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The inverse problem of nonsymmetric matrices with
a submatrix constraint and its approximation

Yongxin Yuan, Hao Liu

Abstract—In this paper, we first give the representation of the
general solution of the following least-squares problem (LSP): Given
matrices X ∈ Rn×p, B ∈ Rp×p and A0 ∈ Rr×r , find a matrix
A ∈ Rn×n such that ‖XTAX − B‖ = min, s. t. A([1, r]) = A0,
where A([1, r]) is the r×r leading principal submatrix of the matrix
A. We then consider a best approximation problem: given an n× n
matrix Ã with Ã([1, r]) = A0, find Â ∈ SE such that ‖Ã − Â‖ =
minA∈SE ‖Ã− A‖, where SE is the solution set of LSP. We show
that the best approximation solution Â is unique and derive an explicit
formula for it.

Keywords—Inverse problem, Least-squares solution, model updat-
ing, Singular value decomposition(SVD), Optimal approximation.

I. INTRODUCTION

THROUGHOUT this paper, we denote the real m × n
matrix space by Rm×n, the set of all orthogonal matrices

in Rn×n by ORn×n, the transpose and the Moore-Penrose
generalized inverse of a real matrix A by AT and A+,
respectively. In represents the identity matrix of order n. For
A = [aij ], B = [bij ] ∈ Rm×n, A∗B represents the Hadamard
product of the matrices A and B, i.e., A ∗ B = [aijbij ] ∈
Rm×n. For A,B ∈ Rm×n, an inner product in Rm×n is
defined by (A,B) = trace(BTA), then Rm×n is a Hilbert
space. The matrix norm ‖ · ‖ induced by the inner product is
the Frobenius norm.

Using the finite element technique, the dynamic analysis of
a structure is modelled by the generalized eigenvalue problem
[3]

Kax = λMax, (1)

where Ka,Ma ∈ Rn×n represent the analytical stiffness
and mass matrices, respectively. High accuracy and large
size structural applications require highly correlated finite
element models to predict the system’s dynamic behavior. Very
often natural frequencies and mode shapes (eigenvalues and
eigenvectors) of a finite element model described by (1) do
not match very well with experimentally measured frequencies
and mode shapes obtained from a real-life vibrating structure.
Thus, a vibration engineer needs to update the theoretical finite
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element model of the structure such that the updated model
predicts the observed dynamic behavior. The improved model
may then be considered to be a better dynamic representation
of the structure than the initial analytical model. This model
can be used with greater confidence for the analysis of the
structure under different boundary conditions or with physical
structural changes.

Let X ∈ Rn×p be the measured modal matrix, Λ ∈ Rp×p

the measured natural frequencies, where p < n, and Λ is
diagonal. If the measured modal data X and Λ are correct, then
the most common approach in finite element model updating is
first to update the analytical mass or stiffness matrix to satisfy
the basic orthogonality conditions

XTMX = Ip, XTKX = Λ,

where M,K ∈ Rn×n are to be updated mass and stiffness
matrices, respectively. Some methods have been developed to
improve the quality of the analytical finite element models
using measured modal data [5, 6, 9, 11, 15, 16, 20]. However,
the updated mass and stiffness matrices are adjusted globally.
A spatial representation of the structural-element property
changes that resulted from the model errors is generally
preferred for engineering applications. Model errors may be
localized by using sensitivity analysis [17], least-squares ap-
proach [13] and assigned partial eigenstructure [8]. Based on
the localization of model errors, it is practice to adjust partial
elements of the analytical mass and stiffness matrices Ma

and Ka using measured modal data. On the other hand, it
is well known that mode shapes of a given structure that
are determined experimentally by vibration tests are usually
nonorthogonal due to equipment calibration, excessive noise,
misinterpretation of data, etc. Thus, the problem of updating
the mass or stiffness matrix which is known as an inverse prob-
lem in structural dynamics can be mathematically formulated
as follows.

Problem I. Given matrices X ∈ Rn×p, B ∈ Rp×p and
A0 ∈ Rr×r, find a matrix A ∈ Rn×n such that

‖XTAX −B‖ = min, A([1, r]) = A0,

where A([1, r]) is the r× r leading principal submatrix of the
matrix A.

Problem II. Let SE be the solution set of Problem I. Given
a matrix Ã ∈ Rn×n with Ã([1, r]) = A0, find Â ∈ SE such



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

834

that
‖Ã− Â‖ = min

A∈SE

‖Ã−A‖. (2)

There are many publications [7, 10, 18] concerning inverse
problems for matrices. The inverse problems for symmetric,
bisymmetric and centrosymmetric matrices with a submatrix
constraint have been considered in [19], [14] and [2], respec-
tively. In the present paper, we will discuss Problem I and
II.

The paper is organized as follows. In Section 2, we give
an expression of the general solution of Problem I using
the generalized inverses and the singular value decomposi-
tions (SVDs) of matrices. As a by-product of our results on
Problem I, we obtain a necessary and sufficient condition on
X,B,A0 for existence of A ∈ Rn×n such that XTAX =
B, A([1, r]) = A0, and a general form for all such A. In
Section 3, we show that there exists a unique solution to
Problem II and present the expression of the solution Â of
Problem II. Finally, in Section 4, a numerical algorithm to
acquire the best approximation solution under the Frobenius
norm sense is described and a numerical example is provided.
Clearly, the results obtained are shown to include those given
in [12] as particular cases.

II. THE SOLUTION OF PROBLEM I
To begin with, we introduce a lemma [4].
Lemma 1: If E ∈ Rm×l, F ∈ Rq×l then the general

solution of ‖ZE −F‖ = min is Z = FE+ +L(Im −EE+),
where L ∈ Rq×m is an arbitrary matrix.

Let the partition of the matrix X be

X =

[
X1

X2

]
, X1 ∈ Rr×p, X2 ∈ R(n−r)×p. (3)

Write
A =

[
A0 F
G H

]
, (4)

where F ∈ Rr×(n−r), G ∈ R(n−r)×r and H ∈
R(n−r)×(n−r) are yet to be determined. From (3) and (4),
we have

‖XTAX −B‖ =
‖XT

2 HX2 +XT
2 GX1 +XT

1 FX2 − (B −XT
1 A0X1)‖.

(5)
Let the singular value decomposition of the matrix X2 be

X2 = P

[
Ω 0
0 0

]
QT , (6)

where P = [P1, P2] ∈ OR(n−r)×(n−r), V = [Q1, Q2] ∈
ORp×p,Ω = diag(ω1, · · · , ωs), ωi > 0 (i = 1, · · · , s), s =
rank(X2), P1 ∈ R(n−r)×s, Q1 ∈ Rp×s, and let

PTHP =

[
H11 H12

H13 H14

]
s

n− r − s
s n− r − s

.

Then the relation of (5) is equivalent to

‖XTAX −B‖2
= ‖ΩH11Ω+ ΩPT

1 GX1Q1

+QT
1X

T
1 FP1Ω−QT

1 (B −XT
1 A0X1)Q1‖2

+ ‖ΩPT
1 GX1Q2 −QT

1 (B −XT
1 A0X1)Q2‖2

+ ‖QT
2X

T
1 FP1Ω−QT

2 (B −XT
1 A0X1)Q1‖2

+ ‖QT
2 (B −XT

1 A0X1)Q2‖2.

(7)

It follows from (7) that ‖XTAX −B‖ = min if and only if

H11 = Ω−1[QT
1 (B −XT

1 A0X1)Q1−
ΩPT

1 GX1Q1 −QT
1X

T
1 FP1Ω]Ω

−1,
(8)

‖ΩPT
1 GX1Q2 −QT

1 (B −XT
1 A0X1)Q2‖ = min (9)

and

‖QT
2X

T
1 FP1Ω−QT

2 (B −XT
1 A0X1)Q1‖ = min . (10)

Assume that the singular value decomposition of the matrix
X1Q2 is

X1Q2 = U

[
Σ 0
0 0

]
V T , (11)

where U = [U1, U2] ∈ ORr×r, V = [V1, V2] ∈
OR(p−s)×(p−s), Σ = diag(σ1, · · · , σt), σi > 0 (i =
1, · · · , t), t = rank(X1Q2), U1 ∈ Rr×t, V1 ∈ R(p−s)×t.
Solving the minimization problems (9) and (10) by means of
Lemma 1, we obtain

G = G0 + P2L1 + J1U
T
2 , (12)

F = F0 + U2L2 + J2P
T
2 , (13)

where

G0 = P1Ω
−1QT

1 (B −XT
1 A0X1)Q2(X1Q2)

+,
F0 = (QT

2X
T
1 )

+QT
2 (B −XT

1 A0X1)Q1Ω
−1PT

1 ,
(14)

and J1 ∈ R(n−r)×(r−t), L1 ∈ R(n−r−s)×r, L2 ∈
R(r−t)×(n−r), J2 ∈ Rr×(n−r−s) are arbitrary matrices.
Substituting (12) and (13) into (8) yields

H11 = H110 − PT
1 J1U

T
2 X1Q1Ω

−1 − Ω−1QT
1X

T
1 U2L2P1,

(15)
where

H110 = Ω−1QT
1 (B −XT

1 A0X1)Q1Ω
−1

−PT
1 G0X1Q1Ω

−1 − Ω−1QT
1X

T
1 F0P1.

(16)

By now, we have proved the following result.
Theorem 1: Suppose that X ∈ Rn×p, B ∈ Rp×p and

A0 ∈ Rr×r. Let the partition of the matrix X be (3), and
the SVDs of the matrices X2 and X1Q2 be given by (6) and
(11), respectively. Then the solution set SE of Problem I can
be expressed as

SE =

{
A ∈ Rn×n

∣∣∣∣A =

[
A0 F
G H

]}
,
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where

H = P

[
H11 H12

H13 H14

]
PT ,

G, F,G0, F0, H11 are given by (12), (13), (14) and (15),
respectively, and L1, L2, J1, J2, H12, H13, H14 are arbitrary
matrices.

From (7) and Theorem 1, we can easily obtain the following
result [12].

Corollary 2: Under the same assumptions as in Theorem 1.
Then the matrix equation

XTAX = B, A([1, r]) = A0 (17)

have a solution A ∈ Rn×n if and only if

QT
2 (B −XT

1 A0X1)Q2 = 0, (18)
QT

1 (B −XT
1 A0X1)Q2V2 = 0, (19)

V T
2 Q

T
2 (B −XT

1 A0X1)Q1 = 0, (20)

in which case, the general solution of the equation (17) is

A =

⎡
⎣ A0 F0 + U2L2 + J2P

T
2

G0 + P2L1 + J1U
T
2 P

[
H11 H12

H13 H14

]
PT

⎤
⎦ ,

where G0, F0, H11 are given by (14) and (15), respectively,
and L1, L2, J1, J2, H12, H13, H14 are arbitrary matrices.

III. THE SOLUTION OF PROBLEM II

It is easy to verify that SE is a closed convex subset of
Rn×n. From the best approximation theorem (see [1]), we
know there exists a unique solution Â in SE such that (2)
holds.

We now focus our attention on seeking the unique solution
Â in SE. For the given matrix Ã ∈ Rn×n with Ã([1, r]) = A0,
write

Ã =

[
A0 F̃

G̃ H̃

]
r

n− r

r n− r

(21)

and

PT H̃P =

[
H̃11 H̃12

H̃13 H̃14

]
, (22)

where H̃11 ∈ Rs×s, H̃14 ∈ R(n−r−s)×(n−r−s).
For any matrix A ∈ SE, by using (12), (13), (15), (21) and

(22), we have

‖ A− Ã‖2
= ‖PT

1 J1U
T
2 X1Q1Ω

−1 +Ω−1QT
1X

T
1 U2L2P1

− (H110 − H̃11)‖2
+ ‖U2L2 + J2P

T
2 − (F̃ − F0)‖2

+ ‖P2L1 + J1U
T
2 − (G̃−G0)‖2

+ ‖H12 − H̃12‖2 + ‖H13 − H̃13‖2 + ‖H14 − H̃14‖2.
(23)

Notice that

‖U2L2 + J2P
T
2 − (F̃ − F0)‖2

=

∥∥∥∥U2L2 + [0, J2]

[
PT
1

PT
2

]
− (F̃ − F0)

∥∥∥∥
2

= ‖U2L2P1 − (F̃ − F0)P1‖2
+ ‖U2L2P2 + J2 − (F̃ − F0)P2‖2.

(24)

Likewise,

‖P2L1 + J1U
T
2 − (G̃−G0)‖2

= ‖PT
1 J1U

T
2 − PT

1 (G̃−G0)‖2
+ ‖L1 + PT

2 J1U
T
2 − PT

2 (G̃−G0)‖2.
(25)

It follows from (23), (24) and (25) that ‖Ã − A‖ = min if
and only if

H12 = H̃12, H13 = H̃13, H14 = H̃14, (26)

J2 = (F̃ −F0)P2−U2L2P2, L1 = PT
2 (G̃−G0)−PT

2 J1U
T
2 ,

(27)
and

f(J1, L2) = ‖U2L2P1 − C̃‖2 + ‖PT
1 J1U

T
2 − D̃‖2

+‖PT
1 J1S + STL2P1 − Ẽ‖2 = min,

(28)

where

C̃ = (F̃ − F0)P1, D̃ = PT
1 (G̃−G0),

Ẽ = H110 − H̃11, S = UT
2 X1Q1Ω

−1.
(29)

From (28) we have

f(J1, L2) = trace(PT
1 L

T
2 L2P1)− 2trace(PT

1 L
T
2 U

T
2 C̃)

+trace(C̃T C̃) + trace(JT
1 P1P

T
1 J1)

−2trace(U2J
T
1 P1D̃) + trace(D̃T D̃)

+trace(STJT
1 P1P

T
1 J1S) + trace(PT

1 L
T
2 SS

TL2P1)

+trace(ẼT Ẽ) + 2trace(STJT
1 P1S

TL2P1)

−2trace(PT
1 L

T
2 SẼ)− 2trace(STJT

1 P1Ẽ).

Consequently,

∂f(J1,L2)
∂J1

= 2P1P
T
1 J1 + 2P1P

T
1 J1SS

T

+2P1S
TL2P1S

T − 2P1ẼS
T − 2P1D̃U2,

∂f(J1,L2)
∂L2

= 2L2P1P
T
1 + 2SPT

1 J1SP
T
1

+2SSTL2P1P
T
1 − 2UT

2 C̃P
T
1 − 2SẼPT

1 .

Setting ∂f(J1,L2)
∂J1

= 0 and ∂f(J1,L2)
∂L2

= 0, we obtain

PT
1 J1 + PT

1 J1SS
T + STL2P1S

T = ẼST + D̃U2, (30)

L2P1 + SPT
1 J1S + SSTL2P1 = UT

2 C̃ + SẼ. (31)

Let the singular value decomposition of the matrix S be

S = T

[
Γ 0
0 0

]
WT , (32)
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where T = [T1, T2] ∈ OR(r−t)×(r−t), W = [W1,W2] ∈
ORs×s, Γ = diag(γ1, · · · , γf ), γi > 0 (i = 1, · · · , f), f =
rank(S), T1 ∈ R(r−t)×f , W1 ∈ Rs×f . Put

WTPT
1 J1T =

[
J11 J12
J13 J14

]
f

s− f
f r − t− f

, (33)

TTL2P1W =

[
L21 L22

L23 L24

]
f

r − t− f
f s− f

. (34)

After some algebraic manipulations, the equation of (30) is
equivalent to

J11 + J11Γ
2 + ΓL21Γ = WT

1 (D̃U2 + ẼST )T1, (35)
J13 + J13Γ

2 = WT
2 (D̃U2 + ẼST )T1, (36)

J12 = WT
1 (D̃U2 + ẼST )T2, (37)

J14 = WT
2 (D̃U2 + ẼST )T2, (38)

and the equation of (31) is equivalent to

L21 + Γ2L21 + ΓJ11Γ = TT
1 (UT

2 C̃ + SẼ)W1, (39)
L22 + Γ2L22 = TT

1 (UT
2 C̃ + SẼ)W2, (40)

L23 = TT
2 (UT

2 C̃ + SẼ)W1, (41)
L24 = TT

2 (UT
2 C̃ + SẼ)W2. (42)

Let J11 = [jik] ∈ Rf×f , L21 = [lik] ∈ Rf×f ,WT
1 (D̃U2 +

ẼST )T1 = [dik] ∈ Rf×f and TT
1 (UT

2 C̃ + SẼ)W1 = [cik] ∈
Rf×f . From (35) and (39) we have

jik + jikγ
2
k + γilikγk = dik, i, k = 1, · · · , f,

lik + γ2i lik + γijikγk = cik, i, k = 1, · · · , f.
Solving these linear equations with respect to lik, jik(i, k =
1, · · · , f), we obtain

lik =
1

1 + γ2i + γ2k
(cik(1+γ

2
k)−γidikγk), for i, k = 1, · · · , f,

(43)

jik =
1

1 + γ2i + γ2k
((1+γ2i )dik−γicikγk), for i, k = 1, · · · , f,

(44)
Let Φ = [ 1

1+γ2
i
+γ2

k

] ∈ Rf×f , then (43) and (44) may be
expressed as

L21 = Φ ∗ [TT
1 (UT

2 C̃ + SẼ)W1(If + Γ2)

−ΓWT
1 (D̃U2 + ẼST )T1Γ],

(45)

J11 = Φ ∗ [((If + Γ2)WT
1 (D̃U2 + ẼST )T1

−ΓTT
1 (UT

2 C̃ + SẼ)W1Γ].
(46)

From (36) and (40), we have

J13 =WT
2 (D̃U2 + ẼST )T1(If + Γ2)−1, (47)

L22 = (If + Γ2)−1TT
1 (UT

2 C̃ + SẼ)W2. (48)

Thus, from (33) and (34) we have

PT
1 J1 =W

[
J11 J12
J13 J14

]
TT , (49)

L2P1 = T

[
L21 L22

L23 L24

]
WT , (50)

where J11, J12, J13 and J14 are given by (46), (37), (47) and
(38), respectively, and L21, L22, L23 and L24 are given by
(45), (48), (41) and (42), respectively.
Inserting J2, L1 in (27) into (12) and (13), we obtain

F = F0P1P
T
1 + F̃P2P

T
2 + U2L2P1P

T
1 ,

G = P1P
T
1 G0 + P2P

T
2 G̃+ P1P

T
1 J1U

T
2 .

Summing up above discussion, we have proved the follow-
ing result.

Theorem 3: For the given matrix Ã ∈ Rn×n with
Ã([1, r]) = A0, then the matrix best approximation problem
(2) has a unique solution Â ∈ SE. Furthermore, let the
partition of Ã be (21) and PT H̃P be (22). Then the unique
solution of Problem II can be expressed as

Â =

[
A0 F̂

Ĝ Ĥ

]
, (51)

where

F̂ = F0P1P
T
1 + F̃P2P

T
2 + U2L2P1P

T
1 ,

Ĝ = P1P
T
1 G0 + P2P

T
2 G̃+ P1P

T
1 J1U

T
2 ,

Ĥ = P

[
H11 H̃12

H̃13 H̃14

]
PT ,

PT
1 J1, L2P1 and H11 are given by (49), (50) and (15),

respectively.

IV. A NUMERICAL EXAMPLE

According to the previous discussion, we now give a
numerical algorithm for solving Problem I and Problem II as
follows.

Algorithm 1.
1) Input matrices X,B,A0, and Ã;
2) Form the matrix X1, X2 according to (3);
3) Compute the SVD (6) of the matrix X2 and then compute

the SVD (11) of X1Q2;
4) Compute G0, F0 and H110 by (14) and (16), respectively;
5) Partition matrix Ã as in (21) to get F̃ , G̃, H̃;
6) Compute H̃1j , j = 1, 2, 3, 4 by (22);
7) Compute the matrices C̃, D̃, Ẽ and S by (29);
8) Compute the SVD (32) of the matrix S;
9) Compute J11, J12, J13 and J14 are given by (46), (37),

(47) and (38), respectively;
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10) Compute L21, L22, L23 and L24 are given by (45), (48),
(41) and (42), respectively;

11) Compute PT
1 J1, L2P1 by (49) and (50), and then com-

pute H11 by (15);
12) Compute the unique solution Â of Problem II according

to (51).
Example 1. (An example for updating the mass matrix of

a vibrating system described in (1)).
Let A0, X,B and Ã be given by

A0 =

⎡
⎢⎢⎣

0.3333 0.1667 0 0
0.1667 0.6667 0.1667 0

0 0.1667 0.6667 0.1667
0 0 0.1667 0.6667

⎤
⎥⎥⎦ ,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

39.230 347.67 −45.500
−22.312 −289.62 54.211
68.151 640.05 −90.167
−61.888 −640.58 100.18
206.84 491.56 141.90
−427.7 −1474.9 −161.45
315.58 1375.1 36.539
−184.24 −993.56 33.587

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B = I3 and

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3333 0.1667 0 0
0.1667 0.6667 0.1667 0

0 0.1667 0.6667 0.1667
0 0 0.1667 0.6667

0.1000 0.4500 0.1800 0.4000
0.3500 0.7000 0.2100 0.3000
0.6000 0.8000 0.3900 0.2000
0.2000 0.2800 0.4700 0.1000

0.1000 0.3500 0.6000 0.2000
0.4500 0.7000 0.8000 0.2800
0.1800 0.2100 0.3900 0.4700
0.4000 0.3000 0.2000 0.1000
0.1200 0.4800 0.4680 0.3600
0.4800 0.8400 0.6060 0.3480
0.4680 0.6060 0.4680 0.4020
0.3600 0.3480 0.4020 0.1200

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

According to algorithm 1 we obtain the unique solution of
Problem II as follows.

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3333 0.1667 0 0
0.1667 0.6667 0.1667 0

0 0.1667 0.6667 0.1667
0 0 0.1667 0.6667

0.1224 0.3938 0.2359 0.3212
0.3447 0.7322 0.1893 0.3376
0.5783 0.8287 0.3459 0.2507
0.2297 0.2283 0.5353 0.0182

0.0498 0.4734 0.4967 0.2684
0.3744 0.7667 0.8069 0.2387
0.3182 0.0434 0.4384 0.4913
0.3728 0.2461 0.3087 −0.0093
0.0684 0.5068 0.4982 0.3091
0.5068 0.8209 0.5974 0.3681
0.4982 0.5974 0.4406 0.4404
0.3091 0.3681 0.4404 0.0622

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Although we do not need to verify the consistency condi-
tions (18)-(20), we note that the conditions (18)-(20) do hold
for this example. Furthermore, we can figure out

‖XT ÂX −B‖ = 7.2881e− 010, ‖Ã− Â‖ = 0.4216.
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