International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:9, 2014

The Journey of a Malicious HTTP Request

M. Mansouri, P. Jaklitsch, E. Teiniker

Abstract—SQL injection on web applications is a very popular
kind of attack. There are mechanisms such as intrusion detection
systems in order to detect this attack. These strategies often rely on
techniques implemented at high layers of the application but do not
consider the low level of system calls. The problem of only
considering the high level perspective is that an attacker can
circumvent the detection tools using certain techniques such as URL
encoding. One technique currently used for detecting low-level
attacks on privileged processes is the tracing of system calls. System
calls act as a single gate to the Operating System (OS) kernel; they
allow catching the critical data at an appropriate level of detail. Our
basic assumption is that any type of application, be it a system
service, utility program or Web application, “speaks” the language of
system calls when having a conversation with the OS kernel. At this
level we can see the actual attack while it is happening. We conduct
an experiment in order to demonstrate the suitability of system call
analysis for detecting SQL injection. We are able to detect the attack.
Therefore we conclude that system calls are not only powerful in
detecting low-level attacks but that they also enable us to detect high-
level attacks such as SQL injection.

Keywords—Linux system calls, Web attack detection,
Interception.

I. INTRODUCTION

EB applications are widely adopted as well as easily

accessible. Therefore they are a popular target for
attacks. For this reason initiatives devoted to providing Web
application security such as OWASP! have become active.
Among OWASP’s contributions to Web application security
there is an enumeration of the most dangerous attacks called
OWASP Top Ten [9]. In this classification “Injection” attacks
are at the top rank. Injection attacks include SQL injection
where the attacker injects SQL commands in the data section
of a query. Preventing such attacks is not always possible and
even if there exist methods for effective prevention these
methods might be disabled by developers due to a lack of
security training or a lack of time in order to finish their task
on schedule. This is the reason why “prevention mechanisms
should be complemented by effective intrusion detection
systems (IDSs)” [3].

In this paper we demonstrate how system call analysis can
assist us in detecting an SQL injection attack. System call
analysis as a means to detect attacks is primarily used for
privileged applications such as Sendmail and Ipr [2].
However, not only low-level applications invoke system calls

Malihe Mansouri and Paul Jaklitsch are Students at University of Applied
Sciences FH JOANNEUM, Kapfenberg, Austria (e-mail:
Malihe.Mansouri.ASE11@fh-joanneum.at, Paul.Jaklitsch. ASE10@fh-
joanneum.at).

Egon Teiniker, FH Professor at University of Applied Sciences FH
JOANNEUM, Kapfenberg, Austria (e-mail: Egon.Teiniker@fh-joanneum.at).

 Open Web Application Security Project.

to perform privileged tasks. For example a Java Web
application is basically a Java program executed within a Java
Virtual Machine (JVM) which translates the byte code into
native code. Same as for system applications every privileged
action performed by a Java program results in a system call
being executed on the OS. Consequently we assume that there
is no possibility for the data to bypass this interface between
the native code of our application and the OS. As system calls
operate at the kernel level they can provide us with
information at a fine level of detail.

We start our demonstration using a simple Java Web
application vulnerable to SQL injection. The data which is
traveling through the different layers of our application from
the highest level to the lowest level can be compared to a
journey. Hence we structure our work from the perspective of
a traveler.

In Section Il we distinguish our work or journey from the
previous ones. In Section 111 we first prepare our journey by
considering our application from a high-level and from a low-
level perspective or map. Subsequently we give an overview
of the building blocks of our application or travel stations. The
core part of this section is an experiment where we analyze the
system calls invoked by our Web application that have been
traced during an SQL injection attack. Due to the large amount
of system calls we only select those relevant for our purpose.
This can be compared to a travel diary where we only record
the interesting experiences encountered during our journey.
When we reach the destination of our journey we briefly
discuss what we have discovered. In Section IV we conclude
our paper or share our discoveries.

1. RELATED WORK

The work we present in this paper is a combination of two
perspectives for attack detection: A low-level perspective
using system call tracing and a high-level perspective
considering high-level attacks such as Web application
attacks. In the following, we discuss how previous works in
these two areas relate to our research work.

A. Low-Level Perspective

Bernaschi et al. [1] have demonstrated how the illegal
execution of privileged operations can be prevented via minor
amendments made to kernel code. Based on an in-depth
system call analysis they identify a subset of system calls
along with a subset of tasks that are helpful in preventing
elevation of privilege attacks. They furthermore use this as
input for developing an attack prevention prototype for the
Linux OS implemented as a kernel module as well as a kernel
patch. Once an attack is discovered the prototype denies
further access requested by the particular process. The results
of the analysis can assist in reducing the overhead inherent in

1593

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:9, 2014

attack monitoring as well as the effort for developing such a
solution. It also helps reducing the efforts for developing more
secure privileged applications.

Forrest et al. [2] have proposed a method for detecting
anomalous behavior of privileged Unix processes. They adopt
the idea of the immune system which distinguishes between
self and others with ‘self’ defining normal behavior whereas
‘others’ refers to anomalous behavior or attacks. They define
such as ‘self” using short sequences of system calls making it
efficient to monitor in terms of computing time. The authors
demonstrate that the space of possible system call sequences
remains fairly limited and that the sequences are closely
related to the kind of process. Furthermore they have shown
that it is very likely that the sequence is disturbed in case of an
attack happening thus allowing for its detection. Their method
was able to detect a number of known attacks on the UNIX
programs Sendmail and Ipr.

In their work Peisert et al. [5] go one level beyond tracing
system calls by considering the usefulness of tracing function
calls in order to assist in forensic analysis. They demonstrate
that function calls provide a suitable level of abstraction for
forensic analysts due to the fact that they provide an intuitive
description when analyzing an attack. The authors note that
anomalous sequences of function calls fulfill a basic
requirement of forensics stating that besides the importance of
being aware if an attack has occurred it is also important to
know where it has occurred. Via conducting various
experiments with exploits on privileged UNIX applications,
they show that observing the deviations in the sequences of
function calls help in detecting illegal process activities.

B. High-Level Perspective

Robertson et al. [3] have suggested a new approach for
performing anomaly-based detection of web-based attacks
with the goal to reduce the number of false positives generated
by ordinary anomaly-based systems. Additionally they aim to
provide the person responsible for responding to the attack
with a description of the attack that has caused the anomaly.
For this purpose they have developed a prototype of a web
intrusion detection system. Their approach uses a technique
for generalizing anomalies by turning suspicious HTTP
requests into anomaly signatures. The event source for
obtaining the request data is flexible and the prototype uses
web server access log files. Once obtained the anomaly
signatures serve as the grouping criterion for repeating or
similar abnormal requests, facilitating the task of the
administrator who has to respond to the alerts. Furthermore
the approach uses a heuristics-based technique to determine
the type of attack which caused the anomaly. Through this the
attacks are prioritized and enriched with explanatory
information. In order to evaluate their approach the authors
have provided the system with real-world data stemming from
access log files from web servers hosted at different
universities.

Kruegel et al. [4] have introduced a novel approach for
anomaly detection in HTTP requests. The event source
providing the data for the analysis are web server access log

files containing the HTTP requests together with the
parameters. They implement analysis techniques which
compare the access patterns of HTTP requests together with
the contained parameters to profiles belonging to the requested
server-side program or document that have been defined
earlier. This allows the system to perform a focused analysis
and to reduce the number of false positives. The system has
been tested on real-world data as well.

C. Detecting High-Level Attacks

Considering the previous works we identify investigations
on the usage of system calls for attack detection. In other
words these methods use system calls as an event source.
Others use network traffic [6] or web server log files to detect
web-based attacks [3], [5].

To date we are not aware of any work dealing with the
combination of system calls for attack detection and the goal
of detecting web-based attacks. Robertson et al. [3] mention in
a side note when describing the event collection component of
their web intrusion detection system that events could also be
collected from “a system call auditing facility embedded into a
web server’s host operating system” but they do not elaborate
further on it. In our work we demonstrate the value of
performing a system call analysis for the purpose of detecting
Web application attacks. In order to perform a highly
privileged task any user, or process, has to invoke system calls
which are the only interface between user space and kernel
space. Peisert et al. [5] encourage our idea by stating that
“Capturing behaviors represented at the system call
abstraction makes intuitive sense: Most malicious things an
intruder will do use system calls.”

I1l. THE JOURNEY OF A MALICIOUS HTTP REQUEST

Before going on a journey we usually plan the route by
looking at the desired destinations that we plan to visit and we
prepare ourselves by gathering the required equipment. During
our journey we want to share our discoveries with others.

A. Preparation of the Journey

In the following we discuss the application of our detection
mechanism at different levels of the request life cycle. We do
so by following an HTTP request containing input data with
an SQL injection. Therefore we first want to introduce the
different stations that we will visit during our journey at the
application and system call level.

1. Stations of the Journey at Application Level

In the following we give a short overview of what happens
to our HTTP request on its way to the OS level. We address
the different stations using the numbers shown in Fig. 1. We
have a simple Java Web application which receives the
malicious query and passes it through different travel stations.
After visiting the whole destinations it returns a response to
the starting point of the journey which is the HTTP client.

On submission of the login form the client sends an HTTP
request to the Apache Tomcat server. Then Tomcat forwards
the request to the configured Filter Authentication Filter (1)

1594

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:9, 2014

which performs authentication. In order to authenticate the
user, the Filter delegates the login method to the business
layer, in our concrete example to the class User Management
(2). User Management forwards to the class User DAO (3)
from the data layer to obtain the actual credentials from a
MySQL database. Subsequently User Management compares
the user provided credentials to the credentials from the
database. If the authentication is successful then the request
will be forwarded to the Login Servlet (4). If authentication is
not successful then the Filter sends an HTML error page to the
client.

VM

Apache Tormcat

1 Presentation Layer

4
AuthenticationFilter]
LoginSeriet

HTTP request

|t

IP response | User Management

HTTP client

Fig. 1 Stations of HTTP request journey at application level view

2. Stations of the Journey at System Call Level

Fig. 2 shows the system calls for responding to an HTTP
request. Tomcat receives the request data from the socket via
the recv () system call (1) and then forwards the request to
Authentication Filter. The latter attempts to authenticate the
client and therefore calls the login method implemented by
User Management. User Management obtains user
information from the database via User DAO. User DAO
accesses the MySQL database via JDBC. The JDBC driver
first has to be authenticated at the MySQL server by sending
username and hashed password using the send () system call
(2). After authentication the JDBC driver uses the send ()
system call to transmit the malicious query to the database
server (3). MySQL server returns the result of the query to the
JDBC driver which obtains it using the recv () system call (5).
If User DAO finds a user in the database with the
corresponding username it returns a User object to User
Management. Finally User Management compares the
password of the user from database to the password provided
in the request. If the authentication was successful Login
Servlet sends the response to the client, otherwise
Authentication Filter sends an error page. This will be done
using the send () system call (5).

M

Apache Tomcat

1)recv()

Presentation Layer

AuthenticationFilter |—-)I LoginServiet |
\
Business Layer
AuthN: send]
Liser Management
Data Layer
Malicioug Query: se b
\ 4 i
>
UserDAQ
1 recv()
|DEC Driver

y

HTTP reguest

HTTP respoyse

System Calls

Operating Systerm

Fig. 2 Stations of HTTP request journey at system call level view

3. Participants of the Request Journey

Until now we assumed an ordinary user entering a valid
password. It becomes even more interesting if the user injects
a malicious query to perform an SQL injection attack.
Therefore we want to detail the behavior of the application
described above when it is under an SQL injection attack.

Our journey starts at the client side with the client sending
an HTTP request from a simple HTML login form used as
presentation as shown in Fig. 3.

<form method="get" action="/Servlet-Login/login.html" >
<input type="text" name="username" maxlength="80" size="20">
<input type="password" name="password" maxlength="40"
size="20">
<input type="submit" name="action" value="Login">

</form>

Fig. 3 Index.html Page

This HTTP request is received by the Servlet? container.
Tomcat in turn passes the request to the configured Filter
Chain® which in our example consist of only one Filter used to
perform authentication namely Authentication Filter. This
preprocessing Filter allows to transparently authenticate the
user and therefore acts as some kind of decorator of proxy
which performs authentication functionality before generating
the dynamic response. Only if authentication is successful the
request will be forwarded to the Servlet which generates the
response to the client. Circumventing this authentication
mechanism is the target of SQL injection.

The Authentication Filter makes use of login functionality
provided by the business layer. The class User Management
belonging to the business layer is responsible for comparing
the pair of user credentials as provided by the user to the
credential stored in to the database. The class User
Management uses an object of User DAO in order to obtain

2 Java class creating dynamic web content that is capable of the HTTP
protocol.

® A web resource can be filtered by a chain of 0 to n filters which are called
in a predefined order. Among the applications of filters are authentication,
logging and encryption [10].

1595

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:9, 2014

the user credentials from the database. The implementation of
the User DAO uses the Java JDBC* interface for connecting to
a MySQL database. Due to the fact that the SQL statement is
created from a fixed string concatenated with unsanitized user
input attackers can choose their own password when providing
a malicious SQL statement as input for the username in the
login form.

B. Request Journey - Tracing SQL Injection

In the following section we analyze a trace of system calls
which were performed by our application while being under
an SQL injection attack. For this purpose we first need to trace
the system calls invoked by our application. We consider the
system calls resulting from our Web application running on
Catalina® acting as the database client. We conduct our
experiment on a Fedora Linux system using strace as a tracing
tool which we consider to be both sufficiently accurate and
simple to use for our purposes®.

Considering we want to trace an instance of Apache Tomcat
having a pid of 51247 and printing argument strings up to 1024
characters we use the following command (Fig. 4).

| #strace —p 5124 —f -5 1024 —0 traceServletApplication.txt |

argument “41” refers to the file descriptor of the socket, the
second argument corresponds to the buffer contents i.e. the
HTTP request, the third argument “8192” describes the buffer
length in bytes and the last argument “0” is a flag for defining
the desired behavior. The return value “317” indicates the
number of bytes received from the socket.

7480 <... gettimeofday resumed> {1386544364, 110928}, NULL) = 0
7480 poll([{fd=41, events=POLLIN|POLLERR}], 1, 20000) = 1 ([{fd=41,
revents=POLLIN}])

7480 recv (41, "GET /Servlet-Login/index.html HTTP/1.1\..\n", 8192, 0)=317

7480 gettimeofday({1386544364, 111946}, NULL) =0
7480 stat64("/home/student/install/apache-tomcat7.0.26/wtpwebapps/Servlet-
Login/index.html", {st_mode=S_IFREG|0664, st_size=1247,..}) =0

Fig. 5 System call receiving client request

The next relevant system call stat64() lists information
about the file index.html (Fig. 6).

7480 recv(41, "GET /Servlet-Login/index.htmi \..\n", 8192, 0) = 317
7480 gettimeofday({1386544364, 111567}, NULL) = 0
7480 gettimeofday({1386544364, 111946}, NULL) = 0

Fig. 4 Strace for Catalina process

1. Reducing the Set of Data

The resulting output file of our application contains a trace
of more than 10000 lines of system calls invoked by the
process where we attached strace. Same as in a journey when
we record our experiences in a travel diary we have to
distinguish between the interesting and the unnecessary
information. In order to reduce the number of lines that we
have to analyze we look for a classification which can give us
the exact group of system calls which are relevant to our
client/server application. Bernaschi et al. [1] provide a system
call classification based on functionality. In terms of this
classification our application invokes system calls belonging
to the groups of communication, more precisely network
communication, and file systems.

2. Travel Diary - System Call Analysis

As starting point we analyze the request to the static page
index.html. Subsequently Tomcat has to process this request
and therefore needs to open the requested file, read the content
and send it to the client. In the following we identify the
individual system calls for receiving the client request at the
server side as depicted in Fig. 5.

Each line in the trace file starts with the process id
executing the system call, in this case “7480” which is the
process id of the Java virtual machine. Therefore we can
reduce further the set of system calls by only considering
system calls related to this process. The recv() system call is
used to receive messages from a connected socket. The

4 Java Database Connectivity.

® Tomcat's servlet container implementation is called Catalina.

® For further information about strace refer to the Appendix.

" We have to determine the pid related to the script catalina.sh, not
startup.sh.

7480 stat64("'/home/student/install/apache-tomcat-7.0.26/wtpwebapps/Servlet-
Login/index.html", {st_mode=S_IFREG|0664, st_size=1247, ..}) =0

7480 access("/home/student/install/apache-tomcat-.0.26/wtpwebapps/Servlet-
Login/index.html", R_OK) =0

7480 Istat64("/home", {st_mode=S_IFDIR|0755, st_size=4096, ...}) =0
7480 Istat64("/home/...", {st_mode=S_IFDIR|0700, st_size=4096, ...}) =0...

Fig. 6 System call list file information

The first argument is the file path, and the second argument
constitutes a buffer to be filled with the information such as
the protection of the regular file st_mode and st_size showing
the file’s total size.

Having the file information Tomcat invokes the “access”
system call in order to check if all requested permissions are
granted.

The second argument to access() requests a check if the file
exists and read permissions are granted to it which is the case
according to the return value “0” (Fig. 7).

.7.4.180 stat64("/home/student/install/apache-tomcat-.0.26/wtpwebapps/Servlet-
Login/index.html", {st_mode=S_IFREG|0664, st_size=1247,..}) =0

7480 access (“/home/student/install/.../wtpwebapps/Servlet-
Login/index.html", R_OK) = 0

7480 Istat64("/home"”, {st_mode=S_IFDIR|0755, st_size=4096, ...}) =0
7480 Istat64("/home/...", {st_mode=S_IFDIR|0700, st_size=4096, ...}) =0

Fig. 7 System call file permission check

The open () system call returns a file handle to index.html
that will be used by the subsequent read() system call (Fig. 8).

1596

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:9, 2014

7480 stat64("/home/student/install/apache-tomcat-.0.26/wtpwebapps/Servlet-
Login/index.html", {st_mode=S_IFREG|0664, st_size=1247,..}) =0

7480 open (“/home/student/.../wtpwebapps/Servlet-Login/index.html",
O_RDONLY|O_LARGEFILE) =42

Until now we just had the static page but shortly the
attacker will enter the malicious data in the field of Username
and Password using the values depicted in Fig. 12.

7480 fstat64(42, {st_mode=S_IFREG|0664, st_size=1247, ...}) =0
7480 fentl64(42, F_GETFD) =0

Username: 'UNION ALL select 'attacker','Pa$$wOrd'from dual where "='
Password: Pa$$wOrd

Fig. 8 System call open() file handle

The following read () reads the entire content of index.html
from file descriptor “42” (Fig. 9).

Fig. 12 Malicious Query

Subsequently Tomcat receives the username and password
from the client in URL encoded form (Fig. 13)

7480 fentle4(42, F_GETFD) =0
7480 fontl4(42, F_SETFD, FD_CLOEXEC) = 0

7480 read (42, "<html>\n\t<head>\n\t\t<title>Servlet Filter
Example</title>\n\t</head>\n\t<body>...\n\t\t<h2>Login:
</h2>\t\t\n\t\t<form method=\"get\" action=\"/Servlet-Login/login.htmI\"
>...7, 1247) = 1247

7483 poll([{fd=41, events=POLLIN|POLLERR}], 1, 20000 <unfinished ...>
5131 futex(0xb772a444, FUTEX_WAIT_PRIVATE, 5, {0, 999835953}
<unfinished ...>

7483 <...poll resumed>) =1 ([{fd=41, revents=POLLIN}])

7480 close(42)=0
7480 gettimeofday({1386544364, 118267}, NULL) =0

Fig. 9 System call read()

The server now creates an HTTP response using the file
recently read together with header information and sends it to
the client via the socket identified by file descriptor “41” (Fig.
10).

7483 recv (41, "GET /Servlet-

Login/login.html?username=%27UNION+AL L+select%27attacker%27%2C
%27Pa%24%24w0rd%27from+dual+where+%27%27%3D%27 &password=
Pa%24%24w0rd&usergroup=Guest&action=Login HTTP/1.1\r\nHost:
localhost:8080\r\nUser-Agent: Mozilla/5.0 (X11; Linux i686)
AppleWebKit/535.4+ (KHTML, like Gecko) Version/5.0
Safari/535.4+\r\nAccept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\nReferer:
http://localhost:8080/Servlet-Login/index.html\r\nAccept-Encoding:
gzip\r\nConnection: Keep-Alive\r\n\r\n", 8192, 0) = 492

7480 gettimeofday({1386544364, 119761}, NULL) =0
7480 gettimeofday({1386544364, 119903}, NULL) =0

7483 gettimeofday({1386544409, 846053}, NULL) =0

7483 write(1, "SQL> SELECT username, password FROM User WHERE
username ="UNION ALL select'attacker','Pa$$wOrd'from dual where "="",
117) =117

7483 write(1, "\n", 1) =1

7480 send (41, "HTTP/1.1 200 OK\r\nServer: Apache-Coyote/1.1\r\nAccept-
Ranges: bytes\r\nETag: W/\"1247-1386504489000\"\r\nLast-Modified: Sun,
08 Dec 2013 12:08:09 GMT\r\nContent-Type: text/html\r\nContent-Length:
1247\r\nDate: Sun, 08 Dec 2013 23:12:44
GMT\n\n\r\n<html>\n\t<head>\n\t\t<title>Servlet Filter Example</title>...
" 1475, 0 <unfinished ...>

5131 <... gettimeofday resumed> {1386544364, 110930}, NULL) =0

7480 <...send resumed>) = 1475

5131 <... gettimeofday resumed> {1386544364, 110930}, NULL) =0
7480 <...send resumed>) =1475
5131 clock_gettime(CLOCK_REALTIME, <unfinished ...>

Fig. 13 Receive malicious query

Tomcat after receiving these parameters and values has to
do a dynamic processing. The login.html requires that the user
will be authenticated. Therefore the credential data provided
by the user must be compared to the credentials stored into the
database and in order to do that our User DAO uses a JDBC
driver to communicate with the MySQL database.

7483 gettimeofday({1386544409, 852614}, NULL) = 0

Fig. 10 System call send()

As shown in Fig. 11 the attacker enters the malicious SQL
string in order to obtain access to the application and submits
the request to the server by pressing the “Login” button.

G W [http:,Uluca\hcst:SOSOISer\:\at—Lugmflndex‘html

Login:

Username

'UNION ALL select'attacke|

Password
Usergroup | Adrninistrator 2 |
| Reset | | Login |

Fig. 11 SQL injection login form

7483 socket (PF_INET6, SOCK_STREAM, IPPROTO_IP) = 42

7483 setsockopt (42, SOL_IPV6, IPV6_VB6ONLY, [0], 4) = 0

7483 connect(42, {sa_family=AF_INETS, sin6_port=htons(3306),
inet_pton(AF_INETS, "::ffff:127.0.0.1", &sin6_addr), sin6_flowinfo=0,
sin6_scope_id=0}, 28) =0

7483 getsockname(42, {sa_family=AF_INETS, sin6_port=htons(48367),
inet_pton(AF_INETS®, "::ffff:127.0.0.1", &sin6_addr), sin6_flowinfo=0,
sin6_scope_id=0}, [28]) =0

7483 setsockopt (42, SOL_TCP, TCP_NODELAY, [1],4) =0

7483 setsockopt (42, SOL_SOCKET, SO_KEEPALIVE, [1],4) =0

7483 gettimeofday({1386544409, 856534}, NULL) =0

Fig. 14 System call socket() connection

As shown in Fig. 14 subsequently the connector establishes
a connection with the database server on port “3306”which in
our experiment resides at the same machine (127.0.0.1).

Fig. 15 depicts how our application receives a response
from the MySQL server. In this response the MySQL server
tells the client to use a password mechanism called

1597

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:9, 2014

“mysql_native_password, which implements authentication
against the mysql.user table using the native password hashing
method [8].

Finally the class Login Servlet generates an HTTP response
and sends it to the attacker (Fig. 19).

7483 setsockopt(42, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0
7483 gettimeofday({1386544409, 856534}, NULL) = 0

7483 ioctl(42, FIONREAD, [78]) =0

7483 recv(42, "J\0\0\0\n5.5.20\0\230\0\0\0R-
(~ghUN\0\377\367\10\2\0\17\200\25\\0\0\0jHK #*1pv% O @\0mysql_native_p
assword\0", 78, 0) = 78

5137 clock_gettime(CLOCK_REALTIME, {1386544410, 30823329}) =0
5137 futex(0xb7740e44, FUTEX_WAIT_PRIVATE, 1, {0, 49942671}
<unfinished ...>

7483 gettimeofday({1386544410, 39904}, NULL) =0

7483 gettimeofday({1386544409, 856873}, NULL) =0

Fig. 15 System call password negotiation

In the send() system call the JDBC driver connects to the
database “testdb” using the user “student” and the hashed
password which can be seen in Fig. 16.

7483 send (41, "HTTP/1.1 200 OK\r\nServer: Apache-
Coyote/1.1\r\nContent-Type: text/html;charset=1SO-8859-1\r\nContent-
Length: 299\r\nDate: Sun, 08 Dec 2013 23:13:30 GMT\r\n\r\n<htmI>
<head> <title>Login</title> </head> <body> <hl1>Request
Parameters:</h1> <pre> username =\"'UNION ALL
select'attacker’,'Pa$$wOrd'from dual where "="\"
 password =
\"Pa$$word\"
 usergroup = \"Guest\"
 action =
\"Login\"
 </pre> </body></html>\n", 447, 0) = 447

7483 gettimeofday({1386544410, 40707}, NULL) =0
7483 gettimeofday({1386544410, 40802}, NULL) =0

7483 recv(42, ")\0\0\0\n5.5.20\...@\0mysql_native password\0", 78, 0) = 78

7483 send (42,
“D\0\O\L\217\242\2\0037 7\377\377\0\0\0\O\O\O\O\O\O\O\O\O\O\O\Osstuclent\0\2412
526\312v\360\253\302\362\1333\21 7\253testdb\0", 72, 0) = 72

5137 futex(Oxb7740628, FUTEX_WAKE_PRIVATE, 1) = 0
5137 gettimeofday({1386544409, 873247}, NULL) = 0

Fig. 16 MySQL client authentication

After multiple messages exchanged between the JDBC
client and MySQL database server the client sends the
malicious query to the server as shown in Fig. 17.

7483 gettimeofday({1386544409, 943173}, NULL) = 0
7483 ioctl(42, FIONREAD, [0]) =0

7483 send (42, "q\0\O\O\3SELECT username, password FROM User
WHERE username =""UNION ALL select'attacker’,"Pa$$wOrd'from dual
where "=""", 117, 0) = 117

7483 gettimeofday({1386544409, 961161}, NULL) = 0
7483 ioctl(42, FIONREAD, [0]) =0
7483 recv(42, "\1\0\O\1", 4,0) =4

Fig. 17 Sending of malicious query

The second argument in the send() system call is the actual
query at runtime that will finally be received and executed by
MySQL. In this concrete example we can see the attack
happening.

.7.4.183 <...ioctl resumed>, [125]) =0
5137 clock_gettime(CLOCK_REALTIME, {1386544409, 977925904}) = 0

7483 recv (42, <unfinished ...>

5137 futex(0xb7740e44, FUTEX_WAIT_PRIVATE, 1, {0, 49902096}
<unfinished ...>

7483 <...recv
resumed>"\2&\0\0\2\3def\0\0\0\10username\10username\fi10\0@\0\0\0\375\1
\\0\5\010\4\376\0\0\"\0\22\0\0\5\10attacker\10Pa$$wOrd\5\0\0\6\376\0\0\"\0",
125,0) =125

7483 gettimeofday({1386544409, 978216}, NULL) = 0
7483 gettimeofday({1386544409, 978296}, NULL) = 0

Fig. 18 Result set from MySQL server

Fig. 19 HTTP response for login.html

Fig. 20 depicts that the attacker successfully gained access
to the application.

m . |hepyylocalhostigogo/senvist-Login/login.html7usemame =2 27UNION+ALL+selact2e 273

Request Parameters:

username = "'UNION ALL select'sttacker','Pa$saOrd’'from cual where ''='"
password = "Pasfword"

usergroup = "Administratar®

action = "Lagin'

Fig. 20 Successful attack

C. Findings of the Journey

So far we have considered the system calls invoked by our
vulnerable application during an SQL injection attack. We can
reduce the immense amount of traced system calls and focus
on the interesting ones by prioritizing them according to their
functionality [1] as well as the type of the application, such as
a Web application that we used in our experiment. In our
example we have been able to detect the SQL injection attack
on the Web application by looking for the malicious query as
an argument of the send() system call which is in the class of
communication system calls. This is the point where the Web
application, or more precisely the JDBC driver, sends the
query to the database.

SELECT username, password FROM User WHERE username
="UNION ALL select'attacker','Pa$$wO0rd'from dual where "="

Fig. 21 Malicious query

We can check for different attack patterns in the system call
parameters in a programming language independent way and
can concentrate on the peculiarities of the attack itself. (E.g.
we do not need to know the mechanism used by the concrete
programming language in order to access the DB). Based on
the specifics of the attack we can define an attack signature. In
our example the injected query string uses single quotes to
satisfy the SQL syntax of the query which is defined in the
data layer code (depicted in black in Fig. 21). One suspicious
part of the query is that the user name part of the where clause
is filtering for an empty string. This makes sure that the first

1598

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:9, 2014

part of the statement has no result. The UNION ALL part of
the SQL statement provides a WHERE condition which is
always “true” and therefore the data is included into the result
set. These are examples of suspicious patterns indicating that
an SQL injection takes place.

Additionally we are able to check data that is exchanged
between the components belonging to the infrastructure of a
single application, including the server application, a web
service or a database server. In our experiment the Web
application communicates with the DB server using the send()
and recv() system calls.

Furthermore the approach of detecting attacks via system
calls applies not only to one specific attack like SQL injection
but to all kinds of Web application attacks including cross-site
scripting and path manipulation. The only pre-requisite is that
we know about the attack pattern that we are looking for.

IV. CONCLUSION

Previous works [1], [2] focused on using system calls for
detecting low level attacks which are targeting high privileged
processes such as Sendmail. We could demonstrate a new way
of using system calls for attack detection which enables us to
detect SQL injection attacks which are taking place at a high
level. System call tracing is applicable for detecting attacks
independent from the level where they take place.

Moreover in order to detect the attack we do not need to
have access to the application’s source code.

Due to the fact that at runtime any application is represented
as native code invoking the system calls we are independent
from the programming language.

Furthermore we have no dependency on the application’s
internal architecture and whether it uses a layered architecture
or not. Other approaches to attack detection might rely on a
certain architecture e.g. in order to instrument existing code
with log statements.

Last but not least is that we are able to see the actual data at
runtime after it has passed any decoding and decryption which
allows us to see the attack data in detail and which makes
certain evasion techniques used by the attacker useless.

APPENDIX

Tracing system calls via strace can be described as “a
technique that presents details of the execution of program”.
Following the path of a programs execution enables us to
more accurately understand how a program executes and
thereby interacts with its environment. Additionally following
the path of execution enables us to detect the locations where
the program does not behave as expected [7]. To this end for
our work we need a tool which accurately shows the system
calls which execute from the application that we want to
investigate.

Strace is a tool allowing to trace system calls performed by
a process and can either be attached to a running process
(using the option —p) or be started with a new process.

When performing its task it records the system calls made
by a process as well as the signals it receives.

For each system call it records the name, its arguments and
the return value.

Strace does not require that the source code is available as it
does not require any recompilation.

Child processes that have been created by a forked system
call can be traced using the —f option and the output can be
redirected to a file using the —o option if desired.

We should keep in mind that strace always has to be run
with root privileges in order to also trace privileged system
calls.

REFERENCES

[1] M. Bernaschi, “Remus: a security-enhanced operating system,” ACM
Trans. on Information and System Security (TISSEC), 2002, pp.36-61.

[2] S. Forrest, S. A. Hofmeyr, “A Sense of Self for Unix Processes,” in
Proc. IEEE Symposium on Security and Privacy, Washington, 1996, pp.
120.

[3] W. Robertson, G. Vigna, “Using Generalization and Characterization
Techniques in the Anomaly-based Detection of Web Attacks, “in Proc.
of the 13th Symposium on Network and Distributed System Security
California, 2006.

[4] C. Kruegel, G. Vigna, “A multi-model approach to the detection of web-
based attacks,” Elsevier Computer Networks: The International Journal
of Computer and Telecommunications Networking - Web security, New
York, 2005,pp. 717 - 738.

[5] S. Peisert, M. Bishop, S. Karin, and K. Marzullo, “Analysis of Computer
Intrusions Using Sequences of Function Calls,” in IEEE Trans. on
Dependable and Secure Computing, 2007, 137-150.

[6] Gustavo Miguel Barroso Assis do Nascimento, “Anomaly detection of
web-based attacks,” Master Thesis. Lisboa, Portugal, Universidade de
Lisboa, 2010

[71 M. T. Jones, IBM, “Kernel command using Linux system calls,” from
http://www.ibm.com/developerworks/linux/library/I-system-calls, 2010,
Retrieved 12 11, 2013.

[8] Oracle, “The Native Authentication Plug-in,” from
http://dev.mysql.com/doc/refman/5.5/en/native-authentication-
plugin.html, 2013, Retrieved 12 11, 2013.

[9] OWASP, “2013 Top 10 List”, from https://www.owasp.org/
index.php/Top_10_2013-Top_10, Retrieved 9 14, 2014

[10] Oracle, “Chapter 4 Java Servlet Technology: Filtering Requests and
Responses”, http://docs.oracle.com/cd/E19159-01/819-3669/bnafd/
index.html

1599

