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Regional Stability Analysis of Rotor-Ball
Bearing and Rotor- Roller Bearing Systems
Considering Switching Phenomena

Jafar Abbaszadeh Chekan, Kaveh Merat, Hassan Zohoor

Abstract—In this study the regional stability of a rotor system
which is supported on rolling bearings with radial clearance is
studied. The rotor is assumed to be rigid. Due to radial clearance of
bearings and dynamic configuration of system, each rolling elements
of bearings has the possibility to be in contact with both of the races
(under compression) or lose its contact. As a result, this change in
dynamic of the system makes it to be known as switching system
which is a type of Hybrid systems. In this investigation by adopting
Multiple Lyapunov Function theorem and using Hamiltonian
function as a candidate Lyapunov function, the stability of the system
is studied. The purpose of this study is to inspect the regional stability
of rotor-roller bearing and rotor-ball bearing systems.

Keywords—Stability analysis, Rotor-rolling bearing systems,
Switching systems, Multiple Lyapunov Function Method

[. INTRODUCTION

OTORDYNAMICS is an important field of study in

dynamical systems. Because of demands for rotary
machines with high speeds such as turbines, pumps, fans,
spindle machines and so on, the dynamics and stability
analysis of this type of systems are considered over a hundred
years. As some of the rotor systems are supported by rolling
bearings with radial clearances, the stability analysis of such
systems can be helpful in the corresponding areas of the
industry. The dynamic equations of rotor-bearing systems are
mostly complicated with high nonlinearity; as a result, the
analytical solution for these equations is sophisticated and in
some cases is impossible to obtain; therefore, it is necessary to
use the stability criteria such as Lyapunov theory, Routh-
Hurwitz method or Floquet theory to analyze the stability of
rotor-bearing systems.

The bearings play an instrumental role in the dynamics of
rotor bearing systems. Hence, investigations are done in
analyzing the effect of the bearings’ parameters such as
stiffness and damping coefficients on the stability region of
the rotor-bearing systems. [1] studied the effect of bearing
parameters on the stability of the rigid rotor system. In their
study they applied Routh-Hurwitz criterion to study the

J. Abbaszadeh Chekan, Department of Mechanical Engineering, Sharif
University of Technology, Tehran, Iran. (e-mail:
jafar.abbaszadeh@gmail.com).

K. Merat, Department of Mechanical Engineering, Sharif University of
Technology, Tehran, Iran. (e-mail: k_merat@mech.sharif.edu).

H. Zohoor, Prof. , Department of Mechanical Engineering, Sharif
University of Technology, Tehran, Iran. (corresponding author to provide
phone: +98-21-66165527; fax: +98-21-66000021; e-mail:
zohoor@sharif.edu).

influence of principal and cross-coupling stiffness and
damping coefficients on the stability region of the system. In
addition, [2] studied the stability of a rigid rotating shaft,
supported by bearings identical to ref [1] but using the
Lyapunov criterion, and obtained the similar results to their
previous work. Furthermore, in another investigation [3]
studied the stability of a rotor system which includes elastic
shaft and is supported on the bearings with nonlinear
parameters. Lyapunov criterion is employed in his
investigation and the Hamiltonian function is considered as
Lyapunov candidate function. Finally, the influence of shaft
parameters such as Yung Elastic modulus and bearing
parameters are studied in [3]. In the above mentioned
researches the bearings are assumed as ideal boundary
conditions such as simple springs and dampers which are not
appropriate models for rolling bearings. In a work by [4], a
more precise mathematical model of rolling bearings is
developed. In their work the bearing is modeled by Hertzian
contact theory for each of rolling elements, considering the
radial clearance, the bearing’s forces and moments. In some
other studies such as [5, 6] the nonlinear dynamic of a rotor
with ball bearing having radial clearance is also investigated.
As the rotor systems with the rolling bearings which have
radial clearance exhibit switching behavior associated with the
contact of the rolling elements with the races of the bearing, it
falls into the category of hybrid systems. The hybrid systems
combine continuous dynamics, represented by differential or
difference equations, with finite state dynamics usually called
finite automaton. A special class of these systems is switched
systems which are considered in our model. The switched
system models consist of finite differential equations where
some rule designates which one is the governing differential
equation at any time interval. So in order to investigate the
stability of this bearing model, one should extend stability
theorems for switched systems which are briefly discussed
below.

The stability of switched system has been widely been
investigated, but only some of the more relevant are
summarized. [7, 8] introduced Multiple Lyapunov functions to
study the stability of switched systems. In [9] Hespanha
studied uniform stability for linear switched systems by
extending the LaSalle's Invariance Principle which is also
based on Multiple Lyapunov function method. Also finding
one common Lyapunov function for proof of stability is
implemented in [10] by using Lie-Algebra. The stability of
switched linear system having dissipative Hamiltonian are also
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investigated under certain switching sequence related to
power-converters with ideal switchings in Gerritsen, K., A.
Van der Schaft, and W. Heemels’s investigation [11].
Similarly Zhu, L. and Y. Wang [12], inspect the stability of
switched dissipative Hamiltonian systems under arbitrary
switching paths. Both articles [11, 12] chose their dissipative
Hamiltonian function as their respective Multi-Lyapunov
functions to consider the asymptotic stability of system. Our
stability proof is similar to those in [11, 12] but slightly
different because of lack of dissipation in our system which
leads to investigation of regional stability for such systems.
Here, the stability region is defined as a region that system
states never leave if the initial condition is in predefined set.

In this study the rotor includes a shaft which is assumed to
be rigid and is supported on two rolling bearings (either roller
bearings or ball bearings). Also, in dynamic modeling, it is
assumed that the system has two translational Degrees of
Freedom (2-DOF). The mathematical formulation is presented
in Section II.

In Section III by adopting the Multiple Lyapunov Function
theorems and using Hamiltonian function as a candidate
Lyapunov function, the regional stability of the system is
studied considering switching in system’s dynamic.
Furthermore in Section IV the effects of load-stiffness
parameter and rotor speed on regional stability of roller
bearing and ball bearing will be investigated, and some
numerical solutions are presented to show the relation between
the solution trajectory and the deduced regional stability.

II. PROCEDURE FOR PAPER SUBMISSION

As it can be seen in Fig. 1, the rotor system under study
contains rigid shaft which is supported by two rolling bearing.
Here, two cases are considered for modeling, in the first case
the system’s bearings are considered to be ball bearing type
and in the second case, the bearings are assumed to be roller

bearing.
x
70
K . Illq-- m

Fig. I The schematic diagram of rotor bearing system

Some assumptions which are included in this study are: the
shaft is considered to be rigid, straight, symmetric and
balance, the bearings are supposed to be frictionless.
Furthermore, it is assumed that the shaft has two translational
degrees of freedom in X, y direction depicted in Fig. 1.

First, in this section the kinetic energy terms of the system
will be evaluated and at the next step the elastic deformation
energy of both types of bearings will be calculated, to extract
the Hamiltonian Function of rotor bearing system.

A.Kinematic Analysis

In this study two coordinate systems are considered. The
first coordinate system, XYZ is global coordinate system
which is located at mass center of the rotor and its Z axis is

along with the center line of the bearings’ outer race and shaft
rotates with rotation speed Q around the Z axes. The second
coordinate system xyz is considered to be attached to the rotor
at the mass center point and its unit vectors are introduced by
i, j. and k.. Because of radial clearance and elastic
characteristic of the rolling elements of bearings, the shaft can
have displacements in perpendicular direction, so this
displacements x and y are considered to be along i., j.
directions so, the position of mass center of rotor, r, can be
written as:
r=Xic+Yyj, (1)
Differentiating (1) with respect to time, the velocity vector

fis:
r=(x-yQ)i, +(y+xQ) j, (2)
By considering that m is the mass of the rotor and I, is the
rotor’s moment of inertia along the Z axes, the kinetic energy
of the system can be computed as:

1 . 2 . 2\ 1 ’
ngm((x—yQ) +(y+xQ) )+5IDQ 3)

B. Modeling Bearing

In this study, the system is modeled with two type of
bearings; roller bearing and ball bearing. The schematic
figures of the bearings are shown in Figs. 2, where Fig.2 (a)
shows the angular position of j-th rolling elements for both
type of bearing, Figs. 2(b) and 2(c) represent the elastic
deformation of j-th roller element in the roller bearing and ball
element in the ball bearing respectively.

In order to obtain potential energy of the system, Hertzian
contact theory is applied. By considering the kinematic shown
in Fig. 2(a) the angular position of j-th rolling element, y; , for

both type of bearings can be obtained by:
v =ol+e, j=12,..N
. . 27 “
inwhich ¢; = N
where N represents the number of rolling elements and @, is
the rotation speed of bearing’s cage and is [5, 6]:

r
o,=AQ, A=—1I
h+0

&)

where I and r,, are inner race and outer race radius.

Due to relative displacement of inner and outer race of
bearing, each rolling element of bearing can have elastic
deformation. In this study the outer race is fixed on a rigid
support and inner race is fixed on the shaft, so it has the same
displacement as the shaft. So, the inner race displacement is:

O = XC0sQt — y SinQ2t
Oy = X SiNQt + y CosQat

where J,,and o, are inner race displacement in global

(6)

coordinate system.
The effective displacement of j-th rolling element for both
roller bearing [4] and ball bearing can be written as[5, 6]:
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Figs. 2 (a).Description of the bearings, location of the j-th rolling
element, (b) The elastic deformation of the j-th ball element, (c) The
elastic deformation of the j-th ball element

Substituting Egs. (4)-(6) into Eq. (7), we have:
5, =xCos(Bt+g,)+ySin(Bt+g,)-0, (8)

in which B = (A -1)Q
In order to omit the explicit term of time from the system

formulation for stability analysis, the coordinate
transformation is considered as:
x=—XSin(Bt)+Y Cos(Bt) ©

y = X Cos(Bt)+Y Sin(Bt)

If above coordinate transformation is applied to the system,
the terms T and §,; can be rewritten in new coordinate system
as:

T :%m(xz +Y2H2AQ(XY -Y X )+ APQP (X +Y7))

+%IpQZ (10)

8y =X Sin(g;)+Y Cos(g;)-4,
By considering Fig.2(c) for a roller bearing the elastic
deformation of roller elements Jy; is:
O =6,
Oy O >0 11
5R (l//] ) _ Rj Rj ( )
0 &y<0

where above equation shows that for &y <0 the j-th roller

element is not under compression.
By adopting similar condition for ball elements, the j-th ball
element’s elastic deformation can be written as:

5 B 5BJ- 531- >0 (12)
B (('//J' ) - 0 §B' <0
;<

By applying Hertzian contact theory for j-th rolling element
(for both of roller and ball elements) the corresponding
resultant normal load can be assumed as:

Q; =K,0" (‘//J ) (13)

where 5(1//]. ) can be either &y or &y

The elastic deformation energy of j-th rolling elements could
be written as:
K
U, =—25""(y, 14
J n+1 (l//J ) ( )
By applying superposition principal on all of rolling elements,
the potential energy of the system, U, is derived from Eq. (14)
as:
MK
U= n 5n+1 _ 15
> T (v)) (15)
Due to similarity of both left and right bearings in the case
studies (rotor-roller bearing and rotor-ball bearing systems), it
can be concluded that the potential energy for both of rotor
bearing systems is:

U= Zz "5"*‘( ) (16)

By substltutmg Egs. (6)-(10) into Eq. (16), and considering
exponent ‘n’ is equal to 3/2 for ball elements with elliptical
contact and is 10/9 for roller type with rectangular contact [4],
the potential energy for the first case study with roller bearing,
Uy, and the second one with ball bearings, Ug, are:

N KR g
o =;18§5R (v;)
N K 5
Ug 22478552 (V/J)

j=1
where K and Kjare effective stiffness constant for roller

(17)

elements’ contact and ball elements’ contact respectively.

III. REGIONAL STABILITY ANALYSIS

In this article by considering bearing’s radial clearance and
dynamic configuration in both of the rotor systems, each
rolling elements can be compressed between the races (turn
into active rolling element) or lose its contact and become
stress free element (turn in to non-active rolling element).
Hence, considering changes in contact status of roller elements
and consequently, the change in the dynamic equations of
system these rotor systems could be categorized as switching
systems. In other words the system has finite different
dynamics as:

="t (x)

where x € R"are the states of the dynamical system, the index

1<i(t)<Y (18)

i(t) represents that system is in which mode of contact and this
index is changed with respect to contact condition defined in
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(11), (12) and Y indicates the number of all possible modes of
switching in the system that can occur.

As a result of geometric arrangement of rolling elements in the
bearing, and due to the radial clearance of bearing the
maximum number of rolling elements which could be in

contact (under compression) is [%J where brackets

represents the floor function. Hence, Y represents the number

of all subsets of I={1, ... , N} which have at mOSt[N; IJ

members.

When the system is in the i(t) mode, we can use Hamilton
Function as an eligible Lyapunov Function. Since the system
is a Hamiltonian system, Hamilton Function in each mode can
be written as:

H=T,+U-T, (19)
in which the subscripts of T denote the degree of homogeneity
in the generalized velocity variables, ¢ .

Due to frictionless assumption of roller elements contact,
there is no damping in this dynamical system. As a result, in
each mode of system, i(t), and when no switching occurs, the
value of Hamilton Function is constant [2,3], i.e., H=0.

It is notable that at the instance of contact (switching time),
there is no compression on the rolling element, so there will be
no change in the potential energy in switching. Also in small
infinitesimal time switching happens, the kinetic energy will
remain the same. Hence at switching instant the value of
Hamilton Function doesn’t jump and remains the same.
Therefore, it can be concluded that the Hamilton value of this
hybrid system remains constant in the total time interval
including all the switchings. This property will be later used in

stability analysis.
After each switching phenomena in the system, the number
of active rolling elements (rolling elements under

compression) could alter; as a result of these changes,
different dynamic modes will be activated. The Multiple
Lyapunov Function approach, proposed in [8], is applied here
for stability analysis as declared in the following theorem:

Theorem Suppose there are candidate Lyapunov functions
Vi(x),i =1, ..,Y, for respective vector fieldsx = f,(x),
and each V, has following properties

1. For each possible xin mode i , there is a real constant C,
that V,(X)=>c ,and the boundedness of V,(X) should lead to
boundedness of states, X

2. All V, are non-increasing in their corresponding modes [

Vi(x)<0]

3.V, ) =V, (o at each switching time

Then, it can be inferred the switching system is stable in
Lyapunov sense.

Hamilton function in each mode i(t) is an appropriate
Lyapunov function V, . As it was mentioned before chosen
Lyapunov functions (Hamilton Functions) have no change at
the switching time; i.e, a moment before and after the switch,

V. =
i(t)

satisfied. Also, the second condition is fulfilled due to constant
value of Hamilton Functions in each mode of system as
mentioned before. Therefore, the only remaining condition
that assures the stability of the system is the first condition.
Regarding the Hamilton function in (19), the terms T, is
dependent on generalized velocity and (U —T, ) depends on

H =V therefore third condition is

i) Hi(t*) i)’

generalized coordinate, so in order to verify the first criteria,
the terms T, and U —T, are analyzed separately.

Due to constant value of Hamilton function, which is equal
to initial value, H,, and the positive definiteness of term T2 (
T, >0), we could write:

U-T,=H,-T, <H, (20)

So, it can be inferred that the term U —T is bounded from

above. Also because of higher power of generalized
coordinates in positive definite potential term U with respect

to centrifugal term T, the lower boundness of the term U T,
is easily confirmed; U —T, >-u where u >0 . So the term
(U-T,)is completely bounded from above and below.
Furthermore (U —T; ) is a non-fractional function in poltnmial
format, which leads to boundedness of generalized coordinates
that comprise closed region in (X, Y) domain. It is obvious
that system cannot leave the mentioned region. So this region,
namely; I's is called the stability region of the system in
(X,Y) domain. It is notable that the boundary of region I'g
could be found by condition:

U-T,=H, 21

Also the upper bound onT, could be obtained from the
lower bound of the term U T, as:

T,<H,+u (22)

Considering positive definitness and upper boundness of T,
, it can be inferred that, generalized velocities are also
bounded. So if the condition (1) of Theorem holds, the system
will be stable and all states remains in certain region, in
particular the displacement of rotor is confined in I'g. For
further discussion of this type of stability, the following
definition is given:

Definition of &, -region stable: A system is J, -region stable
if Ty <C(o,) where, C(0,)is square region in X-Y plane
with width 2 6, and its center is at origin.

The term U —T; can be written as:

1
U-T, = A—EIPQ2 (23)
where the term A for roller bearing and ball bearing can be
written as:
NOKy 1
Aq :zlsl—;(s; (z//j)—EmAzQz(X2+Y2) (24)
j=1
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where A;and A, are related to the rotor system which is

(Wj)—%mAZQZ(quZ) (25)

supported by roller bearings and ball bearings respectively.
In the similar way, the term H, can be rewritten as:

1
0= _5
where for roller bearing, A(X,,Y,,X,,Y,) is defined as:

X=X,
Y=Yy

+%m( X7 +Y] )—%mNQZ( XZ+Y)

X=X,
Y=Y

+%m( XZ+Y) )—%mAZQZ( XZ+Y2)

H 1,97+ A(X,,Y,, X, Yy) (26)

N 19
A( XO’Y[) ,Xo 3Y0 ): z 18%(§R9 (l//l)
j=1

@7

and for ball bearing, we have:

. NOOK &
A(x05Y09X03Y0)224?(5E§(l//j)
=1

(28)

Hence, without any loss of generality, the expressed condition
in Eq.(21) can be expressed as:

A=A( X07Y09X09Y0) (29)
which means the boundary of I'y is dependent on the initial

value of A(X,.Y,,X,.Y,), which itself dependent on initial
displacement and velocities of dynamical system.

Depending on initial conditions, A(X,,Y,,X,,Y,) could take
positive or negative values. But for analysis in the rest of

article the value of A equals zero is taken as a reference. In
this case H, becomes - 11,0 .

IV. RESULTS AND DISCUSIONS

In this section, regional stability of rotor-roller bearing
system and rotor-ball bearing system are studied numerically.
Also the effect of load-stiffness parameter and rotation speed
on the regional stability of system for both types of bearings
will be inspected. The specifications of roller and ball bearing
are described in Table 1.

Due to restricted deflection capacity of each rolling element,
in this study the generalized coordinate are considered to have
the maximum value of nx g, (n is real positive number which

is chosen considering the desired region of stability). So, by
considering this assumption, the functions Ag and Ag are
plotted with respect to the displacement (x , y) within this
domain. It is notable that in this system the switching
phenomenon takes place frequently, as a result in each
displacement the number of active rolling elements alters. For
instance when the generalized coordinates are in the clearance

area, X’ +Y? <2, there are no rolling elements under
compression and the terms Ap and Ag has negative value in

this region, so the generalized coordinates x and y are inclined
to increase. But out of this clearance area the rolling elements
comes in contact gradually and the values of A and Ay

increase accordingly. It is assumed that the radial clearance

value and inner and outer race radius are the same in both
types of bearing which support the same rotor.

TABLEI
DESIGN PARAMETERS FOR TYPICAL BALL AND ROLLER BEARINGS
Parameters Descriptions Values
I Bearing’s inner 39(mm)
! race radius
r Bearing’s outer 51(mm)
0 race radius
é‘c Radial clearance 20 um
m Rotor mass 10Kg

For roller bearing, the term A is plotted in Fig.3 for n=3.
The result also clearly emphasizes that due to higher

power of generalized coordinates in the term U with respect
to To , the system is stable.

0T

Fig.3 Surface of A for rotor- roller bearing system in the
case of A( X, ,YO,XO ,YO )=0; Q=2000rad /s,
N =14,
K, =2.16x10" N/ m'*’?

Taking into account “J; -region stable” definition which is
highlighted before, 25, -region stability of the system is
investigated for both of the rotor-roller bearing and the rotor-
ball bearing systems which is illustrated in Figs.4. These
figures show the effect of load-stiffness parameters ( K;,Ky)
on desired regional stability (26, ) of the system. As it can be

seen in Figs.4 (a) and Figs.4(b), increase in the value of
Ky ,Kg, makes system to reach smaller stability region I
(which means lower amplitudes in oscillations of rotor). For
instance with K, =2x10°*N/m'" for different initial
conditions ~ which  satisfy  A(X,.Y,,X,,Y,)=0 or
H,=-1/ ZIPQZ, the system would remain in its
corresponding region, I, .

But as Kgdecrease the region enlarges where in

K, =4x10°N/m'’ the system in no more 2&,-region
stable.
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Figs. 4 Effect of load- stiffness parameter of rolling element
contact on stability region, [, for ; a) rotor-roller bearing system,
b) rotor-ball bearing system. For both cases

N=16,Q2=1000rad /s

As it is obvious from Eq. (24) and (25) the increase in
rotation speed will enlarge the region that system remains in.
Considering the definition of 2.5, stability, the effect of
rotation speed on regional stability of both rotor-roller bearing
and rotor-ball bearing systems are inspected and shown in
Fig.5. Accordingly, the results show by increase in the value
of rotation speed of the rotor, the regionI';; would grow up

which means higher amplitude in oscillation of rotor.

Tirad sy
—5— Ball 700

—#— Ball 1200
—&— Roller 700

| —— Rotter 1200

-4+ g

e G Oy (x 109 4

Fig. 5 Effect of rotation speed of rotor on stability region, I, for
both roller bearing and ball bearing cases,

Ky =8x10°N/m'"’ K, =4x10°N/m”"*,N=14

In order to validate the stability results, the nonlinear
dynamic equations of motion for system are solved,
numerically. By utilizing Lagrange method the equations of
motion for system can be written as:

N
mX + AmQY —mA* QX +2) K. Sing;5y"” (v;) =0
= 30)
N
my —AmQX -mA* QY +2) K.Cos ;5" (v; ) =0
j=1
Above equations are solved for two different initial
conditions which satisfy A(X,,Y,,X,.Y,)=0 and an initial
condition where A(X,,Y,,X,,Y,)<0. Results are shown in
X-Y plane, illustrating the center of mass movement (see
Figs.6). Also the stability region of system; I'which is the
result of regional stability analysis of system has given in
Fig.6(a)-6(c) for comparison.
As it can be seen in Figs. 6(a) and 6(b) for
A(X,,Yy,X,.Y,)=0, the trajectory of center of mass

remains in its corresponding stability region, I',, where at

some location becomes tangent with the border of T’ . As it is
expected, for initial conditions where A(X,,Y,,X,,Y,)<0,
the trajectory of system is completely inside the obtained
stability region, admittedly Fig. 6(c) depicts this prediction as
well.
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Figs. 6 Displacement of rotor-roller bearing system( N = 14,
K, =2.16x10"N/m""® Q=1000rad / s ) in X-Y plane
under different initial condition for; a) A( X,,Y,,X,,Y,)=0
where X, =Y, = 2x107°m, X, =Y, =2.47x10°m/s; b)
A(Xy Yy, XY, )=0 where X, =Y, =+/2x10° m
X, =Y, =6.13x10°m/s;c) A(X,,Y,,X,,Y, )=-0.00038
where X, =\/E><1075,YO =\V2x10°m, X,=Y,=0m/s
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