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 
Abstract—In this study the regional stability of a rotor system 

which is supported on rolling bearings with radial clearance is 
studied. The rotor is assumed to be rigid. Due to radial clearance of 
bearings and dynamic configuration of system, each rolling elements 
of bearings has the possibility to be in contact with both of the races 
(under compression) or lose its contact. As a result, this change in 
dynamic of the system makes it to be known as switching system 
which is a type of Hybrid systems. In this investigation by adopting 
Multiple Lyapunov Function theorem and using Hamiltonian 
function as a candidate Lyapunov function, the stability of the system 
is studied. The purpose of this study is to inspect the regional stability 
of rotor-roller bearing and rotor-ball bearing systems. 
 

Keywords—Stability analysis, Rotor-rolling bearing systems, 
Switching systems, Multiple Lyapunov Function Method 

I. INTRODUCTION 

OTORDYNAMICS is an important field of study in 
dynamical systems. Because of demands for rotary 

machines with high speeds such as turbines, pumps, fans, 
spindle machines and so on, the dynamics and stability 
analysis of this type of systems are considered over a hundred 
years. As some of the rotor systems are supported by rolling 
bearings with radial clearances, the stability analysis of such 
systems can be helpful in the corresponding areas of the 
industry. The dynamic equations of rotor-bearing systems are 
mostly complicated with high nonlinearity; as a result, the 
analytical solution for these equations is sophisticated and in 
some cases is impossible to obtain; therefore, it is necessary to 
use the stability criteria such as Lyapunov theory, Routh-
Hurwitz method or Floquet theory to analyze the stability of 
rotor-bearing systems. 

The bearings play an instrumental role in the dynamics of 
rotor bearing systems. Hence, investigations are done in 
analyzing the effect of the bearings’ parameters such as 
stiffness and damping coefficients on the stability region of 
the rotor-bearing systems. [1] studied the effect of bearing 
parameters on the stability of the rigid rotor system. In their 
study they applied Routh-Hurwitz criterion to study the  
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influence of principal and cross-coupling stiffness and 
damping coefficients on the stability region of the system. In 
addition, [2] studied the stability of a rigid rotating shaft, 
supported by bearings identical to ref [1] but using the 
Lyapunov criterion, and obtained the similar results to their 
previous work. Furthermore, in another investigation [3] 
studied the stability of a rotor system which includes elastic 
shaft and is supported on the bearings with nonlinear 
parameters. Lyapunov criterion is employed in his 
investigation and the Hamiltonian function is considered as 
Lyapunov candidate function. Finally, the influence of shaft 
parameters such as Yung Elastic modulus and bearing 
parameters are studied in [3]. In the above mentioned 
researches the bearings are assumed as ideal boundary 
conditions such as simple springs and dampers which are not 
appropriate models for rolling bearings. In a work by [4], a 
more precise mathematical model of rolling bearings is 
developed. In their work the bearing is modeled by Hertzian 
contact theory for each of rolling elements, considering the 
radial clearance, the bearing’s forces and moments. In some 
other studies such as [5, 6] the nonlinear dynamic of a rotor 
with ball bearing having radial clearance is also investigated. 
As the rotor systems with the rolling bearings which have 
radial clearance exhibit switching behavior associated with the 
contact of the rolling elements with the races of the bearing, it 
falls into the category of hybrid systems. The hybrid systems 
combine continuous dynamics, represented by differential or 
difference equations, with finite state dynamics usually called 
finite automaton. A special class of these systems is switched 
systems which are considered in our model. The switched 
system models consist of finite differential equations where 
some rule designates which one is the governing differential 
equation at any time interval. So in order to investigate the 
stability of this bearing model, one should extend stability 
theorems for switched systems which are briefly discussed 
below. 

The stability of switched system has been widely been 
investigated, but only some of the more relevant are 
summarized. [7, 8] introduced Multiple Lyapunov functions to 
study the stability of switched systems. In [9] Hespanha 
studied uniform stability for linear switched systems by 
extending the LaSalle's Invariance Principle which is also 
based on Multiple Lyapunov function method. Also finding 
one common Lyapunov function for proof of stability is 
implemented in [10] by using Lie-Algebra. The stability of 
switched linear system having dissipative Hamiltonian are also 
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(11), (12) and  indicates the number of  all possible modes of 
switching in the system that can occur. 
As a result of geometric arrangement of rolling elements in the 
bearing, and due to the radial clearance of bearing the 
maximum number of rolling elements which could be in 

contact (under compression) is 
1

2

N  
  

where brackets 

represents the floor function. Hence,   represents the number 

of all subsets of I={1, … , N} which have at most
1

2

N  
    

 

members. 
When the system is in the i(t) mode, we can use Hamilton 
Function as an eligible Lyapunov Function. Since the system 
is a Hamiltonian system, Hamilton Function in each mode can 
be written as: 

2 0H T U T                                                                     (19) 

in which the subscripts of T denote the degree of homogeneity 
in the generalized velocity variables, iq . 

Due to frictionless assumption of roller elements contact, 
there is no damping in this dynamical system. As a result, in 
each mode of system, i(t), and when no switching occurs, the 

value of Hamilton Function is constant [2,3], i.e., 0H  . 
It is notable that at the instance of contact (switching time), 

there is no compression on the rolling element, so there will be 
no change in the potential energy in switching. Also in small 
infinitesimal time switching happens, the kinetic energy will 
remain the same.  Hence at switching instant the value of 
Hamilton Function doesn’t jump and remains the same. 
Therefore, it can be concluded that the Hamilton value of this 
hybrid system remains constant in the total time interval 
including all the switchings. This property will be later used in 
stability analysis. 

After each switching phenomena in the system, the number 
of active rolling elements (rolling elements under 
compression) could alter; as a result of these changes, 
different dynamic modes will be activated. The Multiple 
Lyapunov Function approach, proposed in [8], is applied here 
for stability analysis as declared in the following theorem: 

Theorem Suppose there are candidate Lyapunov functions
( ) ,  1, ... ,iV x i   , for respective vector fields ( )ix f x , 

and each iV has following properties 

1. For each possible x in mode i , there is a real constant c, 
that ( )iV x c ,and the boundedness of ( )iV x  should lead to 

boundedness of states, x  
2. All iV are non-increasing in their corresponding modes [

( ) 0iV x  ]  

3. 
( ) ( )i t i t

V V  at each switching time 

Then, it can be inferred the switching system is stable in 
Lyapunov sense.  

Hamilton function in each mode i(t) is an appropriate 
Lyapunov function iV  . As it was mentioned before chosen 

Lyapunov functions (Hamilton Functions) have no change at 
the switching time; i.e, a moment before and after the switch,

( ) ( ) ( ) ( )i t i t i t i t
V H H V      , therefore third condition is 

satisfied. Also, the second condition is fulfilled due to constant 
value of Hamilton Functions in each mode of system as 
mentioned before. Therefore, the only remaining condition 
that assures the stability of the system is the first condition. 
Regarding the Hamilton function in (19), the terms T2 is 
dependent on generalized velocity and 0( )U T depends on 

generalized coordinate, so in order to verify the first criteria, 
the terms 2T  and 0U T  are analyzed separately. 

Due to constant value of Hamilton function, which is equal 

to initial value, 0H , and the positive definiteness of term 2T ( 

2 0T  ), we could write:   

0 0 2 0U T H T H                                                          (20) 

So, it can be inferred that the term 0U T  is bounded from 

above. Also because of higher power of generalized 
coordinates in positive definite potential term U with respect 
to centrifugal term 0T the lower boundness of the term 0U T  

is easily confirmed;   0U T u     where 0u   . So the term 

0( )U T is completely bounded from above and below. 

Furthermore 0( )U T  is a non-fractional function in poltnmial 

format, which leads to boundedness of generalized coordinates 
that comprise closed region in (X, Y) domain. It is obvious 
that system cannot leave the mentioned region. So this region, 
namely; S  is called the stability region of the system in 

(X,Y) domain. It is notable that the boundary of region S  

could be found by condition: 

0 0U T H                                                                       (21) 

Also the upper bound on 2T  could be obtained from the 

lower bound of the term 0U T  as: 

2 0T H u                                                                         (22) 

Considering positive definitness and upper boundness of 2T  
, it can be inferred that, generalized velocities are also 
bounded. So if the condition (1) of Theorem holds, the system 
will be stable and all states remains in certain region, in 
particular the displacement of rotor is confined in S . For 

further discussion of this type of stability, the following 
definition is given: 

Definition of s -region stable: A system is s -region stable 

if   ( )S sC    where, ( )sC  is square region in X-Y plane 

with width 2 s and its center is at origin. 

The term 0U T can be written as: 

2
0

1

2 pU T I    
                                                         

(23)
                  

where the term   for roller bearing and ball bearing can be 
written as: 

 
19

2 2 2 29

1

1
18 ( )

19 2

N
R

R R j
j

K
mA X Y 



    
                  

(24)
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