
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3435

Abstract—Cryptographic algorithms play a crucial role in the

information society by providing protection from unauthorized
access to sensitive data. It is clear that information technology will
become increasingly pervasive, Hence we can expect the emergence
of ubiquitous or pervasive computing, ambient intelligence. These
new environments and applications will present new security
challenges, and there is no doubt that cryptographic algorithms and
protocols will form a part of the solution. The efficiency of a public
key cryptosystem is mainly measured in computational overheads,
key size and bandwidth. In particular the RSA algorithm is used in
many applications for providing the security. Although the security
of RSA is beyond doubt, the evolution in computing power has
caused a growth in the necessary key length. The fact that most chips
on smart cards can’t process key extending 1024 bit shows that there
is need for alternative. NTRU is such an alternative and it is a
collection of mathematical algorithm based on manipulating lists of
very small integers and polynomials. This allows NTRU to high
speeds with the use of minimal computing power. NTRU (Nth degree
Truncated Polynomial Ring Unit) is the first secure public key
cryptosystem not based on factorization or discrete logarithm
problem. This means that given sufficient computational resources
and time, an adversary, should not be able to break the key. The
multi-party communication and requirement of optimal resource
utilization necessitated the need for the present day demand of
applications that need security enforcement technique .and can be
enhanced with high-end computing. This has promoted us to develop
high-performance NTRU schemes using approaches such as the use
of high-end computing hardware. Peer-to-peer (P2P) or enterprise
grids are proven as one of the approaches for developing high-end
computing systems. By utilizing them one can improve the
performance of NTRU through parallel execution. In this paper we
propose and develop an application for NTRU using enterprise grid
middleware called Alchemi. An analysis and comparison of its
performance for various text files is presented.

Keywords—Alchemi, GridNtru, Ntru, PKCS.

I. INTRODUCTION
TRU is latest in the line of PKCS[2]. It is relatively new
and was conceived by Jeffrey Hoffstein, Jill Pipher and

Joseph Silvermann. NTRU uses polynomial algebra
combined with clustering principle based on
elementary mathematical theory. The security of NTRU

Manuscript received on September 30, 2007. This work is supported by

The Department of Computer Science, Berhampur University as a part of
research study.

Narasimham Challa, Associate Professor, is with MVGR College of
Engineering, A.P., India (e-mail: narasimham_c@yahoo.com)

Jayaram Pradhan, Professor, is with Berhampur University, India (e-mail:
jayarampradhan@hotmail.com).

comes from the interaction of polynomial mixing system with
the independents of reduction modulo of two relatively prime
numbers. NTRUEncrypt [4] employs certain rings of
polynomials with convolution multiplication. It relies on the
presumed difficulty of factoring certain polynomials in such
rings into a quotient of two polynomials having very small
coefficients. The Basic Collection of objects used by the
NTRU PKCS is the ring R that consists of all truncated
polynomials of degree N-1 having integer coefficients like a =
a0 + a1X + a2X2 + a3X3 + . . . + aN-2XN-2 + aN-1XN-1.
Polynomials are added in the usual way, they are also
multiplied more or less as usual. A full implementation of
NTRU PKCS is specified by a number of parameters. N the
polynomials in the truncated polynomial ring having degree
N-1. q - large modulus: usually, the coefficients of the
truncated polynomials will be reduced mod q, except the
power XN should be replaced by 1, the power XN+1 should be
replaced by X, the power XN+2 should be replaced by X2, and
so on. p-small modulus as the final step in decryption, the
coefficients of the message are reduced mod p. A grid [7] can
be viewed as an aggregation of multiple machines each with
one or more CPUs are abstracted to behave as one virtual
machine with multiple CPUs. Security, uniform access,
resource allocation, scheduling and network management are
the challenges before grid architecture. Grid can be realized
by the integration of individual software and hardware
components into a combined network resource. However grid
implementations differ in the way they implement the
abstraction. A grid is a collection of machines sometimes
referred to as nodes, resources, members, donors, clients,
hosts, engines and many other such terms. They all contribute
any combination of resources to the grid as a whole. Some
resources may be used by all users of the grid while others
may have specific restrictions. The common resources used in
a grid are computing cycles provided by the processors,
storage, and communications. Traditional grid
implementations have only offered a high-level abstraction of
the virtual machine where the smallest unit of parallel
execution is a process. The specification of a job to be
executed on the grid at the most basic level consists of input
files, output files and an executable files. In this scenario,
writing software to run on a grid involves dealing with files,
an approach that can be complicated and inflexible. On the
other hand, the primary programming model supported by
Alchemi[6][7] an enterprise grid offers a more low-level
(hence powerful) abstraction of the underlying grid by
providing multithreaded programming. The smallest unit of
parallel execution in this case is a grid thread that is

GridNtru: High Performance PKCS
Narasimham Challa, and Jayaram Pradhan

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3436

programmatically analogous to a normal thread without inter-
thread communication.

With this knowledge, we consider the NTRU
implementation in two different environments one is normal
NTRU and the second one is GridNtru i.e., high performance
NTRU with enterprise grid. There is no doubt that any of the
methods implemented with grid computing will show better
results. But, our study is mainly focused on the design and
implementation of NTRU with high performance computing
(GridNtru) ,comparing the performance characteristics with
NTRU. In the later sections we described the design of
GridNtru, NTRU key generation, encryption and decryption
methods implemented in two environments.

II. GRIDNTRU DESIGN
The architecture of GridNtru is shown in Fig. 1. The .Net

application interacts with Alchemi to enhance the NTRU
performance. In this application we have developed three
main classes. The first class GridNtruForm is the interface to
control and monitor the progress of key creation, encryption,
decryption and connection with Alchemi manager. The second
class ConfigurationForm is the form that can be used to
configure the number of threads to be submitted and specify
the location of the Alchemi manager. The last class
GridNtrutThread is the thread class that is run under Alchemi
and it uses the algorithm classes.

Fig. 1 GridNtru Architecture

Fig. 2 GridNtru process flow diagram

The effect of this parallelization method is that we have to
find a way to divide the files into several blocks so that the
process can be done in parallel on each block of data. We
divide the file into several blocks based on the configuration
form. All the algorithms will be performed in a parallel
manner. After the threads return with the result, finally
GridNtru returns the result and time.submit your manuscript
electronically for review as e-mail attachments.

III. KEY GENERATION
Person B wants to create a public and private key pair for

the NTRU Public Key Cryptosystem. B first randomly
chooses two small polynomials f and g in the ring of truncated
polynomials R. A small polynomial is a small relative to a
random polynomial mod q. In a random polynomial, the
coefficients will in general be randomly distributed mod q. In
a small polynomial, the coefficients are much smaller than q.
B must keep the values of the polynomials f and g private,
since anyone who knows the value of either one of them will
be able to decrypt messages sent to B. B’s next step is to
compute the inverse of f modulo q and the inverse of f modulo
p. Thus B computes polynomials fq and fp with the property
that f*fq = 1 (modulo q) and f*fp = 1 (modulo p). If
by some chance these inverses do not exist, B will need to go
back and choose another f. For information about computing
inverses in the ring of truncated polynomials, B computes the
product h = p* fq*g (modulo q). B's private key is the pair of
polynomials f and fp. B's public key is the polynomial h. The
CreateKey function is shown in the algorithm. Creating the
inverse polynomial of the secret key modulo q i.e., fq.
Creating the inverse polynomial of the secret key modulo p
i.e., fp. Creating the Public Key h = p * ((fq)*g) mod q. Also
the algorithm assumes q = 2 w so the reduction is performed
by extracting the lower w bits. The CreateKey function is
implemented in two environments, normal NTRU and
GridNtru, the performance results of these two
implementations are summarized as follows:

 TABLE I

KEY GENERATION TIMINGS

Text
size GridNtru(s) NTRU without Grid(s)

128 b 0.00000 0.00001
256 b 0.00000 0.000012

512b 0.00001 0.00010
1K 0.00002 0.00021
2K 0.00005 0.00045
5K 0.00014 0.00102
10K 0.0002 0.0020

IV. ENCRYPTION
Person A wants to send a message to B using B's public key

h. A first puts the message m in the form of a polynomial
whose coefficients are chosen modulo p, say between -p/2 and
p/2 (in other words, m is a small polynomial mod q). Next A
randomly chooses another small polynomial r. This is the
blinding value, which is used to obscure the message .A uses
the message m, randomly chosen polynomial r, and B's public
key h to compute the polynomial e = r*h + m (modulo q).The

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3437

polynomial e is the encrypted message which A sends to B.
The Encode function describes the encrypted message e = (h *
r) +m mod q. This is accomplished by 1.Performing the
polynomial multiplication of h * r. 2. Adding the message m
and again the modulo reduction will be performed by
extracting the lower w bits. The encryption method of NTRU
is implemented in normal environment and GridNtru
environment, the computational running times are shown
below.

TABLE II

ENCRYPTION TIMINGS

Text
size GridNtru(s) NTRU without Grid(s)

128 b 0.000000 0.000001
256 b 0.000000 0.0000012

512b 0.00027 0.05494
1K 0.00050 0.1098
2K 0.00102 0.2747
5K 0.0032 0.6593
10K 0.0067 1.3186

V. DECRYPTION
The person B has received A’s encrypted message e and

wants to decrypt it. B begins by using the private polynomial f
to compute the polynomial a = f * e (mod q). Since B is
computing a mod q, B can choose the coefficients of a to lie in
an interval of length q. The specific interval depends on the
form of the small polynomials. It is very important that B does
this before performing the next step. B then computes the
polynomial b = a mod p. Finally B uses the other private
polynomial fp to compute c = fp * b(mod p). The polynomial
c will be the A’s original message m. The decryption
procedure is executed by the following three steps.Performing
the polynomial multiplication of a = f * e (mod q). Shifting the
coefficients of the range (-q/2, q/2). Performing the
polynomial multiplication of c = a * fp (mod p). The
decryption method of NTRU is implemented under normal
environment and GridNtru environment, the computational
running times are depicted as below:

TABLE III

DECRYPTION TIMINGS

Text
size GridNtru(s) NTRU without Grid(s)

128 b 0.000000 0.000001
256 b 0.000001 0.05492

512b 0.00005 0.0549
1K 0.00005 0.0549
2K 0.0001 0.0549
5K 0.0003 0.164
10K 0.001 0.361

VI. OBSERVATIONS

A. Key Generation
The key generation experiments were conducted on text

files of various sizes like 128 bits, 256 bits, 512 bits, 1K, 2K,
5K and 10K under normal environment and GridNtru
environment. The performance results of these experiments

are shown in figure. According to the figure, we can
understand that for small amount of data these results are not
that much significant, where as for large amount of data it
shows significant difference. One can understand that better
performance is possible, if it is implemented under GridNtru
environment.

Fig. 3 Key generation performance comparison of NTRU and

GridNtru

B. Encryption
The encryption experiments were conducted on text files of

various sizes like 128 bits, 256 bits, 512 bits, 1K, 2K, 5K and
10K under normal and GridNtru environment. The
performance results of these experiments are shown in figure.
According to the figure, we can understand that for small
amount of data these results are not that much significant,
where as for large amount of data it shows significant
difference. One can understand that better performance is
possible, if it is implemented under GridNtru environment.

Fig. 4 Encryption performance comparison of NTRU and GridNtru

C. Decryption
The decode experiments were conducted on text files of

various sizes like 128 bits , 256 bits, 512 bits, 1K, 2K, 5K and
10K under normal environment and GridNtru environment .
The performance results of these experiments are shown in
figure. According to the figure, we can understand that for
small amount of data these results are not that much
significant, where as for large amount of data it shows
significant difference. One can understand that better
performance is possible, if it is implemented under GridNtru
environment.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3438

Fig. 5 Decryption performance comparison of NTRU and GridNtru

REFERENCES
[1] Whitefield Diffie, Martin E Hellman “New directions in Cryptography

“IEEE Information theory, June 23-25, 1975.
[2] Joffrey Hoff stein, Jill Pipher, Joseph H Silverman “NTRU – A ring

based public key cryptosystem”.
[3] Joffrey Hoffstein, Joseph H Silverman “Optimizations for

NTRU”.
[4] Collen Marie O’ Rourke “ Efficient NTRU

implementations”.
[5] Wikipedia , the free encyclopedia “ NTRU Cryptosystems

Inc.,”.
[6] Agus Setiawan, David A, Julius Liman, Akshay Luther, and Rajkumar

Buyya “Grid Crypt: High performance symmetric key cryptography
using enterprise grids”.

[7] Akshay Luther, Rajkumar Buyya, Rajib Ranjan and Srikumar
Venugopal “ Alchemi : A .Net based desktop Grid computing
framework”.

Narasimham Challa was born in Andhra Pradesh of India in the year 1965.
He received his Master of Computer Applications Degree from Andhra
University College of Engineering, India in the year 1998, and received his M.
Tech Degree in Information Technology in the year 2003 from Punjabi
University, Patiala, India. Major field of study is network security and
cryptography.
 He has an experience of 14 years in teaching and about 18 months in
software industry as software engineer. Presently, he is working as an
Associate Professor in the Dept. of Computer Science and Engineering in
MVGR College of Engineering, Vizianagaram, India. He has published a
paper with an international journal IJCSNS and published & presented six
papers in various national/international conferences.

Jayaram Pradhan was born in Orissa of India in the year 1959.He completed
his Ph.D in Computer Science from Regional Engineering College (Currently
it is familiar by the name of National Institute of Technology) Rourkela, India.
His research areas include Network Security, Cryptography and Design and
Analysis of Algorithms.

He is presently working as Professor in the Department of Computer
Science, Berhampur University, Berhampur, India. He has an experience of
about 22 years in teaching and 25 years in research. To his credit, he
published many papers in national/international journals and conferences. He
was the founder Head of the Department of Computer Science in Berhampur
University.

