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Abstract—This paper studies stability of homogeneous beams 
with piezoelectric layers subjected to axial load that is simply 
supported at both ends lies on a continuous elastic foundation. The 
displacement field of beam is assumed based on first order shear 
deformation beam theory. Applying the Hamilton's principle, the 
governing equation is established. The influences of applied voltage, 
dimensionless geometrical parameter and foundation coefficient on 
the stability of beam are presented. To investigate the accuracy of the 
present analysis, a compression study is carried out with a known 
data. 
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I. INTRODUCTION 

HE applications of the smart materials have drawn 
attention in aerospace engineering, civil engineering, 
mechanical and even bio-engineering. The analysis of a 

coupled piezoelectric structure has recently been keenly 
researched because piezoelectric materials are more 
extensively used either as actuators or sensors. Examples 
include the analytical modelling and behaviour of a beam with 
surface-bonded or embedded piezoelectric sensors and 
actuators [1–3], and the use of piezoelectric materials in 
composite laminates and for vibration control [4]. The use of 
finite element method in the analysis of piezoelectric coupled 
structures has been studied [5–8]. Crawley and de Luis [9] 
developed the analytical model for the static and dynamic 
response of a beam structure with segmented piezoelectric 
actuators either bonded or embedded in a laminated 
composite. LaPeter and Cudney [10] proposed an analytic 
model for the segmented piezoelectric actuators bonded on a 
beam or a plate, and found the equivalent forcing functions of 
the actuators. The piezoelectric bimorph column structures 
were used as sensing elements. Dobrucki and Pruchnicki [11] 
presented an analysis theory of an axisymmetric piezoelectric 
bimorph. They also described a sensing theory for using the 
axisymmetric piezoelectric bimorph. Chandrashekhara and 
Bhatia [12] developed a finite element model for the active 
buckling control of laminated composite plates with surface 
bonded or embedded piezoelectric sensors that are either 
continuous or segmented. The dynamic buckling behavior of 
the laminated plate subjected to a linearly increasing 
compression load is investigated in their work. 
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Chase and Bhashyam [13] derived optimal design equations to 
actively stabilize laminated plates loaded in excess of the 
critical buckling load using a large number of sensors and 
actuators.To the author's knowledge, there is no analytical 
solution available in the open literatures for stability of 
homogeneous beams with piezoelectric layers subjected to 
axial load that is simply supported at both ends lies on a 
continuous elastic foundation. In the present work, stability of 
homogeneous beams with piezoelectric layers subjected to 
axial load that is simply supported at both ends lies on a 
continuous elastic foundation.  studied. Appling the 
Hamilton's principle, the equilibrium equations of beam are 
derived and solved. The effects of applied voltage, 
dimensionless geometrical parameter and foundation 
coefficient on the critical buckling load of beam are presented. 
To investigate the accuracy of the present analysis, a 
compression study is carried out with a known data. 

 
II. FORMULATION 

The formulation that is presented here is based on the 
assumptions of first order shear deformation beam theory. 
Based on this theory, the displacement field can be written as 
[20]: 
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In view of the displacement field given in Equation (1), the 

strain displacement relations are given by [14]:  
 

dx
dw

x
w

z
u

dx
dz

x
u

xz

xx

+=
∂
∂

+
∂
∂

=

=
∂
∂

=

φγ

φε
                       (2) 

 
Consider a homogeneous beam with piezoelectric actuators 

and rectangular cross-section as shown in   Fig. 1. The 
thickness, length, and width of the beam are denoted, 
respectively, by , , Lh and .b  Also, Th  and Bh  are the 
thickness of top and bottom of piezoelectric actuators, 
respectively. The yx −  plane coincides with the midplane of 
the beam and the −z axis located along the thickness 
direction.  

T
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Fig. 1 Schematic of the problem studied. 
 
  

The Young's modulus E  and the Poisson's ratio ν  are 
assumed to be constant. The constitutive relations for 
homogeneous beam with piezoelectric layers are given by 
[15]: 
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where 
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where 11Q, , xzxx σσ  and 55Q are the normal ,shear stresses 

and plane stress-reduced stiffnesses and  1531,ee  are 
piezoelectric elastic stiffnesses respectively. Also, u and w  
are the displacement components in the −x  and −z directions, 
respectively. 
The potential energy can be expressed as [14]:  
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Substituting Eqs. (2)-(3) into Eq. (5) and neglecting the 
higher-order terms, we obtain 
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The width of beam is assumed to be constant, which is 

obtained by integrating along y over .v Then Eq. (6) becomes 
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where A and D  are the shear rigidity and  flexural rigidity 
respectively. Note that, no residual stresses due to the 
piezoelectric actuator are considered in the present study and 
the extensional displacement is neglected. Thus, the potential 
energy can be written as 
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where TV  and BV  are the applied voltages on the top and 

bottom actuators respectively. The beam is subjected to the 
axial compressive loads, P as shown in Fig. 2. 
 
 

 
Fig. 2 Simply supported beam under periodic loads. 
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The work done by the axial compressive load can be 

expressed as [14]: 
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We apply the Hamilton's principle to derive the equilibrium 
equations of beam, that is [14]: 
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Substitution from Eqs. (9) and (10) into Eq. (11) leads to 

the following equilibrium equations of the the homogeneous 
beam with piezoelectric layers based on first order shear 
deformation theory. Assume that a homogeneous beam with 
piezoelectric actuators that is simply supported at both ends 
lies on a continuous elastic foundation, whose reaction at 
every point is proportional to the deflection (Winkler 
foundation). The equilibrium equation of the homogeneous 
beam with piezoelectric layers based on first order shear 
deformation theory located on a continuous elastic foundation 
subjected to a axial compressive load is obtained from 
equilibrium equations by the addition of wη  for the 
foundation reaction as 
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where η  is the foundation coefficient. 
 

III. STABILITY ANALYSIS 
The boundary conditions for the pin-ended homogeneous 
beam are given by: 
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Substituting Eq. (13) into (12) and neglecting the foundation 
coefficient and piezoelectric effect, the critical buckling load 
of a homogeneous beam based on first order shear 
deformation theory will be derived, that is:  
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The above equation has been reported by Wang and Reddy 
[14]. 

 
IV. NUMERICAL RESULTS 

The stability of homogeneous beams with piezoelectric 
layers subjected to axial load that is simply supported at both 
ends lies on a continuous elastic foundation are studied in this 
paper. It is assumed that both the top and bottom piezoelectric 
layers have the same thickness; BT hh =  and the same voltages 
are applied to both actuators. The material properties of the 
beam are listed in Table I. 

 
TABLE I 

MATERIAL PROPERTIES 

Homogeneous 
layer 

Piezoelectric 
layer Property 

  

223.95       63 
Young's modulus 

(GPa)  E  
0.3         0.3 Poisson's ratio ν  

0.3         0.3 Length (m)  L  

0.01         
0.00005 Thickness (m)  h  

8900   7600 Density  )(Kgm  -3ρ  

-       17.6 
Piezoelectric constant  

)(Cm    , -2
1531 ee 

 
 

The Poisson’s ratio is chosen to be 0.3 for both materials. 
The variation of critical buckling loads for homogeneous 
beam versus η  is shown in Table II. and the variation of 
critical buckling loads for homogeneous beam versus Lh /  for 
different applied voltage is shown in Fig. 3.  

 
TABLE II 

 VARIATION OF THE CRITICAL BUCKLING LOAD OF HOMOGENEOUS BEAM 
WITH PIEZOELECTRIC ACTUATORS VERSUS η . 

Critical Buckling 

Load ( crP ) 

Foundation 
Coefficient  

(η ) 
33000N 1000 
38450N 2000
42761N 3000 
46398N 4000 

 

 
Fig. 3 Effect of Applied Voltage on the Critical Buckling Load of 

Homogeneous Beam with Piezoelectric Actuators 
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V. CONCLUSION 
The stability of homogeneous beams with piezoelectric 

layers subjected to axial load that is simply supported at both 
ends lies on a continuous elastic foundation is studied. It is 
conclude that: 
 

1- The piezoelectric actuators induce tensile 
piezoelectric force produced by applying negative 
voltages that significantly affect the stability of the 
homogeneous beams with piezoelectric actuators. 

2- The critical buckling loads of homogeneous beams 
under axial compressive load generally increase with 
the increase of foundation coefficientη .  

3- The accuracy of the first order shear deformation 
beam theory is more than the classical beam theory. 
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