found during
the search process. This is called Pareto front if an exact
algorithm is used, and approximation set if a metaheuristic
is used. A simple example of an approximation set built by
the solution Ŝi and its similar solutions is given in Figure 1
for a two-dimensional objective space. Each solution from
this set dominates at least one solution Si, as shown in the
figure. More details about characteristics and definitions of
Pareto fronts (i.e. approximation sets) can be found in [1] [2].

For solving the MOPs, different multi-objective algorithms
(MOAs) have been developed over the last decade. Generally,
these MOAs can be categorized in some well-known classes,
such as Multi-Objective Local Search (MOLS), the Multi-
Objective Evolutionary Algorithms (MOEA), etc. One of the
most widely used MOLS variant is that based on the simulated
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Fig. 1. Example of approximation set in a two-dimensional objective space

annealing approach, which is inherited from the SOO. This
approach has been implemented in the MOO according to
different schemes, as it is detailed in the next section. These
schemes differ in the way they implement the decision criteria
of acceptance/rejection of new bad solutions. Those schemes
could be implemented in another possible way, in order to
exploit the search space better. In this paper, we propose a new
scheme that is called Multi-Case Multi-Objective Simulated
Annealing (MC-MOSA). Extensions of this basic MC-MOSA
form are also proposed and evaluated.

The rest of the paper is organized as follows: in the second
section an overview on the MOA landscape is given, where
also the usual method for the adaptation of the simulated
annealing into the multi-objective optimization is described.
The third section discusses some drawbacks of the standard
MOSA and how they could be avoided by the means of a
new proposed approach called the multi-case MOSA. Further
extensions of the MC-MOSA that should improve its per-
formance are described in the fourth section. The proposed
MOSA variants are evaluated by simulations, which numerical
results are presented in the fifth section. Their performance
is evaluated and compared with those of the original MOSA
version. Conclusions gained from the results are given in the
last section.

II. METAHEURISTICS FOR SOLVING THE MOPS

A. Overview on MOA Landscape

Similar to the single-objective optimization, there is a
wide spectrum of metaheuristics that are proposed in the
literature for solving the MOPs. The landscape of the multi-
objective metaheuristics (MOMH) has the same structure to
that one seen in the case of SOO. Thus, the algorithms could
be classified into three different major classes. The class
of Multi-Objective Local Search (MOLS) algorithms, which
includes the Serafini’s Multi-Objective Simulated Annealing
(S-MOSA) [3], the Ulungu et al. MOSA (U-MOSA) [4], the
Pareto Simulated Annealing (PSA) [5], the Multi-Objective
Multi-Start Local Search (MOMSLS) [6], the Multi-Objective
Tabu Search (MOTS) and its variants [7] [8], etc. The
second class is the Multi-Objective Evolutionary Algorithms
(MOEA). This class covers a large number of variants, like
Vector Evaluated Genetic Algorithm (VEGA) [9], the Multi-
Objective Genetic Algorithm (MOGA) [10], the Niche Pareto

Genetic Algorithm (NPGA) [11], Non-dominated Sorting Ge-
netic Algorithm (NSGA) [12] and its second variant (NSGA-
II) [13], Strength Pareto Evolutionary Algorithm (SPEA) [14]
and its extended variant SPEA-2 [15] [16], Pareto-Archived
Evolutionary Strategy (PAES) [2], etc. Alike to the SOO field,
the hybridation of MOLS and MOEA build the hybrid multi-
objective algorithm (HMOA), called also Memetic Multi-
Objective Algorithms (MMOA), whose principle elements
are the Ishiburi’s Multi-Objective Genetic Local Search (I-
MOGLS) [17] and the Jaszkiewicz’s MOGLS (J-MOGLS,
it is called sometimes Random Directions MOGLS -RD-
MOGLS) [18], the Pareto Ranking-based MOGLS algorithm
that hybridize the Pareto MOEAs with a LS (PR-MOGLS) [6],
the Memetic PAES (M-PAES) [2]. The SPEA and NSGA-II
were hybridized with I-MOGLS to build the Hybrid SPEA
and Hybrid NSGA-II; [19].

In this paper we focus only on the simulated annealing based
MOAs. The mostly referenced and recent MOSA variant,
namely the U-MOSA, is considered in this work. This choice
has also been motivated by the relative better performance
of this MOSA variant in comparison to other ones. An early
comparison of the MOSA variants in [20] has stated that the
Serafini’s MOSA is the worst one, whilst the Ulungu-MOSA
and PSA have better performance in solving the 0/1 multi-
objective Knapsack problem. A recent performance evaluation
in [21] has shown that the Ulungu MOSA is the best MOSA
variant in solving the graph partitioning problem with load
balancing in telecommunications networks. This is referred
further in this work as Standard MOSA (S-MOSA). This is
described in detail below. This discussion should allow to
understand the functionality of the MOSA, and to find out
some drawbacks of this technique. Those drawbacks will be
avoided in a new proposed approach, which is called Multi-
Case Multi-Objective Simulated Annealing (MC-MOSA).

B. Multi-Objective Simulated Annealing

The origins of Simulated Annealing (SA) lay in the analogy
of optimization and a physical annealing process; [22]. In
condensed matter physics, annealing is a thermal process for
obtaining low-energy states of a solid in a heat bath. Roughly,
the process can be described as follows. First, the temperature
of the heat bath is increased to a maximum value at which the
solid melts. Thus, all particles of the solid arrange themselves
randomly. Afterwards, the temperature is carefully decreased
until the particles of the melted solid reach in the ground state
of the solid in which the particles are arranged in a highly
structured lattice with minimum energy. The physical anneal-
ing process can be simulated by computer programs using
Monte Carlo techniques proposed in [23]. Given an actual
state Sact of the solid with energy Eact, a subsequent new
state Snew is generated by applying a perturbation mechanism,
which transforms the current state into the next state by a small
distortion, for instance by displacement of a single particle. If
the energy difference ΔE = Eact − Enew is less or equal
to zero, the state Snew is accepted as the current state. If
the energy difference is greater than zero, the state Snew is
accepted with probability exp(ΔE/(α.T )), where T denotes
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the temperature of the heat bath and α the Boltzmann constant.
This acceptance rule is known as the Metropolis criterion. The
flowchart of a simple SA in SOO is given by Algorithm 1.

Algorithm 1 Flowchart of SA in SOO
begin
t := T (0), n := 1;
Sbest ← Sact;

repeat
Generate neighboring solution Snew ∈ N (Sact)
Δf := f(Sact) − f(Snew)
if(Δf � 0)

Sact ← Snew

else
Sact ← Snew with paccept = exp(−Δf/t)

if(f(Sact > f(Sbest)
Sbest ← Sact

t := T (n)
n := n + 1

until termination criterion fulfilled
return Sbest

end

Different schemes have been proposed in order to adapt
the principles of the simulated annealing in the field of the
MOO, as cited above. This results in different variants of the
Multi-Objective Simulated Annealing (MOSA). The MOSA
variant proposed by Ulungu et al. in [4] is the recent and
mostly referenced one, because of that it is considered in
this work and abbreviated by Standard MOSA (S-MOSA).
The SA in MOO has the same structure as in SOO; however,
the acceptance decision of new solution has to take into con-
sideration the improvement (or deterioration) of k objectives
simultaneously. In case of two optimization objectives (i.e.
k = 2), the comparison of the actual and the new solution (i.e.
decision vector) results in three cases, as depicted in Figure 2:

• Case (a): The move from xact to xnew is improving
with respect to all k objectives. This means that Δfk′ =
fk′(xnew) − fk′(xact) ≤ 0 (supposing a minimization
MOP) for k′ ∈ {1, ..., k}.

• Case (b): An improvement and a deterioration can be
simultaneously observed on different objectives. This
means, there exist a k′ and a k′′ with Δfk′ < 0 and
Δfk′′ > 0. This is the case where the new solution is
indifferent to the actual one. Thus, a strategy has to be
defined to decide if the new solution should be accepted
as current solution for the next iteration.

• Case (c): All objectives are deteriorated, with Δfk′ ≥ 0
for all k′ and ∃k′′ ∈ {1, ..., k} such that Δfk′′ > 0. In
this case, an acceptance probability to accept xnew has
to be calculated.

Different procedures have been discussed to calculate the
acceptance probability in cases (b) and (c). The criterion
scalarizing approach was found to be the best one. Its
idea is to project the multidimensional criteria space Δf =

{Δfk′ |k′ = 1, ..., k} into a monodimensional one (ΔS). On
this monodimensional space, the classical acceptance deci-
sion rule can be applied, exactly like in SOO. To perform
this projection, a scalarizing function S(.) = S(f(), λ) is
used, which aggregates the multi-criteria information into a
unicriterion one S(.) using a weight vector λ. By taking
ΔS = S(f(xnew), λ)−S(f(xact), λ), the acceptance decision
rule takes the following form for a minimization problem:

paccpet =

{
1 if ΔS ≤ 0
exp(−ΔS

T ) if ΔS > 0
(5)

Several scalarizing functions can be applied to compute this
probability. The most known one is the weighted sum, beside
the Tchebychev norm. The weighted sum has the following
form:

S(f(), λ) =
∑

1≤k′≤k

λk′fk′ (6)

with ∑
1≤k′≤k

λk′ = 1 and λk′ > 0,∀k′ (7)
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Fig. 2. Three possible cases in comparing two decision vectors in two-
dimensional decision space

C. MOA Performance Metrics

Basically, there are two ways to assess the performance of
a multi-objective algorithm, either theoretically by analysis or
empirically by simulation. For the theoretical analysis, two
approaches were proposed in the literature. On one hand, there
is the ”limit behavior” that tries to find what the algorithm is
able to achieve over time, when unlimited time resources are
available. On the other hand, the ”run-time analysis” analyzes
the expected running time for a given class of problems and
the success (i.e. finding the Pareto set) probability for a given
optimization time; [16]. These methods are applicable only
on the standard and very simple MOO problems, such as
the Leading Ones Trailing Zeros (LOTZ) function that is
considered in [16], while their applicability to the real-life
problems is neither checked nor justified. Because of that only
the performance evaluation approaches that are based on the
simulative investigations are considered in this paper.
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The notion of performance covers both the quality of the
outcome as well as the computational resources needed to
generate this outcome. For the latter aspect, it is common
practice to monitor either the number of the fitness evaluations
(or the number of algorithm iterations) or the overall run time
on a particular computer, exactly like in the SOO. However,
concerning the outcome quality aspect, there is a difference.
The evaluation and the comparison of two SOO algorithms
is relatively simple, because a SOO algorithm produces at the
end of its execution exactly one solution as optimal (or near-to-
optimal) solution for the considered problem. The comparison
of the fitness of the solutions delivered by different algorithms
tells us which algorithm is the best one for the treated problem.
In the MOO, the algorithm provides at the end not a unique
solution but a set of solutions that realize the optimal trade-
offs between the considered optimization objectives. This
set is the approximation set. In case of a two-dimensional
MOO, the optimal solutions build a Pareto front (or curve). In
general, for a MOO model with k objectives, the near-Pareto
solutions front takes the shape of a k-dimensional geometrical
”surface” sitting above k-dimensional hyperplane spanned by
the vector S = [f1(S), f2(S), · · · , fk(S)]. Therefore, any
evaluation of a MOO algorithm or the comparison of the
performance of different algorithms has to be based on their
supplied approximation sets. In the MOO literature devoted
to the performance evaluation, a large number of methods
is proposed. For example, the set cardinality, set coverage,
spread and distribution are proposed in [1]; while Epsilon
quality measure and other ones are in [2]. In this work,
set cardinality and coverage of two sets are taken as metrics,
which are defined as:

• Approximation set cardinality: This is the number of
elements (i.e. solutions) constituting the front. It is the
number of the optimal trade-offs between the optimiza-
tion objectives found by the considered algorithm. It
reflects how good is the algorithm in exploring the search
space.

• Coverage of two sets (C): let A, B ⊆ Ωf be two
approximation sets built by set of decision vectors. The
function C()maps the ordered pair (A, B) to the interval
[0,1] as follows:

C(A, B) :=
|{b ∈ B|∃a ∈ A : a � b}|

|B| (8)

The value C(A, B) = 1 means that all solutions (i.e.
decision vectors) in B are weakly dominated by A. If
C(A, B) = 0, then no one of the points of B is dominated
by any point of A. During the comparison always both
directions have to be considered, since C(A, B) is not
necessary equal to 1 − C(B, A).

Generally, the set cardinality evaluates the algorithm per-
formance in keeping a good diversity, which allow a good
exploration of the search space. The coverage set reflects
the algorithm’s ability in the convergence toward the global
optimum approximation, simply called Pareto front. If the per-
formance of two different algorithms has to be compared, then
their reached fronts are compared with each other. Comparison

examples of two fronts A and B are given in Figure 3. In case
1, front A is better than front B in the convergence, but it has a
very low cardinality. In case 2, the fronts (i.e. the algorithms)
have a similar performance level in both metrics. The third
case shows a clear and absolute advantage in the performance
of the algorithm front A. It has a large number of solutions,
which clearly dominate those of front B.

f1

f2

f1

f2

f1

f2

Case 1 Case 2 Case 3

A

B

Fig. 3. Different states for comparison of two fronts

III. MULTI-CASE MULTI-OBJECTIVE SIMULATED
ANNEALING (MC-MOSA)

The main negative point in the functions of the S-MOSA
is its acceptance decision rule, which is based only on a
direct comparison between the actual and the new solutions.
The drawback of such comparison is that some new solution
that are good for the search could be rejected, especially in
cases (b) of Figure 2. For example, the case (b.1) in Figure 4
illustrates a subcases of case (b), where the xnew is not better
than xact. In this subcase, it is probable that the new solution
will be rejected. However, if we compare the new solution
with the solution of the approximation sets, we remark that it
dominates three of those solutions and indifferent to the rest of
solutions. The new solution has reached a better region of the
objective space, which has not yet been reached by any other
solution. Because of that, this solution must not be rejected;
instead it must be accepted, since it will lead the search to
a better search region. The new multi-objective local search
approach that is proposed in this section is called Pareto Multi-
Case MOSA (simply MC-MOSA). The MC-MOSA proposes
an acceptance decision rule that is based on the comparison
of both solution with each other, and by taking also into the
consideration the Pareto solution in case (b). This is done by
subdividing the MOSA case (b) in three subcases (case (b.1),
case (b.2) and case (b.3), which are shown in Figure 4. In the
first subcase, the algorithm checks the number of the Pareto
solutions that are dominated by the new solution (R�(xnew)),
which is called as dominance counter of the new solution.
if R�(xnew) > 0, then paccept = 1. If the new solution
does not dominate any solution, then we check if it can be
a new solution in the Pareto set. This is done by calculating
the number of the solutions in the Pareto set that dominates
this solution (R≺(xnew)), called also the dominance rank. If
R≺(xnew) = 0, then paccept = 1, as illustrated by case(b.2).
If the new solution can not build a solution of the Pareto
set (i.e. R≺(xnew) > 0), then the acceptance probability is
based on the difference between R≺(xnew) and R≺(xact).
This difference should allow the search process to accept the
solution that is not too far from the actual approximation
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set and to avoid the regions that are dominated by a dense
population of the Pareto solutions, as depicted in case (b.3).
This subdivision to decide which probability should be used
to compute acceptance probability of new solution builds the
Pareto MC-MOSA, which flowchart is given by Algorithm 2.

xnew

xactual

xnew

xactual

xnew

xactual

f1

f2 f2 f2

f1 f1Case (b.1) Case (b.2) Case (b.3)

Fig. 4. Subdivision of the MOSA case (b) into different sub-cases

Algorithm 2 Flowchart of Multi-Case Multi-Objective Simu-
lated Annealing (MC-MOSA)
begin
t := T (0), n := 1;
An ← xact;

repeat
Generate neighboring solution xnew ∈ N (xact)
if(xnew 
 xact) //Case (c)

xact ← xnew //paccept = 1
else if(xnew � xact) //Case (b)

if(R�(xnew) > 0) //Case (b.1)
paccept = 1

else if(R≺(xnew) = 0) //Case (b.2)
paccept = 1

else if(R≺(xnew) < R≺(xact)) //Case (b.3)
paccept = 1

else if(R≺(xnew) = R≺(xact)) //Case (b.3)

paccept = exp

(
−

1−
(
∑

k′ λk′
fk′(xact) − fk′(xnew)

(fk′(xact) + fk′(xnew))/2

)
T

)
else //(R≺(xnew) > R≺(xact))

paccept = exp

(
−

(
R≺(xnew)/R≺(xact) + 1

)
T

)
else//case (c)

paccept = exp

(
−

1−
(
∑

k′ λk′
fk′(xact) − fk′(xnew)

(fk′(xact) + fk′(xnew))/2

)
T

)
update An

t := T (n)
n := n + 1

until termination criterion fulfilled
return An

end

Different methods could be used to extend standard form

of the MC-MOSA, such as the utilization of some approaches
that have been developed and tested for the application of the
simulated annealing in the SOO. Most of those approaches
have shown considerable improvements of the performance of
the simulated annealing search process in SOO; however, they
are still not investigated for the case of the MOO. Therefore,
one of the goals of the MC-MOSA extensions in this work is
to check if those approaches are also successful in improving
the SA-based search in the MOO, as it was the case in
SOO. Several SA extension approaches can be found in the
literature; however, only some of them (the most successful)
are considered.

IV. EXTENSIONS OF THE MC-MOSA

A. Re-annealing MC-MOSA (R-MC-MOSA)

This variant adapts the approach used in the SOO SA,
which uses Non-monotonic cooling schedules; [24]. In this
MOSA variant, phases of cooling and reheating (increase of
temperature) are alternated. This approach should help the
MOO search to escape the local optima, as it was realized in
the SOO search. The reheating is a periodic increase of the
temperature. This temperature increase results in increasing
the acceptance probability of new solutions, which are worse
than the actual one. The reheating is applied in an advanced
phase of the search, where the search algorithm is nearing
to the convergence. Because the early convergence of the
local search-based algorithms tends toward local minima, the
reheating should allow the search algorithm to escape them
with higher probability and increase the chance to reach the
global optimum (or at least to reach better local minimum).
The reheating can have different forms. In this work, a
linear reheating is considered. The temperature at the cooling
iteration c of R-MOSA can be formulated as follows:

T (R)
c = fcool(T

(R)
c−1) + α

(T )
Reh.RA (9)

with

α
(T )
Reh =

⎧⎨⎩1 if
c

R
(T )
period

∈ N

0 otherwise.
(10)

where fcool(Tc−1) is the cooling function that decreases
the temperature resulting form the previous cooling (i.e. c −
1), α

(T )
Reh is the reheating factor that indicates if a reheating

with a reheating amplitude RA should occur or not. This is a
function of the reheating period R

(T )
period, which is expressed

in number of cooling iterations. In Figure 5 the behavior of
the temperature over the cooling iterations in R-MC-MOSA
is qualitatively compared to that of simple MC-MOSA.

B. Fast Annealing MC-MOSA (F-MC-MOSA)

The standard MOSA uses, like standard SA in SOO, a
cooling schedule that is a geometric function of the number
of the cooling iterations (or steps). Such cooling is written
as Tc = α.Tc−1 = αc.T0, where α ∈ [0, 1[ is a scaling
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Fig. 5. Comparison of a cooling schedule with and without re-annealing

constant and c is the cooling iteration counter. According to
the literature, useful values for α have been claimed to be
0.8 < α < 0.99, and mostly this is taken α = 0.95. A
sub-variant of the SOO SA has been proposed and called
Fast Simulated Annealing (FSA), which uses a faster cooling
schedule. The fast cooling schedule decreases the temperature
according to Tc = T0/(1 + c). This cooling behavior is
compared to that of standard geometric cooling in Figure 6.
In this section, the fast cooling is studied for the case of
MOO, which builds the Fast MOSA (F-MOSA). The expected
advantage that the fast cooling could show lies in the fact that
the bad moves will be more probably rejected with increasing
number of search iterations, in the contrary to the S-MOSA.
This should realize a faster convergence to the optimum. But
this could become inconvenient by leading the search to a local
optimum because of the premature convergence. However, this
drawback should be avoided because the temperature at the
late iterations remain higher than in case of geometric cooling;
as illustrated in Figure 7. The higher temperatures result in
a higher acceptance probability of relatively bad solutions,
which generally allows the algorithm to escape from local
optima.
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Fig. 6. General comparison of geometric and fast cooling schedules

C. Two-Stage Annealing MC-MOSA (TS-MC-MOSA)

This variant consists in using two different cooling sched-
ules in the different phases of the search. Different mixtures
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Fig. 7. Difference between geometric and fast cooling at high iteration
numbers

of the cooling schemes are possible. However, in this work
we propose to test only one variant, in order to check if
generally the variation of the cooling process according to the
search phase does bring any advantage to the search or not.
Therefore, a mixed cooling scheme that is proposed, where a
fast annealing is used at the higher temperature, while a slower
one is used at lower temperatures. The geometric cooling of
the S-MOSA is used at the early phase of the search, i.e. in
the first half of the search process duration. The effect of the
two-stage cooling resides in the fact that it realizes a slower
cooling over all the process duration than the geometric and
the fast annealing schemes. In fact, in the early iterations of
the geometric cooling the temperature decrease slowly than
the fast annealing, while at the last iterations the temperature
decreases in fast annealing slower than with geometric one.
The low decrease of the temperature in the later iterations
means that the bad moves acceptance probability is higher. The
acceptance of bad moves in this phases where the algorithm is
in the convergence phase allows the search process to escape
from the probable local optima, where the algorithm could be
trapped.

V. NUMERICAL RESULTS AND EVALUATIONS

A. Numerical Experiments

The performance investigations of the proposed MOO
algorithm variants are based on simulation, where the
considered variants are applied to solve a well-known
multi-objective combinatorial optimization problem that is
called Multi-Objective Knapsack Problem (MOKP). After
that, the performance of each variant will be compared
with those of the standard form. The 0/1 Knapsack problem
was first considered in the SOO; [25]. It consists of a
set of items, weight and profit associated with each item,
and an upper bound for the capacity of the Knapsack.
The task is to find a subset of items which maximizes the
total profits in the subset, yet all selected items fit into the
Knapsack, which means the total weight does not exceed
the given capacity. This SOO problem has been extended to
a MOO problem by using a given number of Knapsacks;
[1]. Formally, the 0/1 MOKP considered is defined as follows:
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Given: A set of n items and a set of k knapsacks, with
pi,j : profit of item j according to knapsack i; wi,j : weight of
item j according to knapsack i, and Ci: capacity of knapsack i;

Task: Find a vector a vector x = (x1, x2, · · · , xn) ∈
{0, 1}n;

Objective: maximize f(x) = (f1(x), f2(x), · · · , fk(x)),
where fk′ =

∑n
j=1 pi,j .xj and xj = 1 if and only if item j

is selected;

Constrained by: Capacity constraint of each knapsack k′,
with ek′ =

∑n
j=1 wi,j .xj and 1 ≤ k′ ≤ k.

The MOKP is solved by the new variants and their perfor-
mance is compared to those of the original standard MOSA
version. The experiments are done with three different in-
stances with different sizes and in a two-dimensional search
space (i.e. with two knapsacks). In the first instance 250 items
are used, while 500 and 750 items are used in the second and
third instances; respectively. Firstly, the standard MOSA is
compared with the simple variants of the Multi-Case MOSA.
After that, the S-MOSA is compared with the extended MC-
MOSA subvariants. The extensions implemented in this work
have been realized inside the platform of MOO libraries
called MOMHALib++; [26]. All the given computational
results in this section are achieved by a PC with 1200MHz
and 512MB, under Linux Suse 8.2. The presented statistical
numerical results given in this section are the average (with
confidence interval) of the values achieved by 30 runs for each
experiment.

B. S-MOSA vs MC-MOSA

The application of MC-MOSA to solve the MOKP has
shown improvements in the performance of the local search in
MOO. The very important advantage that MC-MOSA brought
is the size of the approximation sets, which is widely superior
to that found by S-MOSA. The cardinality of the fronts of
both algorithms is compared in Table I. This improvement
is realized by the fact that the introduced subcases in MC-
MOSA allows the detection of any small improvement that
leads to finding new solution of that could lead to larger fronts.
Concerning the MC-MOSA convergence, it is evaluated by
reference to the S-MOSA by the means of the coverage of
two sets, which statistics are given in Table II. The MC-
MOSA convergence is lightly better than that of S-MOSA.
This light improvement is caused by the large improvement
of the cardinality, which are paradoxical metrics. The fronts of
S-MOSA and MC-MOSA are given in Figure 8, where MC-
MOSA front shows a large number of solutions that cover
the whole front (almost equally distributed over the front).
Generally, the fact that MC-MOSA found a higher number of
optimal trade-offs offers to the decision maker more chance to
meet a optimal decision. Furthermore, the MC-MOSA front
shows widely better spread and distribution of the found
solutions along the Pareto fronts, which are also mostly used

as performance metrics for comparing MOO algorithms, see
[1].

TABLE I
COMPARISON OF FRONTS CARDINALITY FOUND BY S-MOSA AND

MC-MOSA.

Instance S-MOSA MC-MOSA
250 items 49.17 ± 2.54 99 ± 3.28
500 items 53.03 ± 4.42 129.73 ± 4
750 items 61.3 ± 4.83 185.3 ± 6.78

TABLE II
TWO-SETS COVERAGE BETWEEN S-MOSA AND MC-MOSA FOR TWO

PROBLEM INSTANCES.

250 items
S-MOSA MC-MOSA

S-MOSA # 0.34 ± 0.04
MC-MOSA 0.48 ± 0.06 #

500 items
S-MOSA MC-MOSA

S-MOSA # 0.35 ± 0.04
MC-MOSA 0.38 ± 0.05 #

750 items
S-MOSA MC-MOSA

S-MOSA # 0.32 ± 0.03
MC-MOSA 0.38 ± 0.04 #
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S-MOSA
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Fig. 8. A sample of S-MOSA and MC-MOSA fronts (MOKP-750)

C. S-MOSA and the Extended MC-MOSA Variants

The results obtained from the comparison of the S-MOSA
and the sub-variants of the MC-MOSA concerning the sets
cardinality and the coverage are presented in Tables III and
IV, respectively. From the first view, one can see that the
extensions of the MC-MOSA improve further the performance
of the local search in the MOO. This is true for both, the sets
size and the convergence. Especially, the re-annealing in the
MC-MOSA allows the largest front size, which is almost three
times larger than the fronts of the standard form. Furthermore,
the improvement of the search space exploration did not penal-
ize the convergence properties of the modified algorithm. The
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front samples depicted in Figure 10 and Figure 9 show a clear
advantage of the R-MC-MOSA, because its front is clearly
clearly superior to the front of the standard form. This behavior
is made possible by the allowed large moves in the search
space, when the temperature is increased when the algorithm
near the local optima. The advantage of this moves becomes
important, when the search space becomes larger. However,
the re-heating frequency and intensity (i.e. the level of re-
heating) are two parameters of R-MC-MOSA that could affect
the optimization performance, which should be investigated
in future work. When the F-MC-MOSA and TS-MC-MOSA
are compared, a strong similarity in their performance can
be seen. This lets conclude that the introduced geometric
cooling in the first half of the search did not bring any clear
improvement. This means that an accelerated convergence in
the early search phases does not damage the convergence
characteristics of the algorithm over the entire optimization
duration. This is guaranteed by an always higher acceptance
probability of the relative bad solutions (or springs). However,
the introduction of the multi-case in case (b) of S-MOSA has
allowed a detailed classification of the solution that is seen as
bad solution by the S-MOSA. A solution that does not allow
a clear convergence toward the global optimum Pareto front,
could allow an enlargement of the algorithm front size. In this
case, any simple improvement is exploited by the MC-MOSA
and theretofore allows it to explore further the search space
by always escaping the local optimum solutions.

TABLE III
COMPARISON OF FRONTS CARDINALITY BETWEEN S-MOSA AND

MC-MOSA SUB-VARIANTS.

Algorithm 250 items 500 items 750 items
S-MOSA 49.17 ± 2.54 53.03 ± 4.42 61.3 ± 4.83
F-MC-MOSA 124.67 ± 3.01 173.7 ± 5.38 123.23 ± 6.86
R-MC-MOSA 140.47 ± 3 199.37 ± 4.7 293.83 ± 7.5
TS-MC-MOSA 124.83 ± 3.18 173.93 ± 5.44 249.17 ± 6.06

TABLE IV
COMPARISON OF COVERAGE OF TWO SETS BETWEEN S-MOSA AND

MC-MOSA SUB-VARIANTS.

250 items
S-MOSA F-MC R-MC TS-MC

S-MOSA # 0.11 ± 0.02 0.03 ± 0.01 0.11 ± 0.02
F-MC 0.76 ± 0.04 # 0.2 ± 0.04 0.06 ± 0.06
R-MC 0.9 ± 0.03 0.7 ± 0.03 # 0.7 ± 0.03
TS-MC 0.76 ± 0.04 0.06 ± 0.06 0.2 ± 0.04 #

500 items
S-MOSA # 0.04 ± 0.01 0 ± 0 0.04 ± 0.01
F-MC 0.9 ± 0.03 # 0.13 ± 0.03 0.04 ± 0.05
R-MC 0.98 ± 0.01 0.83 ± 0.04 # 0.82 ± 0.03
TS-MC 0.9 ± 0.03 0.05 ± 0.06 0.14 ± 0.03 #

750 items
S-MOSA # 0 ± 0 0 ± 0 0.01 ± 0.01
F-MC 0.95 ± 0.02 # 0.38 ± 0.03 0.7 ± 0.03
R-MC 1 ± 0 0.35 ± 0.04 # 0.89 ± 0.02
TS-MC 0.96 ± 0.02 0.09 ± 0.02 0.09 ± 0.02 #
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Fig. 9. Comparison of S-MOSA and R-MC-MOSA fronts for a 500 items
MOKP
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Fig. 10. Comparison of S-MOSA and R-MC-MOSA fronts for MOKP-750

VI. CONCLUSIONS

Most of the real-life problem are multi-objective problems.
Because of that, different multi-objective algorithm have been
developed over last decade. These algorithms have been ap-
plied in different engineering fields. One of the well-known
category of these algorithms is that called multi-objective
local search. This adapts the simulated annealing approach
to the multi-objective optimization in different ways. In this
work, we focused on the most referenced and recent variants,
which is called Ulungu Multi-Objective Simulated Annealing,
and referred in this work as Standard MOSA (S-MOSA).
In this paper we have improved this variant by changing
the algorithm of its acceptance decision, in order to allow
a better exploration of the search space. This improvement
results in a new approach called Multi-Case Multi-Objective
Simulated Annealing (MC-MOSA). Indeed, the MC-MOSA
has allowed to reach fronts that are larger than those reached
by S-MOSA; however, with similar convergence properties
(measured by the coverage of two sets). Some sub-variants
of the MC-MOSA are also proposed in this paper, such as
the Re-annealing MC-MOSA (R-MC-MOSA), the Fast MC-
MOSA (F-MC-MOSA) and the Two-Stage MC-MOSA (TS-
MC-MOSA). These subvariants did not only allow to improve
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the size of the achieved fronts, but also to improve drastically
the coverage properties of the original algorithm (i.e. MC-
MOSA). In this paper, only the statistics of the performance
metrics set cardinality and coverage of two sets are shown, but
the new variants show the same high improvement according
to all other metrics, such as the generational distance, the
spread, etc.

In future work, these improved variants should be compared
to other MOAs classes, such as the multi-objective evolu-
tionary algorithms (MOEA), or Pareto-Archived Evolutionary
Strategy (PAES), etc. Furthermore, these variants may be also
used to hybridize these MOEA, in order to build new hybrid
variants of the hybrid MOEAs. It is expected that the good
MC-MOSA performance will be always achievable, even if
they are mixed with other MOAs. However, this must be
checked by numerical experiments.
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