
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2382

Performance Modeling for Web based 
J2EE and .NET Applications 

 
Shankar Kambhampaty, and Venkata Srinivas Modali  

 
Abstract—When architecting an application, key non-

functional requirements such as performance, scalability, 
availability and security, which influence the architecture of the 
system, are some times not adequately addressed. Performance of 
the application may not be looked at until there is a concern. There 
are several problems with this reactive approach. If the system 
does not meet its performance objectives, the application is 
unlikely to be accepted by the stakeholders. This paper suggests an 
approach for performance modeling for web based J2EE and .Net 
applications to address performance issues early in the 
development life cycle. It also includes a Performance Modeling 
Case Study, with Proof-of-Concept (PoC) and implementation 
details for .NET and J2EE platforms.  

 

Keywords—Performance Measures, Performance Modeling, 
Performance Testing, Resource Utilization, Response Time, 
Throughput. 

I. INTRODUCTION 
ERFORMANCE modeling is a structured and repeatable 
approach to model the performance of a software 

application. It begins during the early   phases of the 
application design and continues throughout the application 
life cycle [1]. Performance modeling allows evaluation of 
architecture/design before investing time and resources in 
full application development.  

The application performance objectives are specified in 
terms of Response Time, Throughput, CPU Utilization, 
Network I/O, Disk I/O and Memory Utilization. 

When performance models are created, application 
scenarios are identified with the required performance 
objectives for Response time, Throughput and Resource 
Utilization (CPU, Memory, Disk, and Network). 
Application scenarios can represent a business function such 
as registration, placing an order, transaction processing and 
asynchronous messaging.  

Performance Modeling enables predicting performance 
measures early in the lifecycle of the project. The obtained 
performance measures could help in refactoring 
architecture/design of the application and/or dealing with 
external factors to meet the desired performance objectives. 

II. BACKGROUND AND MOTIVATION 

This paper provides an approach to conduct performance 
modeling of an application much before it is fully built.  
 

Shankar Kambhampaty is a Principal Technical Architect with Satyam 
Computer Services, Hyderabad, AP India 500082 (phone:91-40-55237853 
fax: 91-40-23303071; e-mail: Shankar_Kambhampaty @ Satyam.com). 

Venkata Srinivas Modali is a Technical Architect with Satyam 
Computer Services, Hyderabad, AP India 500082 (phone: 91-40-55237200 
fax: 91-40-23303071; e-mail: Srinivas_MV@ Satyam.com). 

There are few research studies that have evaluated 
performance of applications and also best practices to 
achieve performance [1], [5], [9].These studies are 
complementary to this approach. 

Performance model provides a mechanism to uncover the 
performance related facts about an application. The benefits 
of performance modeling include the following [1]:  

• Evaluation of architecture/design tradeoffs early 
in the life cycle based on measurements  

• Performance becomes a feature of development 
process and not an afterthought  

A Proof-of–Concept (PoC) was developed to address the 
requirements of an application in the financial domain. The 
PoC was developed for both J2EE and .Net platforms. 
Performance modeling was done for PoCs developed on 
these platforms. The approach for performance modeling, 
the results obtained and the conclusions are being shared in 
this paper. 

III. PERFORMANCE MODELS 

Performance models can be grouped into two common 
categories:  Empirical models and Analytical models. 

Empirical models simulate the behaviour of the 
application. They measure the performance of the 
application by simulating virtual users. The main advantage 
of empirical models is they provide accurate results. This 
approach, however, requires significant effort with testing 
and data capture being done on several runs of the 
application [2]. This paper shares the results obtained using 
this approach. 

Analytical models capture key aspects of a computer 
system and relate them to each other by mathematical 
formulas and/or computational algorithms. Analytical 
models require input information such as workload intensity 
(e.g., arrival rate, number of clients and think time). Several 
queuing network based algorithms are used to arrive at 
approximate performance estimates in analytical models [2], 
[3]. 

A. Performance Testing 
Performance testing is the process of capturing 

performance measures by subjecting the application to 
specified set of conditions and input. For performance 
testing purposes, the application should be hosted on a 
hardware infrastructure that is representative of production 
environment. By observing the behavior of the application 
under simulated load conditions, it is necessary to determine 
whether the performance measures tend towards or away 
from the defined performance objectives [1]. 

P  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2383

The following are some of the performance measures that 
can be identified through Performance Testing: 

1) Response time 
2) Throughput  
3) Resource utilization (CPU, Memory, Network I/O,   
Disk I/O) 
Performance testing is usually carried out with controlled 

and parameterized workloads. A key concept in load testing 
is the notion of a virtual user [6].  

There are many tools that help simulate the load. These 
include Mercury LoadRunner, Compuware’s QA load, 
Rational Performance Tester, Microsoft Application Center 
Test (ACT) and Microsoft Web Application Stress tool.  

Performance testing with a tool can generate a system 
activity that mimics the behaviour of real users and reveals 
the problems they will encounter before the applications are 
released into production [8]. 

The performance testing tools can simulate load in terms 
of users, connections and capture data related to Response 
Time, Throughput and Resource utilization. 

There are organizations such as The System Performance 
Evaluation Corporation (SEPC) that offers benchmarks and 
develops standardized performance tests and publishes 
reviewed results [7]. 

IV. APPROACH FOR PERFORMANCE MODELING  

The approach for performance modeling follows a nine 
step process as given below: 

1) Evaluate Performance Risk   
2) Identify and Prioritize Critical Use Cases 
3) Identify Key Performance Scenarios for the Use 

Cases 
4) Define Performance Objectives 
5) Construct Proof-of-Concepts (PoCs)  
6) Conduct Performance Testing 
7) Determine and Evaluate Performance Model 
8) Refactor PoC 
9) Validate Performance Model 

 
1) Evaluate Performance Risk: The time and effort 

invested up front in performance modeling should be 
proportional to project risk. 

2) Identify and Prioritize Critical Use Cases: 
Application use cases for which performance is 
critical need to be identified. 

3) Identify Key Performance Scenarios for the Use 
cases: For the identified use cases, those scenarios 
that pose the most risk to performance objectives 
need to be identified. 

4) Define Performance Objectives: Define performance 
objectives for each of the key scenarios. Performance 
goals are stated in a simple and precise manner [3], 
such as: 
• The application throughput should be greater 

than 500 query transactions per second with at 

least 95% transactions responding in less then a 
2 sec 

• The server should be available 99.9% of the time 
during working hours 

• The Response Time of a medical information 
system should be less than 1sec 

• The server should provide an average response 
time of two seconds or less with 1000 concurrent 
users 

5) Construct Proof–of–Concept (PoC): Construct Proof-
of-concept that implements the architecture and 
design decisions meant to achieve the desired 
performance objectives.  

6) Conduct Performance Testing: The main goal of 
performance testing should be to identify how well 
the application performs against the performance 
objectives specified in step 4. 

7) Determine and Evaluate Performance Model: 
Evaluate the feasibility and effectiveness of the 
model. Review the performance objectives and 
consider the following questions [1]: 
• Does the model identify a resource hotspot? 
• Are there more efficient alternatives? 
• Can the Architecture/design be altered to meet 

the performance objectives? 
8) Refactor PoC: To refactor the PoC, consider the 

following actions: 
• Modification of the code of PoC 
• Modification of the Architecture/Design 

9)  Validate Performance Model:  The validation of 
model confirms that the architecture/design of PoC 
can be used for the full application development to 
achieve the performance objectives. 

Validate the model by measuring the performance of the 
use cases (actual results obtained by conducting the 
performance tests) and modifying the application until the 
performance objectives are met.  

V.  CASE STUDY 
Performance modeling was performed for a Proof –of-

Concept (PoC) that was developed for a Loan Management 
application in Financial Services domain for both J2EE and 
.NET platforms. 

The major features of the PoC, Loan Management System 
(LMS) consists of a Customer application and an Officer 
application. The Customer application enables the customer 
to register with the system, apply loans and view status of 
the loans. The Officer application enables the loan officer to 
approve or reject a loan and view status of loans. The major 
use cases are given below in Fig. 1.  
                                           



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2384

 
                    Fig. 1 Major Use Cases 

                                   

A.  .NET version of the PoC 
The .NET version of the PoC is discussed in this section. 

The architecture for the .NET version of the PoC is shown 
inFig. 2.      

             

 

 
                                          Fig. 2 Architecture of .NET version of PoC 

 
 

 

Customer

Officer

Register

Request Loan

View Loan Details

Approve Loan

Loan Maintenance



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2385

The user of the application uses the browser to access the 
Presentation Layer of application which implements the 
MVC design pattern with UIP block from Microsoft [4].  

The request for business functionality is passed to the 
Service Interface of the Business Layer. The Business Layer 
implements business processes for different modules. 

The Data Layer implements the DAAB block from 
Microsoft. The data access components in the Data Layer 
encapsulate the data sources from the Business Layer.  

Components and frameworks selected for .Net version of 
PoC are provided in Table I. 

 
TABLE I 

COMPONENTS AND FRAMEWORKS SELECTED FOR .NET VERSION OF POC 
Module Technology Options  
UI Component ASP.NET 
UI Process Component User Interface Process 

Block (UIP)  
Business Layer 
Implementation 

EDRA (Enterprise 
Development Reference 
Architecture) 

Data Access  Data Access Application 
Block (DAAB) 

UIP, EDRA and DAAB are three reusable frameworks for 
implementing functionality of Presentation, Business and 
Data Layers developed by Microsoft’s Patterns And 
Practices Group [4]. 

The application was developed in C#.NET running on 
Windows 2000 server and database is SQL Server 2000.  
The IIS web server, the C# business components and the 
database server were running on separate servers. These are 
represented as APP1, APP2 and DB Table III and Table IV 
respectively. 

 
 
 
 
 
 
 
 
 

B.  J2EE version of the PoC 
The J2EE version of the PoC is discussed in this section. The architecture for the J2EE version of the PoC is shown in 

 Fig. 3. 

 
Fig. 3 Architecture of J2EE version of PoC 

 
 

 
The user of the application uses the browser to access the 

application. The request from the browser passes, on (over 
HTTP) to the Presentation Layer which implements the 
MVC design pattern. The Presentation Layer is 
implemented with the Struts framework. 

The request for business functionality is passed to the 
Business Layer. The Business Layer implements business 
processes for different modules as Java Objects and 

Enterprise Java Beans (EJB). 
The Data Layer implements the Data Access Object 

(DAO) pattern.  The data access components encapsulate the 
data sources from the business layer.  

Components and frameworks selected for J2EE version of 
PoC are provided in Table II. 

 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2386

 
TABLE II 

COMPONENTS AND FRAMEWORKS SELECTED FOR J2EE VERSION OF POC 
Module Technology Options  
Presentation Layer  Struts  
Business layer  Plain old Java objects 

(POJO) Enterprise Java 
Beans (EJB) 

Data Access  Plain old Java objects 
(POJO) Enterprise Java 
Beans (EJB) 

 
The application is developed in Java running on Windows 

2000 server and database is Oracle 10g. The Web Server, 
Application Server and the Database were running on the 
same system. 

C.  Performance Modeling of PoCs for .NET and   J2EE 
Platforms 

Performance Modeling based on the nine step approach 
was conducted for the PoCs developed for .NET and J2EE 
platforms. It must be mentioned that the purpose of the 
exercise was to determine the Performance Models of the 
PoCs that were developed based on identified frameworks 
for the respective platforms. Benchmarking .NET and J2EE 
was not the objective of this exercise and hence the 
performance tests were not run on machines with exactly 
similar configuration and with same testing tools. The  
 

 
 

 
performance testing for .NET PoC was conducted using 
LoadRunner where as the performance testing for J2EE PoC 
was done using ACT.     

Step 1: Evaluate Performance Risk: Performance 
modeling is critical for this financial application as it a web 
based and distributed application. 

Step 2: Identify and Prioritize Critical Use Cases: The 
critical use cases considered were “Login” and 
“Registration”.  

Step 3: Identify Key Performance Scenarios for the Use 
cases: The key scenarios are those involving execution of 
the use cases by 300 Concurrent users. 

Step 4: Define Performance Objectives: The performance 
objective is to meet 2 second response time with 300 
Concurrent users. 

Step 5: Construct PoCs: The PoCs were constructed the 
architecture diagrams of which have been given in Fig. 2 
and Fig. 3. 

Step 6: Conduct Performance Testing: Performance tests 
were conducted, results were measured and the bottlenecks 
were identified. 

The performance objectives considered were 1) Response 
Time 2) Throughput 3) CPU Utilization 4) Disk Idle Time 

For .Net version of the PoC the performance testing was 
conducted using LoadRunner tool and the test results for 
Login and Registration use cases are provided in Table III 
and Table IV respectively.

TABLE III 
PERFORMANCE TESTING OF .NET POC 

Use case: Login 
 
Users 

 
Throughput 

Response 
time  

 
%CPU utilization  

 
%Disk Idle Time 

  
(Requests/sec) 

 
(sec) 

 
App1 

 
App2 

 
DB 

 
App1 

 
App2 

Data 
disk 

 
Log disk 

1 59.2 0.016 13.59% 12.07% 1.30% 98.36% 98.71% 99.99% 99.99% 
3 121.15 0.024 31.65% 29.99% 2.34% 98.06% 98.41% 99.99% 99.99% 
9 195.82 0.045 58.33% 55.11% 3.93% 97.79% 98.08% 99.99% 99.99% 
24 263.41 0.091 87.99% 82.51% 5.91% 97.09% 97.71% 99.99% 99.99% 
45 280.77 0.164 94.01% 88.27% 6.02% 97.18% 97.69% 99.99% 99.99% 
90 269.85 0.337 89.37% 83.96% 6.42% 97.14% 97.94% 99.99% 99.99% 
300 261.42 1.14 87.25% 81.36% 5.86% 97.57% 97.98% 99.99% 99.99% 

 
TABLE IV 

PERFORMANCE TESTING OF .NET POC 
Use case: Registration 
 
Users 

 
Throughput 

Response 
time  

 
%CPU utilization  

 
%Disk Idle Time 

  
(Requests/sec) 

 
(sec) 

 
App1 

 
App2 

 
DB 

 
App1 

 
App2 

Data 
disk 

 
Log disk 

1 38.22 0.026 12.20% 9.26% 1.94% 98.63% 98.66% 99.55% 66.50% 
3 41.59 0.072 13.54% 10.00% 2.60% 98.62% 98.76% 99.55% 63.03% 
9 91.09 0.099 37.32% 26.03% 5.33% 98.22% 98.55% 99.15% 37.68% 
24 134.63 0.181 61.99% 42.43% 7.86% 98.03% 98.32% 98.89% 47.29% 
45 150.17 0.304 74.26% 48.78% 9.07% 97.67% 98.30% 98.63% 48.90% 
90 143.66 0.627 70.74% 46.87% 9.13% 98.01% 98.35% 98.82% 57.93% 
300 145.57 2.01 68.83% 48.51% 8.83% 97.98% 98.29% 98.79% 57.60% 

  
               Note: App1 = Web Server deployed on Intel machine, 1 GB RAM, Dual processor 2.7 GHZ 

      App2 = App Server deployed on Intel machine, 1 GB RAM, Dual processor 2.7 GHZ 
      DB=DB Server deployed on Intel machine, 1 GB RAM, Dual processor 2.7 GHZ 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2387

The following are the observed performance results: 
1. For read-intensive operations, Web server CPU 

utilization peaked at 94% and App server CPU 
utilization peaked at 88%. 

2. For write-intensive operations, Web server CPU 
utilization peaked at 74% and App server CPU 
utilization peaked at 48%. 

3. None of the resources were 100% utilized 
indicating a possible network bandwidth, thread 
pool or locking issues. 

For J2EE version of the PoC the performance testing was 
conducted using Microsoft Application Center Test (ACT) 
and the test results for Login and Registration use cases are 
provided in Table V and Table VI respectively. 

 
 
 

 
TABLE V 

PERFORMANCE TESTING OF J2EE  POC 
Use case: Login 
 
 
Users 

 
 
Throughput 

 
 
Response Time  

 
 
%CPU Utilization  

 
 
%Disk Mean Idle Time 

  
(Requests/sec) 

 
(sec) 

    
 Application 

 

1   55 0.006 21% 81% 
3   93 0.013 52% 79% 
9 144 0.030 63% 78% 
24 176  0.081 84% 82% 
45 183  0.158 92% 78% 
90 166  0.317 85% 57% 
300 149 0.926 83% 76% 

 
  TABLE VI  

PERFORMANCE TESTING OF J2EE  POC 
Use case: Registration 
 
 
Users 

 
 
Throughput 

 
 
Response Time  

 
 
%CPU Utilization  

 
 
%Disk Mean Idle Time 

  
(Requests/sec) 

 
(sec) 

      
Application 

 

1 
 
26 0.030 25% 57% 

3 55 0.037 33% 57% 
9 59 0.111 56% 62% 
24 62 0.423 97% 58% 
45 75 0.703 80% 58% 
90 64 0.987 66% 57% 
300 67 3.365 88% 53% 
      
  Note: The J2EE PoC was deployed on Intel machine, 2 GB RAM, Dual processor 2.4 GHZ 
 

 
The following are the observed performance results: 

1. For read-intensive operations, CPU utilization 
peaked at 92%. 

2. For write-intensive operations, Web server CPU 
utilization peaked at 97%.  

3. The results obtained indicated that the 
limitations were network bandwidth and queue 
length issues. 

 
Step 7: Determine and Evaluate Performance Model: The 

Performance models were evaluated for PoCs on .NET and 
J2EE platforms and found to satisfy the given performance 
objectives. The results indicated that the limitations were 
network bandwidth and queue length issues, which are 
external to the application. As there was no problem with 
the application, the refactoring of the application was not 
necessary. 

VI.  REALIZED BENEFITS 

The Performance Modeling has provided insights into the 
suitability of the architecture/design and implementation 
frameworks in achieving the performance objectives of the 
application.   This performance modeling approach has also 
helped in identification of bottlenecks. It is possible to come 
up with strategies to overcome the bottlenecks and also 
predict the performance for the fully built application.  Any 
rework due to architecture/design and implementation 
defects on account of shortcomings in addressing 
performance requirements is eliminated on account of this 
approach.  

VII.  CONCLUSION 
Performance modeling in the early stages of application 

development helps to expose key issues in architecture, 
design and implementation and provides pointers to trade-



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2388

offs that may need to be made to achieve the performance 
objectives. An approach involving identification of key use 
cases, key scenarios and capture of performance measures 
such as Response Time, Throughput and Resource 
utilization has been discussed in this paper. 

 

REFERENCES 
[1] Microsoft, Improving .Net Application Performance and    Scalability. 

Patterns and Practices, Microsoft Corporation ISBN 0-7356-1851-8. 
[2] S. Kounev and A. Buchmann, “Performance Modeling and Evaluation 

of Large-Scale J2EE Applications”, in Proc. 2003 Computer 
Measurement Group conference (CMG-2003), Dallas, Texas, 
December 7-12, 2003. 

[3] D. A. Menascé, V.  A. F. Almeida, L. W.  Dowdy, Performance by 
Design: Computer Capacity Planning by Example. Prentice Hall, 
2004, ISBN 0-13-090673-5.  

[4] Microsoft’s Patterns and Practices Group, Available : 
          http://msdn.microsoft.com/practices/ 
[5]  C. U. Smith and L. G. Williams, Performance Solutions: A Practical 

Guide to Creating Responsive, Scalable Software, Addision-Wesley. 
[6] D. A. Menascé, “Load Testing, Benchmarking, and Application 

Performance Management for the Web,” in Proc. 2002 Computer 
Management Group Conference, pp., 271-281, Reno, Nevada, 
December 2002.    

[7] System Performance Evaluation Corporation, Available: 
http://www.spec.org/ 

[8]  J. Shaw “Web Application Performance testing — a Case Study of an 
On-line Learning Application,” BT Technology Journal, vol.18, no 2, 
April 2000. 

[9] C. U. Smith, L. G. Williams, “Best Practices for Software 
Performance Engineering”, in Proc. CMG,  Dallas, Dec. 2003. 

 
 

 

 

Shankar Kambhampaty obtained a 
Master’s degree in Electrical Engineering from 
Indian Institute of Technology, Kanpur, India in 
1989.   

He heads the Technology Architecture Group 
in Satyam Computer Services Limited, India and 
has been involved for 16 years in architecture, 
design, development and management for a 
number of software projects, USA, UK, 
Singapore, Australia and India. 
 

 

Venkata Srinivas Modali obtained a 
Master’s degree in Digital Systems and 
Computer Electronics from Jawaharlal Nehru 
Technological   University, Hyderabad, India in 
1995. 

He works with the Technology Architecture 
Group in Satyam Computer Services Limited, 
India. His areas of interest include Software 
Architectures and Performance Engineering. 
 
 
 
 


