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Abstract—Deaminated lesions were produced via nitrosative
oxidation of natural nucleobases; uracul (Ura, U) from cytosine (Cyt,
C), hypoxanthine (Hyp, H) from adenine (Ade, A), and xanthine (Xan,
X) and oxanine (Oxa, O) from guanine (Gua, G). Such damaged
nucleobases may induce mutagenic problems, so that much attentions
and efforts have been poured on the revealing of their mechanisms in
vivo or in vitro. In this study, we employed these deaminated lesions as
useful probes for analysis of DNA-binding/recognizing proteins or
enzymes. Since the pyrimidine lesions such as Hyp, Oxa and Xan are
employed as analogues of guanine, their comparative uses are
informative for analyzing the role of Gua in DNA sequence in
DNA-protein interaction. Several DNA oligomers containing such
Hyp, Oxa or Xan substituted for Gua were designed to reveal the
molecular interaction between DNA and protein. From this approach,
we have got useful information to understand the molecular
mechanisms of the DNA-recognizing enzymes, which have not ever
been observed using conventional DNA oligomer composed of just
natural nucleobases.

Keywords—Deaminated lesion, DNA-protein interaction,
DNA-recognizing enzymes

I. INTRODUCTION

HEN DNA was treated with NO or weakly acidic HNO2,
deaminated lesions are produced. Xanthine (Xan, X) is

known to be the major domination product of guanine (Gua, G).
Recently, we showed that oxanine (Oxa, O) is another product
of such oxidation process of Gua [1]. It was also found that
hypoxanthine (Hyp, H) is formed from oxidation of adenine
(Ade, A) [2]. In similar mechanism, uracul (Ura, U) can be
produced from cytosine (Cyt, C), thymine (Thy, T) from
5-methyl cytosine and so on. Among such NO-induced lesions,
Xan, Oxa, and Hyp which are originated from natural
pyrimidine bases are expected to make base-pairs both with
natural Cyt and Thy through hydrogen bonding; thereby
revoking severe genotoxic problems such as G:C A:T
(presence of Xan, Oxa instead of Gua) or A:T G:C (presence
of Hyp instead of Ade) transversions [3-8]. Interestingly, Oxa
possesses O-acylisourea structure in the aromatic ring to
mediate a cross-link formation with some DNA-binding
enzymes or proteins, which is another genotoxic event in
cellular systems [9-11]. Generally, the biophysical and
biochemical properties of such pyrimidine lesions have been
focused or investigated in vivo and in vitro in terms of their
genotoxic/cytotoxic influences [6, 12-18].
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In other view-point, these lesions can be used for
molecule-based analysis of DNA-binding/recognizing proteins
or enzymes. Since the pyrimidine lesions such as Xan, Oxa and
Hyp are employed as analogues of guanine, the comparative
results from their usage can provide important or new
information on the role of Gua in DNA sequence in
DNA-protein interaction. Xan-ODN can be prepared using
chemical synthesis method established previously [8] and
Hyp-containing oligodeoxynucleotide (Hyp-ODN) is already
commercially available and. In addition, we set up a
solid-phase chemical synthesis procedure for preparing
Oxa-ODN [12]. That is, several DNA oligomers containing
such Xan, Oxa or Hyp, which are substituted for Gua, can be
used for revealing the molecular interaction between DNA and
protein. In this report, we employed these deaminated lesions
as novel molecular bioprobes for analysis of DNA-recognizing
enzymes. In particular, we show new research approach to
investigate molecular mechanisms of DNA ligases and DNA
polymerases using Xan-ODNs, Oxa-ODNs or Hyp-ODNs as
probe molecules.

II.MATERIAL METHODS

A. Enzymes and Reagents
DNA ligases, DNA polymerases and T4 DNA

polynucleotide kinase (T4 PNK) were acquired from NEB
(Ipswich, MA). [γ-32P]ATP was purchased from GE Healthcare
(Piscataway, NJ). The reagents for oligodeoxynucleotide
synthesis (including CPG column and appropriately protected
normal nucleosides) were acquired from Glen Researches Co.
(Sterling, VA). Other chemical reagents were purchased from
Wako (Osaka, Japan) and solvents from Nacalai Tesques
(Osaka, Japan).

B. Preparation of single DNA strands
Xan-ODNs and Oxa-ODNs were prepared according to

previously published chemical synthesis procedures [8, 12].
Hyp-ODNs and normal DNA oligomers were synthesized and
acquired commercially. The synthesized DNA oligomers were
purified with an RP-HPLC system using a gradient of CH3CN
[Eluent A [5% CH3CN in 100 mM triethylammonium acetate
(TEAA) (pH 7.0)] and Eluent B [20% CH3CN in 100 mM
TEAA (pH 7.0)]; 15% (0 min)- 80% (40 min) of Eluent B (flow
rate : 1 ml/min)]. The presence of Xan, Oxa and Hyp in the
synthesized DNA oligomers was confirmed through enzymatic
digestion [12]. The oligodeoxynucleotides prepared in this
study were arranged in Table I.

C.Hot-labeled DNA oligomer preparation
The preparation procedure of the hot-labeled DNA

oligomers is as follow; DNA oligomer samples (800 nM) were
incubated with T4 PNK (40 unit) and [ -32P]ATP (4.5 MBq) in
50 l of reaction buffer [50 mM Tris-HCl (pH 7.5), 10 mM
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MgCl2 and 5 mM dithiothreitol (DTT)] at 37 C
enzyme reaction was terminated by heat deacti
min) and the hot-labeled DNA oligomers were
the CENTRI-SEP purification column.

D.DNA polymerase assays
DNA oligomers hot-labeled at the 5 -end (5

template DNA oligomers (3 - M1M2-5 ,
incubated with dNTP mixture (200 M) and D
(1 unit) in 60 l of reaction buffer [10 mM Tr
50 mM NaCl, 10 mM MgCl2, 1 mM DTT] at
The reactions were terminated by heat deacti
20 min) and the amount of product was inve
phosphor-imaging scanner, STORM 820. The
efficiencies were estimated by [(amount of pr
of product) + (amount of free DNA)}].

E. DNA ligase assays

Up-stream DNA oligomer (5 -N, 600 nM
DNA oligomer hot-labeled at the 5 -end (N-3
template DNA oligomer (3 - M1M2-5 , 600 nM
with DNA ligase (5 unit) in 60 l of reaction
Tris-HCl (pH 8.0), 4 mM MgCl2, 26 M NAD

g.ml BSA] at 16 C for 15 min. The reactions
by heat deactivation (65 C for 20 min) and
product was investigated using a phosphor-i
STORM 820. The ligation efficiencies we
[(amount of product)/{(amount of product)+
DNA)}].

F. Melting temperature analysis

Melting temperature analysis is as follow; D
μM) were prepared in a phosphate buffer (1 M
Na2HPO4 and 1 mM Na2EDTA adjusted to pH
Absorbance of solutions containing a 1:1 
oligodeoxynucleotides at 260 nm was me
Shimadzu TMSPC-8 Tm analysis system where
was increased from 20 to 90 C at a rate of 0.2

Fig. 1 Pyrimidine lesions used as bioprobe

TABLE I
OLIGODEOXYNUCLEOTIDES USED IN THIS ST

Name DNA Sequence cf

N-3 5 -d(N CCAT TCCTG
ATTCT AAGTG)-3

N = G, A, X,
Primer 
polymerizatio
Down-stream
DNA ligation

5 -N 5 -d(CTCAG GTCGA
CAGTC TGCG N)-3

N = G, A, X,
Up-stream fr
ligation react

3 -M1M2-5 3 -d(GAGTC CAGCT
GTCAG ACGC M1M2

GGTA AGGAC
TAAGA TTCAC)-5

M1M2 = CC, 
Template 
polymerizatio
ligation

Note: X: Xanthine, O: Oxanine, H: Hypoxanthine

7 C for 30 min. The
ctivation (75 C, 10
ere separated using

(5 -N, 600 nM) and
, 600 nM) were
d DNA polymerase
 Tris-HCl (pH 7.9),
at 25 C for 5 min.

ctivation (75 C for
nvestigated using a
The polymerization
 product)/{(amount

nM), down-stream
-3 , 600 nM)] and

nM) were incubated
ion buffer [30 mM
D, 1 mM DTT, 50

ns were terminated
and the amount of
r-imaging scanner,

were estimated by
t)+(amount of free

; DNA solutions (2
1 M NaCl, 10 mM
 pH 7.0 with HCl).
:1 strand ratio of
measured using a
ere the temperature
.2 C min-1.

III. RESULT

The reaction efficiencies of DNA
ligases were investigated, respectiv
substrates (Fig. 1). Both of the
efficiencies and ligation efficiencie
containing Xan:Cyt pair, Oxa:Cyt pai
dsO:C, or dsH:C) were less than
(dsG:C). In addition, the efficienci
ligation on dsO:C were less than 
efficiencies for dsX:C were the lo
polymerization and ligation on dsX:
those of normal DNA duplexes (dsA
were almost the same to those of nor

In general, the stability of DNA ba
site may affect on the reaction
polymerases or DNA ligases [20-28
containing deaminated lesions were c
DNA substrate in terms of their melti
stability of dsH:T was almost the sam
dsX:T and dsO:T were less stable co
Moreover, both of dsX:C and dsO:
compared to dsG:C (even less than d
value between that of normal dsG:C
Considering their Tm, the order o
substrates was as follow; dsG:C > ds
dsA:T dsH:T > dsO:T >dsX:T. A si
for the order of the relative reaction e
and DNA polymerases; dsG:C > dsH
dsA:T dsH:T > dsO:T > dsX:T.

IV. DISCUSSI

It is believed that the efficiencies
strongly involved in the stability of t
at the catalytic site of DNA polym
[20-28]. For the case of the chai
polymerases, such tendency was fou
of the polymerization efficiency on
substrates was observed. It has 
nucleotidyl transfer reactions catalyz
are based on a two-metal-ion mecha
of the nucleotidyl transfer reactio
energetic and structural stabilities of 
catalytic site of DNA polymerase (Fi

Fig. 1 Pyrimidine lesions
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The order of the polymerization efficienci
N:C or N:T (N = G, A, X, O, H) were as fo
dsH:C > dsO:C > dsX:C or dsA:T dsH:T >
respectively. The polymerization efficiency
tendency of the Tm order of the DNA substrate

For the case of DNA ligases, similar tend
DNA ligase interactively encircled the 5 -pho
of down-stream ligation fragment than the
up-stream ligation fragment. Thus, the mismat
3 -end of up-stream ligation fragment/template
for the efficiency of ligation reaction [28]. All
at the 5 -end of the down-stream fragment w
ligated even the deaminated-lesions were pa
Thy. However, in cases for the base-pairs at 
up-stream ligation fragment (5 -N; N = G, A, 
template (3 - M1M2-5 : M1 = C or T)], the effic
was dependent on the stability between the up-
and template (Fig 2B). The order of the ligatio
DNA substrate containing N:C or N:T (N = G,
dsG:C > dsH:C > dsO:C > dsX:C or dsA:T d
dsX:T. The ligation efficiency shows the same
Tm order of the DNA substrates.
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This report shows such research approach
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employing such deaminated lesions as n
bioprobes.
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