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A Hyperbolic Characterization of Projective
Klingenberg Planes

Basri Çelik

Abstract—In this paper, the notion of Hyperbolic Klingenberg
plane is introduced via a set of axioms like as Affine Klingenberg
planes and Projective Klingenberg planes. Models of such planes are
constructed by deleting a certain number m of equivalence classes
of lines from a Projective Klingenberg plane. In the finite case, an
upper bound for m is established and some combinatoric properties
are investigated.
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I. INTRODUCTION

When one mentions the plane geometries, it reminds of
affine planes, projective planes and hyperbolic planes. The
property that differs these planes from others is given by the
relation of being parallel on the set of lines.

In affine planes, only one parallel line can be drawn to a
line from a point not lying on this given line (Euclid’s famous
5th postulate, [8]). In projective planes all lines intersect, that
is we cannot mention of parallel lines. In hyperbolic planes,
exactly k parallel lines (k ≥ 2) to a given line from a point
not lying on this given line. In literature, there is a lot of work
on these planes.

Geometrical structures which are more general then affine
and projective planes are obtained by taking a class of points
instead of a point; a class of lines instead of a line and by
reorganising the incidence relation [1].

For affine planes, this generalisation can be found in [3], and
for projective planes, in [2]. There is no such generalisation
in literature for hyperbolic planes. Our main aim in this work
is to give such a generalisation for hyperbolic planes and to
present this generalisation as a system of axioms.

In this paper incidence structures are defined as in [5] and
blocks are called lines. For any point P , (P ) denotes the set
of lines incident with the point P , [P ] the cardinality of (P ),
and [P ,Q] the number of lines joining P and Q. (l), [l], and
[l,d] are defined dually.

A Projective Klingenberg plane (PK-plane) is an incidence
structure K = (P,L, I) together with an equivalence relation
o on P and L (called neighbour relation, and the equivalence
class of P (resp. l) is denoted by < P > (resp. < l >)) such
that

(PK1) PøQ =⇒ [P, Q] = 1,∀P ,Q ∈ P
(PK2) lød =⇒ [l, d] = 1,∀l, d ∈ L
(PK3) There exists a projective plane K∗ (the canonical

image of K) and an incidence structure epimorphism
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ϕ : K −→ K∗ such that

PoQ ⇐⇒ ϕ(P ) = ϕ(Q),∀P, Q ∈ P
lod ⇐⇒ ϕ(l) = ϕ(d),∀l, d ∈ L

Axiom (PK3) is equivalent to
(PK3)’Putting < P > I < l > iff there are Q, d with QoP ,

dol and QId, the equivalence classes with respect to
this incidence an ordinary projective plane K∗.

In the above definition ø means “non-neighbouring”, and
PK-planes are denoted by K = (P,L, I, o).

A point P is said to be near a line l and this is denoted
by Pol whenever PoQ for some QIl. For any element x of
K, we denote the neighbour class of x by x-class. Detailed
information about PK-planes can be found in [2], [4].

One can easily show the following lemma.

Lemma 1.1: Let K = (P,L, I, o) be a PK-plane. Then
(i) Pol ⇐⇒ ∃h ∈ L, such that hol, and PIh
(ii) hod ⇐⇒ ∃HiIh, ∃DiId 	 HioDi, H1øH2,

D1øD2, h, d ∈ L, Hi, Di ∈ P, i = 1, 2.
(iii) “P1 ∈ P, l1, l2 ∈ L, P1Il1, l1ol2”

=⇒ ∃P2 	 P2Il2, P1oP2.

When |P ∪ L| is finite, the geometric structure is called
finite. Now, we state a theorem for finite regular PK-planes
which can be found in [10]. The original proof of this theorem
for Hjelmslev Planes is due to Kleinfeld [12]. Drake and Lenz
[6] observed that this proof remains valid for PK-planes:

Theorem 1.1: Let K = (P,L, I, o)be a PK-plane. Then
there are natural numbers t and r which are called the
parameters of K, with

(i) | < P > | = | < l > | = t2,∀P ∈ P, l ∈ L
(ii) |(P )∩ < l > | = |(l)∩ < P > | = t, ∀PIl
(iii) Let r be the order of projective plane K∗. If t �= 1,

we have r ≤ t (then K is called proper and we have
t = 1 iff K is an ordinary projective plane).

(iv) [P ] = [l] = t(r + 1), ∀P ∈ P,∀l ∈ L
(v) |P| = |L| = t2(r2 + r + 1).

II. HYPERBOLIC KLINGENBERG PLANES

A projective or affine Klingenberg plane (PK-, AK-plane) is
a generalization of ordinary projective plane where two points
may also be multiply joined or not joined at all (see[3]). Now
we can give a definition for Hyperbolic-Klingenberg plane
(HK-plane) and it is given as a generalization of an ordinary
projective plane, too.
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A hyperbolic plane is a geometric structure such that
(A1) There are at least two points on each line.
(A2) Two distinct points lie on one and only one line.
(A3) There exist at least four points, no three of which are

collinear.
(A4) Through each point X not on a line l there pass at

least two lines not meeting (parallel to) l.
(A5) If a subset S of the points contains all points on

the lines through pairs of distinct points of S , then
the subset S contains all points of the geometric
structure.(see [7],[9],[11],[13]).

A Hyperbolic Klingenberg plane (HK-plane) H is a system
(P,L, I, ‖, o), where (P,L, I) is an incidence structure and o
is an equivalence relation on P∪L (called neighbouring) such
that no element of P (point) is neighbour to any element of L
(line), ‖ is an equivalence relation on L (called parallelism)
and H satisfies the following axioms for all P, Q ∈ P and
g, h ∈ L:

(HK1) PøQ =⇒ [P, Q] = 1,∀P, Q ∈ P
(HK2) l ∈ L =⇒ ∃PIl, QIl, PøQ
(HK3) There exists at least four pairwise non-neighbour

points, no three of which are collinear.
(HK4) For each point-line pair (P, l), Pøl there are at least

two non-neigh-bouring lines through P parallel to l.
(HK5) There exists an hyperbolic plane H∗ = (P∗,L∗, I∗)

and an incidence structure epimorphism

ϕ : H −→ H∗

such that

PoQ ⇐⇒ ϕ(P ) = ϕ(Q),∀P,Q ∈ P
lod ⇐⇒ ϕ(l) = ϕ(d),∀l, d ∈ L

and if [g, h] = 0 then ϕ(g)‖ϕ(h).

Various models for hyperbolic planes such as Poincare
models (see [9]), Sandler’s models (see [13]) and the extension
of Sandler’s models (see [11]) have been developed. It is
well known that if a line is deleted from a projective plane
then the remaining substructure forms an affine plane. Graves
[7], Kaya-Özcan [11] and Sandler [13] have given examples
of hyperbolic planes obtained by deletion from projective
planes. Sandler had shown that if three non-concurrent lines
are deleted from a projective plane then the remaining structure
forms a hyperbolic plane in the sense of Graves [7]. Kaya-
Özcan [11] has extended Sandler’s construction and showed
that if m lines no three of which are concurrent are deleted
from a projective plane then the remaining structure forms
an hyperbolic plane. If K is a PK-plane and l is a line, by
deleting all lines neighbour to l and all points near to l, the
remaining structure forms an affine-Klingenberg plane. Now
we will adopt the method of [11] to obtain an HK-plane from
a PK-plane.

Let K = (P,L, I, o) be an infinite PK-plane and li ∈ L,
i = 1, 2, ...,m denote pairwise non-neighbour lines such that
no three of them are concurrent, Km = (Pm,Lm, I, o) be
substructure obtained from K removing all lines li, together

with the points which are near to li, for i = 1, 2, ..m, and
m ≥ 3 is any natural number. In symbols

Pm = {P ∈ P |PøQ, Qoli, i = 1, 2, ..., m}
Lm = L\{d ∈ L |∃i, doli, i = 1, 2, ..., m}
In this paper we accept in any substructure Km, parallelism

is defined with

“l1‖l2” :⇐⇒: “l1 and l2 intersect on removed points.”

Lemma 2.1: If K is infinite, then for any substructure Km

of K ,

(i) K∗
m = ϕ (Km) is a hyperbolic plane.

(ii) There are at least two pairwise non-neighbour points
on each line.

(iii) There exists at least four pairwise non-neighbour
points, no three of which are collinear.

(iv) If ∃i such that doli then d is a removed line.

Proof: The lines ϕ(li) = l∗i , i = 1, 2, ..., m form a set
of m lines such that no three of them are concurrent in the
projective plane K∗. Since the lines li are removed from K
together with points near li, the lines ϕ(li) = l∗i are removed
from K∗ together with their points. We denote the remaining
substructure by K∗

m. It is easy to show that K∗
m is forms a

hyperbolic plane (This is shown in [11] for finite structure
under some assumptations).

Together with (i) and Lemma 1.1, (ii), (iii) and (iv) are
obtained easily.

Theorem 2.1: If K is any infinite PK-plane then Km is an
HK-plane.

Proof: (HK2), (HK3) and (HK5) are obtained from
Lemma 2.1. (HK1) is obtained from (PK1). Since at least
three pairwise non-neighbour points are removed from each
line in K, there exist at least three pairwise non-neighbour
lines which are through a point P and parallel to l if Pøl.

III. FINITE HK-PLANES

Let K be a finite PK plane with parameters t, r in the sense
of Theorem 1.1. Then there are r + 1 pairwise non-neighbour
points on each line of K. Let Kr

m be a substructure such
that m ≤ r + 2 which is obtained by removing the pairwise
non-neighbour lines li, i = 1, 2, ..., m no three of which are
concurrent together with the points near li. Since no three of
the pairwise non-neighbour lines li are concurrent, any m− 1
of them intersect the remaining removed lines at pairwise non-
neighbour points in K and therefore m−1 ≤ r+1 which gives
the restriction m ≤ r + 2. The following lemma, which gives
the basic combinatorical properties of Kr

m, can be shown by
easy computations:

Lemma 3.1: Following properties are valid in any structure
Kr

m, m ≤ r + 2:

(i) Two non-neighbour points of Kr
m are on exactly one

line.
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(ii) Through each point of Kr
m there pass exactly

t(r + 1)

lines and there pass exactly

r + 1

pairwise non-neighbour lines of Kr
m.

(iii) There are exactly

t2(r2 + r + 1 − m)

lines and there are exactly

r2 + r + 1 − m

pairwise non-neighbour lines in Kr
m.

(iv) There are exactly

t2r2 +
t2

2
(m − 1)(m − 2r − 2)

points and there are exactly

r2 +
1
2

(m − 1) (m − 2r − 2)

pairwise non-neighbour points in Kr
m.

A point of K is called a corner point if it is an intersection
point of any two non-neighbour lines in the set of removed
lines. A point of K∗ as a point class is called a proper corner
point if it is an intersection class of any two non-neighbour
lines in the set of removed lines from K.

It is trivial that any corner point-class corresponds to a
proper corner point under ϕ.

Lemma 3.2: Any line class (or any line) of Kr
m contains at

most m
2 or m−1

2 pairwise non-neighbour corner points in K,
according to m is even or odd, respectively.

Proof: Let l be a line of Kr∗
m and assume that it contains

s proper corner points in K∗. For each proper corner point,
there exist exactly two removed non-neighbour lines of K on
that point by the definition of proper corner point. Since no
three of the removed non-neighbour lines are concurrent, there
exist exactly 2s distinct lines with this property. Then 2s ≤ m
because the total number of such lines is m. Furthermore, if
m is an odd number clearly 2s ≤ m implies 2s ≤ m − 1.
Then proof is completed by considering the property that any
corner point-class corresponds to proper corner point under ϕ
which is given just before Lemma 3.2.

The following corollaries are immediate:

Corollary 3.1: Any line class of Kr
m contains at most

t2
m

2
or

t2
m − 1

2
corner points in K , according to m is even or odd, respec-
tively.

Corollary 3.2: Any line class of Kr
m passing through s non-

neighbour corner points in K, has exactly

t2(r + 1 + s − m)

points in Kr
m. Any line of Kr

m has exactly

r + 1 + s − m

pairwise non-neighbour points.

Now we state a lemma which can be proved easily by using
Lemma 3.2.

Lemma 3.3: If any line of Kr
m considered as a line of K

contains s corner points then the number of deleted pairwise
non-neighbour points from this line is m− s and m− s ≥ m

2
if m is even, m − s ≥ m+1

2 if m is odd.

Corollary 3.3: Let n denote the minimum number of pair-
wise non-neighbour corner point on a line class of Kr

m, and k
denote the number of pairwise non-neighbour points on a line
in Kr

m. Then

r + 1 + n − m ≤ k ≤ r − 1
2
(m − 2)

if m is even and

r + 1 + n − m ≤ k ≤ r − 1
2
(m − 1)

if m is odd.

Proof: Let l be a line of Kr
m. l considered as a line of

K has at least n pairwise non-neighbour corner points and
therefore it intersects at least m − n pairwise non-neighbour
removed line at pairwise non-neighbour points in K . But all of
these points of intersection are deleted and therefore l contains
at least

r + 1 − (m − n)

pairwise non-neighbour points in Kr
m. We have

r + 1 − m + n ≤ k

since at most m − n pairwise non-neighbour points can be
deleted from a line. On the other hand if l , considered as a
line of K contains s pairwise non-neighbour corner points then
the number of pairwise non-neighbour points deleted from l
is m − s. But in the case where m is an even number

m − s ≥ m

2
by Lemma 3.3. Hence the number of pairwise non-neighbour
points on l in Kr

m is less than r + 1 − m
2 , that is,

k ≤ r + 1 − m

2
= r − m − 2

2
. Similarly, if m is an odd number, then

m − s ≥ m + 1
2

by Lemma 3.3. Consequently

k ≤ r + 1 − m + 1
2

= r − m − 1
2

.
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Proposition 3.1: Let n be the minimum number of pairwise
non-neighbour corner point on a line of Kr

m. If

3 ≤ m ≤ r + n +
1
2
(1 −√

4r + 5)

then Kr
m is a HK-plane.

Proof: (HK1) is obvious since PK1. A line of Kr
m

contains at least
r + 1 + n − m

pairwise non-neighbour points by Corollary 3.3. Therefore
(HK2) is satisfied iff

r + 1 + n − m ≥ 2

i.e.

r ≥ m − n + 1

which is clearly valid since

r ≥ m − n − 1
2
(1 −√

4r + 5)

≥ m − n − 1
2
(1 −

√
13) > m − n + 1

by the hypothesis (since r is the order of some projective
plane; r ≥ 2). (HK3) is trivially satisfied, since there exists two
non-neighbour, non-intersecting lines in Kr

m each of which
contains at least two non-neighbour points. For a proof of
(HK4) let l be a line of Kr

m and P be a point Pøl. The
number m − s in the Lemma 3.3 is also the number of non-
neighbour lines passing through P and not meeting l. Hence
there exists at least m

2 or m+1
2 such lines according to as m

is even or odd, respectively. Therefore (HK4) is satisfied iff
m ≥ 3. If we take ϕ = ϕ|Kr

m
then we must only show that

Kr∗
m is a hyperbolic plane. In [9] it is shown that, if

3 ≤ m ≤ r + n +
1
2
(1 −√

4r + 5)

then Kr∗
m is hyperbolic plane.

IV. SOME COMBINATORIC PROPERTIES OF Kr
m

Let l be a line of Kr
m and P a point not on l . If l

contains s non-neighbouring corner points then there axists
m− s non-neighbour lines parallel to l and passing thorough
P . Then from Lemma 3.5 there exist at most m − s and at
least m

2 or m+1
2 pairwise non-neighbour lines parallel to l and

passing through P according to m is even or odd, respectively.
Therefore the number of non-neighbour lines passing thorough
P and parallel to l is independent of the choice of P but choice
of l .

The lines of Kr
m can be classified according to the number

of non-neighbour points. Let Cs denote the set of all lines
of Kr

m such that each line of it contains exactly s non-
neighbour corner points. Then, from the Corollary 3.2 Cs

contains exactly
r + s − m + 1

non-neighbour points and therefore it contains exactly

t2(r + s − m + 1)

points. Thus from the Lemma 3.2, there exist

1
2
m − k + 1

or
1
2
(m + 1) − k

line classes in Kr
m which are

Ck, Ck+1, · · · , Cm
2

or
Ck, Ck+1, · · · , C k−1

2

according to m is even or odd, respectively.

Lemma 4.1: Number of the non-neighbour lines of Kr
m

parallel to a line l in the class Cs is m(r − 1) − rs.

Proof: Since l ∈ Cs contains r + 1 − (m − s) non-
neighbour points and except l, r non-neighbour lines pass
through each of these points it is obvious that the number
of non-neighbour lines parallel to l in Kr

m is m(r−1)−rs.

Lemma 4.2: Let P be any point of Kr
m and ps denote the

number of non-neighbour lines pass through P belong to Cs,
and qs denote the number of all pairwise non-neighbour lines
of Cs. Then,

t∑
s=k

ps = r + 1

t∑
s=k

qs = r2 + r + 1 − m

t∑
s=k

s · ps =
(

m
2

)

t∑
s=k

s · qs = (r − 1)
(

m
2

)

t∑
s=k

s2 · qs =
[
r − 1 +

(
m − 2

2

)]
·
(

m
2

)
,

where t is m
2 or m−1

2 according to m is even or odd,
respectively.

V. CONSEQUENCE AND SOME QUESTIONS

In this paper, the definition of HK-plane is given and it is
shown that the structures, obtained by deletion from a PK-
plane of neighbour classes of pairwise distinct non-neighbour
m lines, no three of them collinear, are HK-planes, under some
assumptations. Since any subplane of a PK-plane contains at
least three pairwise distinct non-collinear, non-neighbour lines,
the structure which constructed by deleting any subplane from
the superplane will be HK-plane, if it satisfies HK3.
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In the finite case, what is the relation between the param-
eters of the subplane and of the superplane and what is the
upper bund of parameters of subplane?

Is there a way to distinguish the subplane deleted Desar-
guesian HK-plane from all other HK-planes?
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